Role of Elasto-Inertial Turbulence on channel flow drag

S. Sid ${ }^{1}$, Y. Dubief ${ }^{2}$ \& V.E. Terrapon ${ }^{1}$
${ }^{1}$ University of Liege (Belgium)
${ }^{2}$ University of Vermont

Polymers and turbulence

Elasto-Inertial Turbulence

- Non-laminar chaotic state
- Elastic and inertial instabilities
- 2D
- Small-scale critical

Friction factor - Simulations

Channel flow (FENE-P)

Friction factor - Experiments

Pipe flow with $\mathbf{5 0 0} \mathbf{~ p p m ~ P A A m ~ s o l u t i o n ~}$

Numerical methodology

- DNS with FENE-P model
- Periodic channel flow (const. pressure gradient)
- 2D (512×128) and 3D ($256 \times 128 \times 128$)
- Initial perturbation (blowing and suction at walls)
- 2 different codes with different numerics

FENE-P model

Continuity

$$
\nabla \cdot \mathbf{u}=0
$$

Momentum

$$
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\nabla p+\frac{\frac{\beta}{\overline{\operatorname{Re}}}}{\operatorname{le}} \nabla^{2} \mathbf{u}+\frac{1-\beta}{\operatorname{Re}} \nabla \cdot \mathbf{T}+\frac{\mathrm{d} P}{\mathrm{~d} x} \mathbf{e}_{x}
$$

Polymer stress

$$
\mathbf{T}=\frac{1}{\overline{\mathrm{Wi}}}\left(\frac{\mathbf{C}}{1-\operatorname{tr} C /{\underline{L^{2}}}^{-}}-\mathbf{I}\right)
$$

Conformation tensor

$$
\frac{\partial \mathbf{C}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{C}=\nabla \mathbf{u} \cdot \mathbf{C}+\mathbf{C} \cdot \nabla \mathbf{u}^{\mathrm{T}}-\mathbf{T}
$$

Ratio of solvent viscosity to zero-shear viscosity $\quad \beta=0.97$
Maximum polymer extension
$L=70.9$
Reynolds number
$\mathrm{Re}^{+}=85$
Weissenberg number
$\mathrm{Wi}^{+}=40,100$

Advection and small scales

$$
\underbrace{\frac{\partial \mathbf{C}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{C}}_{\text {Advection }}=\underbrace{\nabla \mathbf{u} \cdot \mathbf{C}+\mathbf{C} \cdot \nabla \mathbf{u}^{\mathrm{T}}-\mathbf{T}}_{\text {Nonlinear source term }} \underbrace{\left[+\frac{1}{\operatorname{ReSc}} \nabla^{2} \mathbf{C}\right]}_{\text {GAD }}
$$

- No diffusion
- Hyperbolic
- Sub-Kolmogorov scales
- Need stabilization

Global artificial diffusion (GAD)
(A)- Used by many with $\mathrm{Sc}_{\text {mum }} \sim 1$

- But $\mathrm{Sc}_{\text {polymer }} \sim 10^{6}$

Local artificial diffusion (LAD)
B - Only locally applied

- Never needed at low Re

3D simulation at supercritical Re

3D simulation at supercritical Re

2D simulation at subcritical Re

Polymer extension

$\mathrm{Wi}^{+}=40$

0
 C / L^{2}

$\mathrm{Wi}^{+}=100$

2D simulation at subcritical Re

Streamwise velocity fluctuations

$$
-0.06 \quad 0.06^{u_{x}^{\prime} / U_{\mathrm{b}}}
$$

PIV measurements in viscoelastic pipe flow

Streamwise velocity fluctuations at $\operatorname{Re}_{\boldsymbol{D}}=\mathbf{3 1 5 0}$

2D simulation at subcritical Re

Friction coefficient

Departure from laminar flow similar to 3D

Schmidt number effect

Mean velocity
Mean polymer extension

- Sc $\sim<9$ lead to laminarization!
- Drag and polymer extension increase with Sc

Integrated streamwise spectrum of kinetic energy

Integrated streamwise spectrum of kinetic energy

Conclusions

- EIT is mostly 2D
- Small scales are critical
- Need to respect physics (high Schmidt number)

Open questions

- EIT = elastic turbulence?
- EIT = ultimate MDR state?
- Theory (predictions, shape of spectra, ...)

Acknowledgement

Questions

BACKUP

Schmidt number effect

Time-averaged streamwise spectra

Kinetic energy

Elastic energy

Small scales are critical!

Schmidt number effect

Turbulent kinetic energy

$$
\begin{equation*}
\mathrm{Wi}^{+}=310, \mathrm{Re}^{+}=40, \beta=0.97, L=70.9, \mathrm{GAD} \tag{22}
\end{equation*}
$$

Schmidt number effect

Ratio of Kolmogorov $\left(v^{3} / \varepsilon\right)^{1 / 4}$ to viscous length scale $\left(v / u_{\tau}\right)$

$$
\mathrm{Wi}^{+}=40, \mathrm{Re}^{+}=85, \beta=0.97, L=70.9, \mathrm{LAD}
$$

Sc=100 - Influence of the mesh

$\mathrm{Wi}^{+}=310, \mathrm{Re}^{+}=40, \beta=0.97, L=70.9, \mathrm{GAD}$

Sc=100 - Influence of the mesh

Time-averaged streamwise spectra

Kinetic energy

Elastic energy

$$
\mathrm{Wi}^{+}=310, \mathrm{Re}^{+}=40, \beta=0.97, L=70.9, \mathrm{GAD}
$$

GAD vs. LAD

Time-averaged streamwise spectra

Kinetic energy

Elastic energy

$$
\mathrm{Wi}^{+}=310, \mathrm{Re}^{+}=40, \beta=0.97, L=70.9, \mathrm{GAD} / \mathrm{LAD}
$$

Code comparison

Mean velocity

Mean polymer extension

$$
\begin{equation*}
\mathrm{Wi}^{+}=40, \mathrm{Re}^{+}=85, \beta=0.97, L=70.9, \mathrm{LAD} \tag{27}
\end{equation*}
$$

Transfer from kinetic to elastic energy

2D simulation at subcritical Re

Polymer extension

0	0.5	1
\square	C / L^{2}	

$\mathbf{W i}^{+}=40$

$\mathbf{W i}^{+}=100$

