

Role of Elasto-Inertial Turbulence on channel flow drag

- S. Sid¹, Y. Dubief² & V.E. Terrapon¹
- ¹ University of Liege (Belgium)
 ² University of Vermont

16th European Turbulence Conference 2017

Polymers and turbulence

Elasto-Inertial Turbulence

- Non-laminar chaotic state
- Elastic and inertial instabilities

Friction factor – Simulations

Channel flow (FENE-P)

Dubief *et al.* (Phys. Fluids, 2013) Terrapon *et al.* (J. Turbul., 2014)

Friction factor – Experiments

Pipe flow with 500 ppm PAAm solution

Numerical methodology

- DNS with FENE-P model
- Periodic channel flow (const. pressure gradient)
- 2D (512×128) and 3D (256×128×128)
- Initial perturbation (blowing and suction at walls)
- 2 different codes with different numerics

FENE-P model

Weissenberg number

Similar results at lower Re⁺

 $Wi^+ = 40, 100$

Xi & Graham (JFM, 2010)

Advection and small scales

B

- No diffusion
- Hyperbolic
- Sub-Kolmogorov scales
- Need stabilization

Global artificial diffusion (GAD)

• Used by many with
$${
m Sc}_{
m num} \sim 1$$

• But
$$Sc_{polymer} \sim 10^6$$

Local artificial diffusion (LAD)

- Only locally applied
 - Never needed at low Re

3D simulation at supercritical Re

Some spanwise homogeneity

3D simulation at supercritical Re

Structures are more 2D due to lower relative contribution of inertia

2D simulation at subcritical Re

Polymer extension

2D simulation at subcritical Re

Streamwise velocity fluctuations

-0.06
$$u_x' / U_b$$

PIV measurements in viscoelastic pipe flow

Streamwise velocity fluctuations at $Re_D = 3150$

2D simulation at subcritical Re

• Sc ~< 9 lead to laminarization!

• Drag and polymer extension increase with Sc

Integrated streamwise spectrum of kinetic energy

Integrated streamwise spectrum of kinetic energy

Conclusions

- EIT is mostly 2D
- Small scales are critical
- Need to respect physics (high Schmidt number)

Open questions

- EIT = elastic turbulence?
- EIT = ultimate MDR state?
- Theory (predictions, shape of spectra, ...)

Acknowledgement

Questions

BACKUP

Schmidt number effect

Time-averaged streamwise spectra

 $Wi^{+} = 40$

Schmidt number effect

Turbulent kinetic energy

Wi⁺ = 310, Re⁺ = 40, β = 0.97, L = 70.9, GAD 22

Schmidt number effect

Ratio of Kolmogorov $(v^3/\varepsilon)^{1/4}$ to viscous length scale (v/u_{τ})

Wi⁺ = 40, Re⁺ = 85, β = 0.97, L = 70.9, LAD

Sc=100 – Influence of the mesh

 $Wi^+ = 310, Re^+ = 40, \beta = 0.97, L = 70.9, GAD$

Sc=100 – Influence of the mesh

Time-averaged streamwise spectra

 $Wi^+ = 310, Re^+ = 40, \beta = 0.97, L = 70.9, GAD$

GAD vs. LAD

Time-averaged streamwise spectra

Wi⁺ = 310, Re⁺ = 40, β = 0.97, L = 70.9, GAD / LAD

Code comparison

 $Wi^+ = 40, Re^+ = 85, \beta = 0.97, L = 70.9, LAD$

Transfer from kinetic to elastic energy

2D simulation at subcritical Re

