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Abstract 
Shape analysis of particles is a complex issue that cannot be fully addressed with a simple parametric 
approach. If aspect ratios (elongation, flatness) and convexity indices allow for global characterisation 
of the form of an object, it becomes obvious that multiscale analysis techniques are required to address 
the proper characterization of local shape features such as roughness, bluntness, angularity, etc. 
Fourier transforms, wavelet transforms, fractal analysis and mathematical morphology are among the 
most popular multiscale decomposition techniques used in 2D. In this paper we propose the 3D 
extension of a Euclidean skeleton descriptor called calypter and show how this opens the way to 
sensitive and robust shape analysis of individual particles in 3D. 
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Introduction 
Particulate materials are ubiquitous in industrial processes and deserve much attention 
because of the unique physical properties observed in this specific state of matter. 
Despite many attempts, the prediction of particulate systems behaviours is still in its 
infancy. Simulation tools such as the discrete element modelling (DEM) approach 
have broken new frontiers with the development of 3D models, but they still struggle 
to take into account realistic shapes and to deal with a sufficiently large number of 
particles (Cleary and Sawley, 2002). 
As an alternative and complement to simulation, advanced characterization of 
individual particles is a promising tool. The development and acceptance of image 
analysis based instruments in the recent years has opened the way towards a better 
understanding of underlying correlations between size/shape characteristics and some 
fundamental physical properties such as flowability, compactness, dissolution, 
abrasiveness, etc. With the advent of 3D imaging techniques a major step is being 
taken towards the definitive characterization of individual particles. 

3D single particle imaging 
A partial or a full 3D image of an individual particle can be obtained from a series of 
techniques involving different principles ranging from laser triangulation and 
stereoscopy to computerized tomography. This last technique is particularly popular 
since the advent of affordable desktop X-Ray tomography instruments, not to mention 
the higher resolution XRay CT images that can be acquired at various synchrotron 
facilities around the world. All the examples included in this paper come from 
desktop X Ray tomography (Skyscan 1172) of metal powder particles dispersed into a 
PVC powder medium. The digitization corresponds to an average resolution of the 
order of 5 000 voxels per individual particle. Particle segmentation has been 
performed using a simple density thresholding procedure. 
The 3D binary image of a particle is defined on a systematic cubic grid with three 
orthogonal axes (x,y,z) and is composed of  voxels having the following attributes: 
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The elementary cubic volume associated to each voxel being given by: 
zyxV ∆∆∆=∆ ..  

From the raster image, several size and shape features (volume, Feret diameters, 
inertia moments, etc.) are already accessible as has been showed by several authors 
(Lin and Miller, 2005; Parra-Denis et al., 2007), but more advanced analytical tools 
require further pre-processing of the data based on neighbourhood configurations.  

Euclidean Distance Transform (EDT) 
The Euclidean Distance Transform is one of the most powerful pre-processing tools. 
It has been introduced by Danielsson (1980) and has since then found many 
applications in geographical information systems, in image segmentation, etc. The 
EDT attributes to each pixel of an object its distance (in Euclidean terms) to the 
closest background pixel. The original algorithm suggested by Danielsson made use 
of four raster scans, but recent developments have introduced sequential algorithms 
relying on Voronoi diagram construction that allow to generalize the principle to 
arbitrary dimensions (Maurer et al., 2003). 
From a theoretical point of view, the EDT bears a perfect analogy to the erosion 
operator in mathematical morphology because it attributes to each voxel the radius of 
the largest sphere, centred on it, that does not contain any background voxel. The 
result of an erosion with a perfect sphere of radius (size) λ is given by thresholding 
the EDT at value λ+1. It is essential to realize that Euclidean erosions cannot be 
obtained through iteration of an elementary structuring element because of the non-
homothecy of concentric spheres on a cubic grid (figure 1). Using the EDT as an 
intermediate for computing the eroded set is a necessary step when aiming at 
morphometry of objects because it eliminates spurious artefacts that would otherwise 
affect the shape measurements.  
Plotting the volume of the 3D EDT as a function of the threshold (λ) is interesting 
whenever the understanding of how an isotropic front propagates makes sense (e.g. 
simple analogy with a dissolution front). But, the EDT has more to offer when further 
processing is performed. This has already been noted by many authors who have been 
using the EDT as a support function for the extraction of skeletons and other powerful 
shape descriptors. 
Meyer (1989) has shown how the search for crest points followed by homotopic 
reconstruction could be a way to obtain the skeleton of a shape from a distance 
function. Ogniewicz and Ilg (1992) suggested alternate ways to obtain Euclidean 
skeletons by making use of Voronoi transforms. This approach provided accurate 
skeletons together with efficient tools for a hierarchical classification of skeleton 
branches. At about the same time, Pirard (1993) suggested a different approach 
making use of the EDT to locate the centre of each maximum inscribed disc 
associated to a point of the contour. The strength of this approach was to store the 
skeleton information together with the contour chain into a single descriptor called 
calypter (Pirard, 1994). This eliminated the need to handle a large number of skeleton 
branches and to memorize their complex branching patterns. 
 



    
Figure 1 Section through a 3D Euclidean distance transform. 

Digitization on a square grid limits the set of discriminable discs. Red pixels correspond to the 
difference between concentric discs of radius 3 and 4, but they could as well belong to a disc of 

radius 3 whose center is shifted in x and y by half a grid spacing. 

Holosphere Opening Transform (HOT) 
The principle of the 2D calypter computation is to proceed from each pixel of the 
contour by following the steepest path along the EDT and checking whether the 
corresponding pixel could be the centre of a maximum inscribed disc containing the 
original contour pixel. Because of image depth limitations, the original calypter 
algorithm was implemented using an EDT rounded-up to the next integer. The final 
result is a coding of any shape into the set of its maximum inscribed discs, with the 
constraint that these discs have integer radii and are centred on the discrete grid. 
Hence, the more appropriate notion of Holodisc Opening Transform (HOT). In 
practice, it can be shown that the lack of precision from using a HOT rather than a 
strictly Euclidean opening transform is rather limited. Considering the added 
uncertainty about the true position of the centre of a disc, a half grid spacing shift in x 
and y means an uncertainty of 0.707 on the Euclidean distance measure within a 
single quarter (figure 1). 
The extension of the calypter in 3D is theoretically straightforward as it suffices to 
associate to each voxel of the surface the corresponding centre of the maximum 
inscribed sphere (MIS) that does contain this voxel. In practice, the 3D calypter 
structure will be less handy because the surface voxels have to be triangulated and 
mapped into a 2D structure that preserves their spatial relationships. MIS centres are 
identified using a propagation pass analogue to the one developed in 2D. At each step, 
one out of three different neighbourhood configurations has to be considered 
depending upon the progression direction (figure 2). The initial progression direction 
being taken from a discrete approximation of the normal to the surface at the initial 
surface voxel (xs,ys,zs). 
Propagation proceeds towards the local maximum of the EDT in the propagation 
front. If there is no strict maximum, the progression front is split into two separate 
paths oriented perpendicularly before definitely stopping. This last exception is 
required to deal with situations analogue in 3D to a locally horizontal 2D crest 
perpendicular to the propagation front (e.g. saddle zone). 



  
Figure 2 Neighbourhood configurations to be considered for the propagation path on the 
Euclidean Distance Transform (a) along the edges of the cubic grid, (b) in a face diagonal 

direction or (c) in a spatial diagonal direction. 
At each step, a test is performed to check whether the corresponding voxel (xi,yi,zi) 
can be a candidate centre for a MIS including the original surface voxel (xs,ys,zs): 

  ( ) 5.0,,5.0)()()( 222 +=+−+−+− iiisisisi zyxEDTzzyyxx  

In other words, the value of the EDT transform at the candidate voxel (EDT(xi,yi,zi)), 
is checked against the Euclidean measure of distance between the candidate voxel 
(xi,yi,zi) and the surface voxel (xs,ys,zs). The test is done by using the holosphere 
metric. The resulting set of maximum inscribed spheres or holosphere opening 
transform (HOT) is illustrated in figure 3. 

 
Figure 3 2D calypter of a diamond particle visualising the maximum inscribed disc radii and 3D 

calyptre of a synthetic cuboactahedron shown as MIS centres  or surfaces 
Through a different approach, Delerue et al. (1999) developed a Voronoi 
skeletonization followed by iterative computation of maximum inscribed spheres to 
analyse the hydrodynamic properties of soils. Because the EDT algorithm by Maurer 
et al. (2003) is using ordered propagation rather than raster scanning, it should be 
possible to integrate the identification of the MIS into the Voronoï propagation itself 
and thereby optimize the computation time. 

3D size and shape analysis 

Size 
Strictly speaking, a size parameter is a dimensional measure that is independent of the 
notion of shape. This is best formalized by Lebesgue’s measure in 3D corresponding 
to the integration of the particle volume by summing up the individual elementary 
voxel volumes whose centre belong to the particle: 
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Because most applications are used to deal with size expressed as a linear measure, it 
is tempting to suggest using an equivalent sphere volume diameter: 
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This measure however does not correspond to any physical dimension of the real 
particle (unless it is a sphere) and is also very sensitive to particle agglomeration. 
Therefore, an alternative choice is to use the diameter of the maximum inscribed 
sphere (dIN) which is obtained from the maximum of the EDT as a measure of size. 
This value is best plotted in a cumulative histogram weighted by volume (fig. 4) and 
can be of particular interest for a better understanding of dissolution/reaction since it 
is, in a first approximation, the thickness of a particle that most controls these 
mechanisms. 

 
Figure 4 X-Ray CT binary image of a sample of tortuous metal particles. Visualisation of the 

equivalent volume sphere and the maximum inscribed sphere (dIN). Cumulative distribution by 
volume of the particle thickness (dIN) in black vs. the particle width in green. 

Roughness and bluntness 
The similarity between opening and abrasion has been noted by many authors and has 
been used in particular to try to automate the widespread morphoscopical chart of 
Krumbein (1941). First attempts by Frossard (1978) were limited by the severe 
artefacts generated by iterated hexagonal opening functions. In order to overcome 
this, Pirard (1993) suggested to make use of the calypter and suggested an index 
(called here bluntness index) computed as follows: 

 
With λE corresponding in 3D to dIN and λi designating the maximum inscribed disc 
(sphere in 3D) containing the ith point of the contour. 
More recent work by Drevin and Vincent (2002) has again studied the analogy 
between Euclidean openings in 2D and Krumbein’s chart. But, instead of computing a 
specific index, they have tried to make use of the full granulometry by opening. 
One of the strength of the bluntness index is its robustness against digitization 
conditions. Figure 5 shows the evolution of the bluntness of three simple shapes as a 
function of the number of voxels. A sensible difference is clearly measured at a 
resolution of only 5000 voxels per particle! 

Conclusion and perspectives 
Euclidean mathematical morphology tools on cubic grids have been implemented to 
address shape analysis of individual particles in 3D. These tools are available for fast 
and accurate analysis of large amounts of particles and can be tailored to address the 
specific needs of a better understanding of some physical behaviours such as 
dissolution, abrasiveness, compactness, etc.  
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 Figure 5 Bluntness index as a function of the number of voxels for three simpe shapes (sphere, 
cube and cuboctahedron). 
Robustness and superior sensitivity of mathematical morphology based methods with 
respect to other multiscale analysis methods such as Fourier and Fractal has not been 
demonstrated in this limited application but from 2D experience it is expected that 
Mathematical Morphology has superior discrimination potential at practical 
resolutions of 5000 voxels per particle. 
Further work on crystallinity and computation of angles between crystal facets is 
ongoing. 
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