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Abstract

Shape analysis of particles is a complex issuedaanot be fully addressed with a simple parametric
approach. If aspect ratios (elongation, flatness) @nvexity indices allow for global characterisat

of the form of an object, it becomes obvious thattiscale analysis techniques are required to addre
the proper characterization of local shape featsweb as roughness, bluntness, angularity, etc.
Fourier transforms, wavelet transforms, fractallysia and mathematical morphology are among the
most popular multiscale decomposition techniquesduis 2D. In this paper we propose the 3D
extension of a Euclidean skeleton descriptor catlatypter and show how this opens the way to
sensitive and robust shape analysis of individaafiges in 3D.
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Introduction

Particulate materials are ubiquitous in indusipialcesses and deserve much attention
because of the unique physical properties obseirvetis specific state of matter.
Despite many attempts, the prediction of parti@ktstems behaviours is still in its
infancy. Simulation tools such as the discrete el@nmodelling (DEM) approach
have broken new frontiers with the development@fr3odels, but they still struggle
to take into account realistic shapes and to déthl s sufficiently large number of
particles (Cleary and Sawley, 2002).

As an alternative and complement to simulation, aaded characterization of
individual particles is a promising tool. The dey@mhent and acceptance of image
analysis based instruments in the recent yearopeased the way towards a better
understanding of underlying correlations betweeer/shape characteristics and some
fundamental physical properties such as flowabiligpmpactness, dissolution,
abrasiveness, etc. With the advent of 3D imagimfrigjues a major step is being
taken towards the definitive characterization afividual particles.

3D single particle imaging
A partial or a full 3D image of an individual pai# can be obtained from a series of
techniques involving different principles rangingorh laser triangulation and
stereoscopy to computerized tomography. This kstrtique is particularly popular
since the advent of affordable desktop X-Ray toraplgy instruments, not to mention
the higher resolution XRay CT images that can kyuiaed at various synchrotron
facilities around the world. All the examples inchadin this paper come from
desktop X Ray tomography (Skyscan 1172) of metaldev particles dispersed into a
PVC powder medium. The digitization correspondstoaverage resolution of the
order of 5 000 voxels per individual particle. Rdet segmentation has been
performed using a simple density thresholding place.
The 3D binary image of a particle is defined onystematic cubic grid with three
orthogonal axes (x,y,z) and is composed of volaigng the following attributes:

| (x )_{1 if the voxel belongsto the particle

0 otherwise



The elementary cubic volume associated to eachl\o@teg given by:
AV = AxXAy.Az

From the raster image, several size and shaperésafuolume, Feret diameters,
inertia moments, etc.) are already accessible asban showed by several authors
(Lin and Miller, 2005; Parra-Denis et al., 2007\t Imore advanced analytical tools
require further pre-processing of the data basedeoghbourhood configurations.

Euclidean Distance Transform (EDT)

The Euclidean Distance Transform is one of the rposterful pre-processing tools.
It has been introduced by Danielsson (1980) and diase then found many
applications in geographical information systenmsjmage segmentation, etc. The
EDT attributes to each pixel of an object its dis& (in Euclidean terms) to the
closest background pixel. The original algorithnggested by Danielsson made use
of four raster scans, but recent developments h#veduced sequential algorithms
relying on Voronoi diagram construction that alldev generalize the principle to
arbitrary dimensions (Maurer et al., 2003).

From a theoretical point of view, the EDT bearseafgct analogy to the erosion
operator in mathematical morphology because itbatis to each voxel the radius of
the largest sphere, centred on it, that does notaco any background voxel. The
result of an erosion with a perfect sphere of radaize)\ is given by thresholding
the EDT at valué\tl. It is essential to realize that Euclidean emasicannot be
obtained through iteration of an elementary stnilctuelement because of the non-
homothecy of concentric spheres on a cubic grigu(é 1). Using the EDT as an
intermediate for computing the eroded set is a ssg step when aiming at
morphometry of objects because it eliminates spgrartefacts that would otherwise
affect the shape measurements.

Plotting the volume of the 3D EDT as a functiontloé thresholdX) is interesting
whenever the understanding of how an isotropictfpopagates makes sense (e.g.
simple analogy with a dissolution front). But, tBBT has more to offer when further
processing is performed. This has already beerdrimtenany authors who have been
using the EDT as a support function for the extomcof skeletons and other powerful
shape descriptors.

Meyer (1989) has shown how the search for cresttpdollowed by homotopic
reconstruction could be a way to obtain the skelaib a shape from a distance
function. Ogniewicz and Ilg (1992) suggested ah&nways to obtain Euclidean
skeletons by making use of Voronoi transforms. Tdypgroach provided accurate
skeletons together with efficient tools for a hrehacal classification of skeleton
branches. At about the same time, Pirard (1993pestgd a different approach
making use of the EDT to locate the centre of eawximum inscribed disc
associated to a point of the contour. The stredtthis approach was to store the
skeleton information together with the contour chiaito a single descriptor called
calypter (Pirard, 1994). This eliminated the nemtidndle a large number of skeleton
branches and to memorize their complex branchitig pes.



@@ @ @) D )
Figure 1 Section through a 3D Euclidean distance transfor m.
Digitization on a squaregrid limitsthe set of discriminable discs. Red pixels correspond to the
difference between concentric discs of radius 3 and 4, but they could as well belong to a disc of
radius 3 whose center isshifted in x and y by half a grid spacing.

Holosphere Opening Transform (HOT)

The principle of the 2D calypter computation ispmceed from each pixel of the
contour by following the steepest path along theTEihd checking whether the
corresponding pixel could be the centre of a marminscribed disc containing the
original contour pixel. Because of image depth tations, the original calypter
algorithm was implemented using an EDT roundedeughé next integer. The final
result is a coding of any shape into the set omiéximum inscribed discs, with the
constraint that these discs have integer radii @mdcentred on the discrete grid.
Hence, the more appropriate notion of Holodisc @ugnlrransform (HOT). In
practice, it can be shown that the lack of precidrom using a HOT rather than a
strictly Euclidean opening transform is rather tedi. Considering the added
uncertainty about the true position of the cenfra disc, a half grid spacing shift in x
and y means an uncertainty of 0.707 on the Eudliddiatance measure within a
single quarter (figure 1).

The extension of the calypter in 3D is theoreticafiraightforward as it suffices to
associate to each voxel of the surface the corneBpg centre of the maximum
inscribed sphere (MIS) that does contain this voxelpractice, the 3D calypter
structure will be less handy because the surfaselsdave to be triangulated and
mapped into a 2D structure that preserves thetiadpalationships. MIS centres are
identified using a propagation pass analogue totigedeveloped in 2D. At each step,
one out of three different neighbourhood configorsg has to be considered
depending upon the progression direction (figureTAg initial progression direction
being taken from a discrete approximation of themad to the surface at the initial
surface voxel (XYs,Zs).

Propagation proceeds towards the local maximumhef EDT in the propagation
front. If there is no strict maximum, the progressiront is split into two separate
paths oriented perpendicularly before definitelppging. This last exception is
required to deal with situations analogue in 3Datdocally horizontal 2D crest
perpendicular to the propagation front (e.g. saddlee).



Figure 2 Neighbour hood configurationsto be considered for the propagation path on the
Euclidean Distance Transform (a) along the edges of the cubic grid, (b) in a face diagonal
direction or (c) in a spatial diagonal direction.

At each step, a test is performed to check whetercorresponding voxel i(%,z)

can be a candidate centre for a MIS including tigireal surface voxel (s Zs):

WO X2+ (Y, ~¥.)* +(z - 2,)" + 05)=| JEDT(x.y,.2) + 05
In other words, the value of the EDT transformheg tandidate voxel (EDTi¥;,z)),
is checked against the Euclidean measure of distaetween the candidate voxel
(xi,yi,z) and the surface voxel {¥s,zs). The test is done by using the holosphere
metric. The resulting set of maximum inscribed spheor holosphere opening
transform (HOT) is illustrated in figure 3.

.

Figure 3 2D calypter of a diamond particle visualising the maximum inscribed disc radii and 3D
calyptre of a synthetic cuboactahedron shown asM 1S centres or surfaces

Through a different approach, Delerue et al. (199®veloped a Voronoi
skeletonization followed by iterative computatiohmsaximum inscribed spheres to
analyse the hydrodynamic properties of soils. Beedhe EDT algorithm by Maurer
et al. (2003) is using ordered propagation rathantraster scanning, it should be
possible to integrate the identification of the Mio the Voronoi propagation itself
and thereby optimize the computation time.

3D size and shape analysis

Size
Strictly speaking, a size parameter is a dimensimeasure that is independent of the
notion of shape. This is best formalized by Lebe&measure in 3D corresponding
to the integration of the particle volume by sumgniup the individual elementary
voxel volumes whose centre belong to the particle:

V=4V>Y I(xY,2)

X,Y,Z
Because most applications are used to deal withesipressed as a linear measure, it
is tempting to suggest using an equivalent spheltene diameter:

6V
&=



This measure however does not correspond to angigaiydimension of the real
particle (unless it is a sphere) and is also venysgive to particle agglomeration.
Therefore, an alternative choice is to use the diamof the maximum inscribed
sphere () which is obtained from the maximum of the EDTaameasure of size.
This value is best plotted in a cumulative histognaeighted by volume (fig. 4) and
can be of particular interest for a better undexditag of dissolution/reaction since it
is, in a first approximation, the thickness of atigée that most controls these
mechanisms.
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Figure 4 X-Ray CT binary image of asam‘ple of tortuous metal particles. Visualisation of the
equivalent volume sphere and the maximum inscribed sphere (d;y). Cumulative distribution by
volume of the particle thickness (d,y) in black vs. the particle width in green.

Roughness and bluntness

The similarity between opening and abrasion has beéd by many authors and has
been used in particular to try to automate the spdead morphoscopical chart of
Krumbein (1941). First attempts by Frossard (19%&ye limited by the severe

artefacts generated by iterated hexagonal openingtibns. In order to overcome

this, Pirard (1993) suggested to make use of tiyptea and suggested an index
(called here bluntness index) computed as follows:

i=N 2
W, = 1 with V =i.z£1+A—EJ
\/\7—1 N = /‘i

With g corresponding in 3D toygl and/; designating the maximum inscribed disc
(sphere in 3D) containing th@ point of the contour.
More recent work by Drevin and Vincent (2002) hamia studied the analogy
between Euclidean openings in 2D and Krumbein’stcBait, instead of computing a
specific index, they have tried to make use offthlegranulometry by opening.
One of the strength of the bluntness index is dbustness against digitization
conditions. Figure 5 shows the evolution of thenbiess of three simple shapes as a
function of the number of voxels. A sensible difflece is clearly measured at a
resolution of only 5000 voxels per particle!

Conclusion and perspectives

Euclidean mathematical morphology tools on cubidgghave been implemented to

address shape analysis of individual particlesDn Bhese tools are available for fast
and accurate analysis of large amounts of parteescan be tailored to address the
specific needs of a better understanding of somgsipdl behaviours such as

dissolution, abrasiveness, compactness, etc.
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Figure 5 Bluntness index as a function of the number of voxels for three simpe shapes (sphere,
cube and cuboctahedr on).

Robustness and superior sensitivity of mathematicaiphology based methods with
respect to other multiscale analysis methods sadfoarier and Fractal has not been
demonstrated in this limited application but from 2xperience it is expected that
Mathematical Morphology has superior discriminatigpotential at practical
resolutions of 5000 voxels per particle.

Further work on crystallinity and computation ofgées between crystal facets is
ongoing.
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