



A.M. Habraken, L. Duchêne, C. Bouffioux, C. Canalès



## OPTIBRI

#### Opening and Project Overview

OptiBri-Workshop "Design Guidelines for Optimal Use of HSS in Bridges,

3 May 2017

Anne Marie Habraken



| Pa | rtn | ers |
|----|-----|-----|
|    |     | 0.0 |



| University of Liège<br>Be (Ulg)           | <i>(Coordinator)</i><br>Material scientist<br>Modelling, Experimental Lab | LIÈGE<br>université                |
|-------------------------------------------|---------------------------------------------------------------------------|------------------------------------|
| Industeel Be                              | Producer of high quality steels                                           | ArcelorMittal                      |
| GRID Pt                                   | Civil Engineering                                                         |                                    |
| University of<br>Stuttgart Ge<br>(USTUTT) | Bridge, Stability, Euro code,<br>Experimental Lab                         | University of Stuttgart<br>Germany |
| University of Coimbra<br>Pt (UC)          | Environmental and cost<br>impact assessment                               |                                    |
| Belgian Welding<br>Institute Be (BWI)     | Welding procedure and Post<br>Weld treatments                             |                                    |



#### How the project was born ?



For a **material scientist**, studying also forming process, High Strength Steel (**HSS**) means

- higher stress value, higher fatigue limit, specific microstructures,
- logical ways to decrease weight (cars, planes: transport industry)



MSM division

MS<sup>2</sup>F sector

University of Liège - Argenco department



#### How the project was born ?

For civil engineers, **HSS** means:

- higher material cost but **potential decrease** of the amount of material of welding time of transport of environmental impact...

#### **Objectives of OPTIBRI Project**

- Quantification of the interest of HSS use under current euro code rules
- Scientific study to define the need of Eurocode enhancement (Stability, Fatigue)
- Check fatigue issues of post treated weld joint of HSS
- Study weld joint and post treatment quality in HSS



My netwok + the one of my Civil Eng. colleagues  $\rightarrow$  Partnership  $\rightarrow$  Brain storming in Summer 2013





**Case study** = road bridge (continuous plate girder steel concrete composite deck, with internal spans 80 meters)

#### **OPTImal use of HSS in BRIdges = OPTIBRI**



#### **Case Design**



Road bridge with four traffic lanes



• Five spans: 60 + 3 × 80 + 60 = 360 m





3 designs for the same bridge



Design A : classical design using S355 steel based on current state of Eurocodes and national rules

Design B : design using S690QL steel, where it has an interest based on current state of Eurocodes and national rules

Design C : design using S690QL steel, where it has an interest based on

-real material behavior

(experimental tests and fatigue damage simulations of bridge details)

-advanced stability law

(experimental + FE anlysis of the buckling of multiaxially stressed plates  $\rightarrow$  enhanced formula within of the code rules EN 1993-1-5)

J.O Pedro's presentation: Challenges and Benefits of High Strength Steel (HSS) in Highway Bridges P. Toussaint's presentation: Usual application of High Strength Steel (HSS) Plates with focus on S690 OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges" 3rd May 2017 7







#### WP1 Design of Bridges by GRID

**Design A** provides a reference

**Design B** allows investigating different designs based on S690QL use discussions between USTUTT and GRID oriented the choices and verifications done (current Eurocode use)

Design C ongoing work based on the results of experimental fatigue curves of welded plates (UIg) and beams (USTUTT) (with weld post treatments) + new formula of buckling verification (USTUTT)

Delays in material delivery  $\rightarrow$  in test results  $\rightarrow$  in model identification  $\rightarrow$  in the simulation of bridge details  $\rightarrow$  in Design C

C. Batista's presentation: Improved Bridge Design by Use of High Strength Steel (HSS) with OPTIBRI Developments



#### WP2 Fatigue study (Ulg, USTUTT, BWI)

Ulg : material scientist's approach

- Static tests ≠ loadings, Base Metal, Heat Affected Zone and Weld Metal (WBI) - 3 elasto plastic models (BM, HAZ, WM)
- Fatigue tests on small specimens (mm)

→ parameters of Lemaitre damage model (1)

Static and Fatigue tests on plates + welded transversal stiffeners (Ulg) + post treatment (PIT,TIC) (residual stress distribution)

→ parameters of *Lemaitre damage model (2)* 

#### 1<sup>st</sup> validation of the fatigue simulations with Lemaitre model

Sth Stt 1070 mm

C Bouffioux's presentation: Characterization of Fatigue Behaviour, from Material Science to Civil Engineering Applications





#### WP2 Fatigue study (Ulg, USTUTT, BWI)



Fatigue tests on Beams + welded transversal stiffeners (USTUTT)

#### -2<sup>st</sup> validation of the fatigue simulations with Lemaitre model



Simulations of Bridge C detail:

Loading from Eurocode FLM5

- $\rightarrow$  1 stress history
- 1 damage distribution of the studied bridge detail
- detail category confirmed or not
- sensitivity analysis not performed : 1<sup>st</sup> approach of real behavior in HSS in bridges, ongoing work

#### -Representative HSS bridge potential rupture

S. Breunig's presentation: Categorization of Fatigue Details in View of Post-Weld Treatments

MSM division



Enhancement of the reduced stress method, introduction of V factor in Eurocode formulae



#### WP4 Welding study (BWI)

Study of Fatigue crack and microstructure to identify optimal welding procedure and Post Treatment Qualification.

Welding of all plates and beams

PIT (Pneumatic Impact Treatment) TIG (Tungsten Inert Gas) remelting were used as Post Treatments.

Initial choice LTT (Low Temperature Transformation filler material) dropped

LTT could not reach required toughness values (50 to 60 J) in bridges (results of FATWELDHSS project 2015)



*T. Baaten's presentation: Welding and Post-Welded Treatments of High Strength Steel (HSS) joints* 



#### WP5 Impact of Bridge Design (UC)





Work on LCA Life cycle Assessment LCC Life cycle Cost LCP Life cycle Performance

Design A // B : on going work,

Design C = future



#### C. Rigueiro's presentation: Comparative Life-Time Assessment of the Use of High Strength Steel (HSS) in Bridges





#### Thank you for your attention!



Anne Marie Habraken

E-Mail Anne.Habraken@ulg.ac.be Telefon +32 (0) 4 366 94 30 Fax +32 (0) 4 366 95 34

University of Liège ARGENCO department Quartier Polytech 1, Allée de la découverte, 9 Bât B52/3 B-4000 Liège BELGIUM

# GRID

INTERNATIONAL | CONSULTING ENGINEERS

#### A.Reis, J.O.Pedro, C.Baptista, F.Virtuoso, C.Vieira

### Challenges and Benefits of High Strength Steel (HSS) in Highway Bridges

Research Fund for Coal & Steel

OptiBri-Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

SECTION C-C - TEE BITFFENERS





DECK TYPICAL CROSS-SECTION - SUPPORT

The Parameter





#### **Overview – Case study: general layout**



• Five spans: 60 + 3 × 80 + 60 = 360 m



#### Highway bridge with four traffic lanes



#### **Overview – Case study: construction**



Studied span: typical 80m inner span



Executed by incremental launching of the steel structure



#### **Overview – Case study: Design A and B**

**Design A –** using standard S355 NL and present Eurocodes

Design B – using HSS S690 QL and present Eurocodes

 Design C – using HSS S690 QL, welding treatment and possible upgrades to the EC 3-1-5





#### Design A – S355 NL <> Design B – S690 QL



OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

**Consulting Engineers** 

International

R

0



#### Design A – S355 NL <> Design B – S690 QL



#### Structural steel distribution for the typical 80 m span



#### Design A – S355 NL <> Design B – S690 QL

| Designation           | EN 206-1                                                                                                                    | Exposure<br>Classes                      | Cover (mm)                            |    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|----|
| Piers and Foundations | C30/37                                                                                                                      | XC3 / XF1                                | 45                                    |    |
| Deck - Slab           | C35/45 XC4/ XF4                                                                                                             |                                          | C35/45                                | 40 |
| STEEL:                |                                                                                                                             |                                          |                                       |    |
| Structural Steel      | EN10025-2 S355 J2 (Z15 if th. ≤ 30mm)<br>EN10025-3 S355 N (Z15 if 30 < th. ≤ 80mm)<br>EN10025-3 S355 NL (Z25 if th. > 80mm) |                                          |                                       |    |
| Reinforcement         | B500B (EN 10080                                                                                                             | ))                                       |                                       |    |
| Prestress Cables      | fp₀,ık≥ 1637 MPa / fpuk ≥ 1860 MPa (EN 10138)                                                                               |                                          |                                       |    |
| Stud Connectors       | EN10025 S235 J2 + C450 (EN ISO 13918)                                                                                       |                                          |                                       |    |
|                       |                                                                                                                             |                                          |                                       |    |
| Structural Steel      | EN10025-6 S690<br>EN10025-6 S690                                                                                            | QL (40J,-40°C) (Z1<br>QL1 (40J,-40°C) (Z | 5 if th. ≼ 40mm)<br>15 if th. > 40mm) |    |

#### **Structural Materials**

- ✓ Deck steel design and detailing is performed using European standards EN 1990, EN 1991, EN 1993 and EN 1994
- ✓ <u>Structural behaviour</u> at ultimate and serviceability limit states (ULS, SLS), evaluated by finite frame element models, with due account for rheological effect from concrete
- Construction stages are taken into account by superposition of results from:
  - steel structure frame model, for the application of its own weight and the slab concrete weight
  - composite structure frame models with modular ratios for concrete, assessed for short-term actions, permanent actions and shrinkage effects (following EN 1994-2)



- Longitudinal safety verifications included namely:
  - ULS bending and shear girders resistance
  - SLS stress limitations on structural steel, reinforcement and concrete slab, and deflections
  - ULS fatigue of girders structural steel and stud connectors (welded joint between the transverse stiffeners and the bottom tension flange proves to be the most relevant detail for the design of the composite steel-concrete twin plate girder deck)
- ✓ **Flange induced buckling** following formulation from EN 1993-1-5
- Transverse stiffeners designed also according with EN 1993-1-5 (plate buckling of the webs near supports is a key issue when using HSS; close intermediate transverse stiffeners are used to increase web shear buckling resistance)



#### ULS bridge deck design – Bending resistance (EN 1993-1-5)

| Mid-span section<br>Class 1 – Plastic section analysis                   | Design A<br>S355 | Design B<br>S690 |
|--------------------------------------------------------------------------|------------------|------------------|
| $M_{\rm Ed}/M_{\rm pl.Rd}$ < 1                                           | 0.74             | 0.54             |
| $\{\sigma_{\rm Ed} / (f_{\rm yf} / \gamma_{\rm M0})\}$ Bottom flange < 1 | 0.93             | 0.65             |

- ULS bending resistance is not a critical design issue for S690
- All span sections can still be designed elastically



#### ULS bridge deck design – Bending resistance (EN 1993-1-5)

| <b>Support section</b><br>Class 4 – Elastic analysis with effective section                                                                 | Design A<br>S355 | Design B<br>S690 |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| $\{\sigma_{\rm Ed}/(f_{ m yf}/\gamma_{ m M0})\}$ Eff. bottom flange < 1                                                                     | 0.95             | 0.88             |
| $\{\sigma_{\rm Ed} / (\chi_{\rm LT} f_{\rm yf} / \gamma_{\rm M1})\}$ Eff. bottom flange < 1 (*)<br>(*) at 0.25 $L_k$ = 5 m from the support | 0.92             | 0.97             |

- ULS bending resistance > elastic analysis for both designs
- For S690 also the bottom flange is in class 4 since  $\varepsilon = \sqrt{235/f_y} = 0.584$
- For S690 > web under compression with  $\rho$  = 0.49, bottom flange reduction  $\rho$  = 0.94; Lateral torsion buckling  $\chi_{LT}$  = 0.72



#### ULS bridge deck design – Shear resistance (EN 1993-1-5)

#### Effective Width Method (EN 1993-1-5, sections 4 to 7)

| Support section<br>(transversal stiffeners @ 2m )                                                     | Design A<br>S355 | Design B<br>S690 |
|-------------------------------------------------------------------------------------------------------|------------------|------------------|
| $h_{ m w}$ x $t_{ m w}$ (mm²)                                                                         | 3590 x <b>26</b> | 3390 x <b>20</b> |
| $\bar{\lambda}_w = 0.76 \sqrt{f_{yw}/\tau_{cr}}$                                                      | 0.97             | 1.77             |
| $\chi_{ m w}$                                                                                         | 0.86             | 0.56             |
| $V_{\rm Ed}/V_{\rm bw,Rd} = V_{\rm Ed}/(\chi_w h_w t_w f_{yw}/\sqrt{3}\gamma_{\rm M1})$               | 0.86             | 0.91             |
| (M/V) Interaction with $\gamma_{M1=1.1}$ (*)<br>(*) at min { $t_w/2$ ; $a/2$ } = 1 m from the support | No interaction   | 1.0              |

- Using S690, web thickness is reduced from 26 mm to 20 mm
- Interaction (M,V) makes the support panels work at the limit, if consistently a unique safety coefficient  $\gamma_{M1}$  =1.1 is adopted



#### ULS bridge deck design – Shear resistance (EN 1993-1-5)

#### Reduced Stress Method (EN 1993-1-5, sections 10)

| Support section<br>(transv. stiff. @ 2m; Without long. stiff.)                                                                            | Design A<br>S355                            | Design B<br>S690                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| $h_{ m w}$ x $t_{ m w}$ (mm²)                                                                                                             | 3590 x <b>26</b>                            | 3390 x <b>20</b>                            |
| $ ho_{ m x}$                                                                                                                              | 0.83                                        | 0.49                                        |
| $\chi_{ m w}$                                                                                                                             | 0.76                                        | 0.52                                        |
| $(\sigma_{\! m x,Ed}$ , $	au_{ m Ed})$ (MPa) bottom end of the web                                                                        | (267.8,135.0)                               | (519.7,183.2)                               |
| $\sqrt{\left(\frac{\sigma_{x,Ed}}{\rho_x f_y / \gamma_{M1}}\right)^2 + 3\left(\frac{\tau_{Ed}}{\chi_w f_y / \gamma_{M1}}\right)^2} \le 1$ | (1.07+0.95) <sup>0.5</sup> =<br><b>1.42</b> | (2.83+0.94) <sup>0.5</sup> =<br><b>1.94</b> |
| Required $t_w$ (mm)                                                                                                                       | 34                                          | 32                                          |



#### Why so inconsistency between

effective Width Method <> Reduced Stress Method ?

- Using the reduced stress method no partial plastic stress redistributions are allowed (as it is the case for the interaction criterion of section 7, EC3-1.5)
  - Therefore, ULS bending moment and shear force cannot be primarily allocated to the support cross sectional elements:
    - hogging bending moment resisted by the {flanges+reinforcement} alone
    - so that, the web resistance can fully be used for the support shear force
  - Moreover, the reduced stress method consistently uses  $\gamma_{M1} = 1.1$ (which is more accurate) for plastic resistance and instability, but verifications are made for the cross-section over the support



© Sétra

#### ULS bridge deck design – Shear resistance (EN 1993-1-5)

#### Reduced Stress Method (EN1993-1-5, sections 10)

© Donges Steeltec GmbH

Longitudinal stiffeners on the outside of the web Ref. Railway Bridge near Riesa, Germany – COMBRI Design manual

Longitudinal flat stiffeners on the inside of the web Ref. Twin-girder Bridge in Triel-sur-Seine, France – COMBRI Design manual



#### ULS bridge deck design – Shear resistance (EN 1993-1-5)

#### Reduced Stress Method (EN1993-1-5, sections 10)



#### **Design solution:**

- keep the web thickness
- add a continuous
   longitudinal closed
   stiffener in the external
   compressed bottom
   part of the web
- extended up to 20 m
   from both sides of the supports.



#### ULS bridge deck design – Shear resistance (EN 1993-1-5)

#### Reduced Stress Method (EN1993-1-5, sections 10)

| S690 QL                                                       | Unstiffened Web                 | Stiffened Web   | $\alpha_{cr,local} = 1.870$ |
|---------------------------------------------------------------|---------------------------------|-----------------|-----------------------------|
| $lpha_{ult,k}$                                                | 1.13                            | 1.13            |                             |
| $\alpha_{cr,x}$                                               | 0.34                            |                 | $\langle \rangle$           |
| $lpha_{cr,	au}$                                               | 0.70                            |                 |                             |
| $\alpha_{cr}$                                                 | 0.31                            | 1.87 (EBplate)  |                             |
| $ar{\lambda}_p$                                               | 1.92                            | 0.81            | Local plate mode due        |
| $\rho_x$                                                      | 0.49                            | 0.96            | $\alpha_{matched} = 18738$  |
| $\chi_{ m w}$                                                 | 0.52                            | 1.00            | acer,global Ion oo          |
| $\left(\frac{\sigma_{x,Ed}}{\rho_x f_y/\gamma_{M1}}\right)^2$ | 2.83                            | 0.75            |                             |
| $3\left(\frac{\tau_{Ed}}{\chi_w f_y/\gamma_{M1}}\right)^2$    | 0.94                            | 0.25            |                             |
| $\leq 1$                                                      | 1.94                            | 1.00            | Global plate mode due       |
| OptiBri Workshop "Desian (                                    | Guidelines for Optimal Use of H | ISS in Bridges" | to {bending + shear}        |



#### ULS bridge deck design – Transversal stiffeners (EN 1993-1-5)

#### **Design Case A - S355**



Design Case B - S690





#### ULS bridge deck design – Transversal stiffeners (EN 1993-1-5)





#### ULS bridge deck design – Transversal stiffeners (EN 1993-1-5 §9.3.3)

 Minimum stiffness requirements for shear verification of the webs – checked by imposing a second moment of the area of a stiffener I<sub>st</sub> higher than:

| $I_{\rm st} \geq 1.5 \ h_{\rm w}^3 \cdot t_{\rm w}^3/a^2$ | if | $a/h_{\rm w} < \sqrt{2}$    | easily verified and |
|-----------------------------------------------------------|----|-----------------------------|---------------------|
| $l_{\rm st} \geq 0.75 \; h_{\rm w} \cdot t_{\rm w}^3$     | if | $a/h_{\rm w} \geq \sqrt{2}$ | strong stiffeners   |

 <u>Resistance requirement</u> – verified with the axial force N<sub>st</sub> imposed by the tension field action given by:

 $N_{st} = V_{Ed} - V_{cr,w}$ 

considerable more demanding for the intermediate single-sided HSS stiffeners, working with very high  $V_{Ed}$ , thus producing high eccentric axial forces  $N_{st}$ , to be taken into account in the beam-column verification

 $V_{Ed}$ taken at the distance 0.5  $h_w$  from the edge of the panel with the largest shear force; $V_{cr,w}$ corresponds to the shear buckling resistance of the web without stiffeners.

- <u>Safety to torsional buckling</u> – design rules for open stiffeners assume that torsional buckling should be completely prevented when loaded axially; thus EN 1993-1-5 provides the following general requirement for the  $\sigma_{cr}$  the elastic critical stress of open stiffeners:



This is the more difficult criteria to achieve; design replaces  $f_y$  by the maximum actual stress  $\sigma_{max,Ed}$  at the intermediate transverse stiffener



#### ULS bridge deck design – Flange Induced Buckling (EN 1993-1-5)




| 0.55    | 0.55                             | 0.55                                                                                            | 0.55                                                                                                                                            | 0.55                                                                             |
|---------|----------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 650     | 650                              | 650                                                                                             | 690                                                                                                                                             | 690                                                                              |
| 3390x20 | 3400x20                          | 3410x18                                                                                         | 3425x18                                                                                                                                         | 3425x15                                                                          |
| 1230x70 | 1100x60                          | 1100x60                                                                                         | 1300x45                                                                                                                                         | 1300x45                                                                          |
| 158     | 180                              | 172                                                                                             | 172                                                                                                                                             | 157                                                                              |
| 170     | 170                              | 189                                                                                             | 190                                                                                                                                             | 228                                                                              |
|         |                                  |                                                                                                 |                                                                                                                                                 |                                                                                  |
|         | 3390x20<br>1230x70<br>158<br>170 | 3390x20       3400x20         1230x70       1100x60         158       180         170       170 | 3390x20       3400x20       3410x18         1230x70       1100x60       1100x60         158       180       172         170       170       189 | 3390x203400x203410x183425x181230x701100x601100x601300x45158180172172170170189190 |











| Design B - S690<br>deck section                                | 1-2<br>support | 3    | 4-5  | 6-8  | 9-11<br>mid-span |
|----------------------------------------------------------------|----------------|------|------|------|------------------|
| k                                                              | 0.55           | 0.55 | 0.55 | 0.55 | 0.55             |
| $\sigma_{\!\scriptscriptstyle Ed}$ (MPa)                       | 570            | 411  | 302  | 346  | 447              |
| $\sigma_{\!\scriptscriptstyle Ed}/f_{\!\scriptscriptstyle yf}$ | 0.88           | 0.63 | 0.46 | 0.50 | 0.65             |
| h /h <sub>i</sub>                                              | 2.07           | 1.82 | 1.95 | 1.51 | 1.59             |
| β                                                              | 0.91           | 0.66 | 0.54 | 0.50 | 0.63             |
| $k E / (\beta f_{yf}) \sqrt{A_w / A_{fc}}$                     | 173            | 274  | 318  | 342  | 250              |
| $h_w / t_w < \text{limit}?$                                    | 170            | 170  | 189  | 190  | 228              |



#### SLS bridge deck design – Deflections and Stresses

| Deflection | for | frequent | Highway | Live | Loads | (LM1) |
|------------|-----|----------|---------|------|-------|-------|
|------------|-----|----------|---------|------|-------|-------|

| Condition                                                                                        | Design A – S355          | Design B – S690          |
|--------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| $\delta(\psi_1 Q_{k1}) \le L/500 = 160 \text{ mm} (*)$<br>(*) $L/500 \text{ imposed by SIA 260}$ | 49 mm (= <i>L</i> /1632) | 74 mm (= <i>L</i> /1081) |

| Stress ratios in structural steel ( $\sigma_{Ed,ser,max}$ | $/f_{\rm y}$ ), concrete slab ( $\sigma_{c,ser,max}$ / 0.6 $f_{ck}$ ), |
|-----------------------------------------------------------|------------------------------------------------------------------------|
| and slab reinforcement                                    | $t(\sigma_{rs,ser} \leq 0.8 f_{sk})$                                   |

|                               | Design A – S355 |          | Design B – S690 |          |
|-------------------------------|-----------------|----------|-----------------|----------|
| Section                       | Support         | Mid-span | Support         | Mid-span |
| Concrete slab / reinforcement | 0.49            | 0.27     | 0.61            | 0.32     |
| Top flange                    | 0.71            | 0.35     | 0.59            | 0.26     |
| Web                           | 0.75            | 0.65     | 0.61            | 0.47     |
| Bottom flange                 | 0.73            | 0.68     | 0.53            | 0.48     |

















(5



$$\Delta \sigma_{R} = \Delta \sigma_{E} \gamma_{Mf} \gamma_{Ff} < \text{FAT (detail)} \qquad \Delta \sigma_{E} = \lambda |\sigma_{Q.max} - \sigma_{Q.min}|$$
  
$$\gamma_{Mf} = 1.35 \qquad \gamma_{Ff} = 1.0 \qquad \text{Damage equivalent factor}$$
  
$$\lambda = \lambda_{1} \times \lambda_{2} \times \lambda_{3} \times \lambda_{4} \le \lambda_{max}$$





$$\Delta \sigma_{R} = \Delta \sigma_{E} \gamma_{Mf} \gamma_{Ff} < \text{FAT (detail)} \qquad \Delta \sigma_{E} = \lambda |\sigma_{Q.max} - \sigma_{Q.min}|$$

$$\gamma_{Mf} = 1.35 \qquad \gamma_{Ff} = 1.0 \qquad \text{Damage equivalent factor}$$

$$\lambda = \lambda_{1} \times \lambda_{2} \times \lambda_{3} \times \lambda_{4} \le \lambda_{max}$$

Damage equivalent factor  $\lambda <> \lambda_{max}$ 

| Support | $\lambda_1 = 2.20$ | $\lambda_2 = 1.224$ | $\lambda_3 = 1.00$ | $\lambda_4 = 1.00$ | $\lambda = 2.69 < \lambda_{\max} = 2.70$ |
|---------|--------------------|---------------------|--------------------|--------------------|------------------------------------------|
| Span    | $\lambda_1 = 1.85$ | $\lambda_2 = 1.224$ | $\lambda_3$ =1.00  | $\lambda_4$ =1.00  | $\lambda = 2.26 > \lambda_{max} = 2.00$  |

| $\Delta \sigma_{e} \gamma_{Mf} \gamma_{Ff}$ [MPa] | Design A – S355 |          | Design B – S690 |          | Limit   |
|---------------------------------------------------|-----------------|----------|-----------------|----------|---------|
| Section                                           | Support         | Mid-span | Support         | Mid-span | FAT     |
| Top flange                                        | 23              | 14       | 36              | 7        | 56      |
| Bottom flange                                     | 26              | 57       | 50              | 78       | 56 / 80 |



#### Bridge deck design – Structural steel weight

| Obtained values               | Design A<br>S355 NL<br>(kg/m <sup>2</sup> deck) | Design B<br>S690 QL<br>(kg/m <sup>2</sup> deck) | Variation<br>(%) |
|-------------------------------|-------------------------------------------------|-------------------------------------------------|------------------|
| Structural steel              | 219                                             | 165                                             | -25%             |
| Main girders                  | 186                                             | 123                                             | -34%             |
| Cross girders<br>+ Stiffeners | Cross girders<br>+ Stiffeners 33                |                                                 | +27%             |

#### The use of HSS thinner plates enables an **overall reduction of the structural steel weight of about 25%**



#### Bridge deck design – Volume of welding



OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

Consulting Engineers

International

5



#### Bridge deck design – Drawings



OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

International | Consulting Engineers

5

3<sup>rd</sup> May 2017



#### Bridge deck design – Drawings

**Consulting Engineers** 

International |

5





#### Comparison between the two designs shows that:

- ✓ The use of HSS S690 QL enables a reduction of 25% of the steel weight compared to the standard plate girder deck in S355 NL;
- Using HSS the deck can be slender and with thinner plates, but more susceptible to local buckling phenomena;
- Longitudinal stiffeners can be used to increase the web resistance and profit from the use of HSS thinner webs;
- A substantial cut on the volume of full penetration welding is obtained by using thinner plates;
- ✓ Girders in HSS are much more prone to fatigue, that proves to be the main issue of the design together with buckling phenomena;
- ✓ The critical fatigue detail is the FAT80 at the welded joints between the bottom flange and the transverse stiffeners.



INTERNATIONAL | CONSULTING ENGINEERS

#### Thank you for your attention!

José Oliveira Pedro

E-Mail jose.pedro@grid.pt Telefone +351 213 191 220 Fax +351 213 528 334

GRID International, Consulting Engineers Av. João Crisóstomo, nº25-4 floor 1050-125 Lisbon, PORTUGAL





# Industeel High Strength Steel Plates

OptiBri-Workshop

"Design Guidelines for Optimal Use of HSS in Bridges"

Dr Ir Patrick Toussaint

#### Industeel

# What are High Strength Steel plates ?

Research Fund for Coal & Steel



Quenched and Tempered High Strength Steel plates mostly for structural applications with minimum yield strength of 690, 890, 960 and 1100 MPa

Quenching and tempering provides the steel with high strength and ductility. Quenching and tempering consists of a twostage heat-treatment process.

Stage 1 includes hardening, in which the plate is austenitized to approximately 900°C and then quickly cooled. The material is waterquenched while somehow clamped to avoid warping.

Stage 2 consists of tempering the material to obtain the intended material properties.

# High Strength Steel plates products portfolio



|     |                                                                  | Industeel produces all HSS grades according to international norms                                                                                                                                                                                                                              |
|-----|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 565 | Industeel trademark                                              | Standard                                                                                                                                                                                                                                                                                        |
| No. | Amstrong <sup>®</sup> Ultra 690<br>SuperElso <sup>®</sup> 690 CR | S690Q - S690QL - S690QL1 according to <b>EN 10025-6</b><br>P690Q -P690QH -P690QL1 -P690QL2 according to <b>EN 10028-6</b><br>ASTM A514 Grades B, E, F, H, Q / ASTM A517 Grades B,E,Q<br>ASME SA-514 Grades B, E, F, H, Q / ASME SA-517 Grades<br>B,E,Q<br>ABS, DNV-GL, LRS, EQ70, VLF690, FH69, |
|     | Amstrong <sup>®</sup> Ultra 890                                  | S890Q - S890QL - S890QL1 according to EN 10025-6                                                                                                                                                                                                                                                |
|     | Amstrong <sup>®</sup> Ultra 960                                  | S960 Q - S960 QL according to <b>EN 10025-6</b>                                                                                                                                                                                                                                                 |
| 1   | Amstrong <sup>®</sup> Ultra 1100                                 | Industeel specification, no international standard at this strength level                                                                                                                                                                                                                       |

## Industeel

20 23

Research Fund for Coal & Steel

High Strength Steel plates typical size ranges





Industeel has the largest range of sizes and thicknesses available nowadays on the market

- Length : up to 17 metres
- Width : up to 4350mm
- Weight : up to 80 tonnes

# Industeel

Research Fund for Coal & Steel





# Main applications

# Industeel

Research Fund for Coal & Steel

# Yellow Goods & Green Goods





### Industeel









- Mobile cranes
- Chassis

Amstrong<sup>®</sup> Ultra 960 : thickness = 8-60mm Amstrong<sup>®</sup> Ultra 1100 : thickness = 8-15mm

#### Lighter and more innovative structures

# Sesearch Fund for Coal & Steel Mining & Construction & Transport







- Dumpers
  - Chassis Canopy Amstrong Ultra®690 : thickness = 8-50mm

Reduced vehicle weight, reduced fuel consumption, heavier payload

# Mining & Construction & Transport







Public work (demolition) - Jaw crushers

#### More maneuverable cranes and tools

# Performance Fund for Coal & Steel Mining & Construction & Transport





• Lifting arm Amstrong Ultra® 690 thickness = 60-

80mm

#### Ability to lift heavier loads than before











#### Racks

Length : 8 m up to 15,5 m Thickness : 160 mm up to 210 mm Width : 775 mm up to 1060 mm Weight : up to 23 tonnes

### Chords

Length : 4 m up to 10 m Thickness : 80 mm up to 120 mm Width : 380 mm up to 680 mm

#### Welded elements

Length : 8 m up to 24,5 m Weight : 11 tonnes up to 70 tonnes



















Lifting capacity up to 10 000 tonnes

#### Structure

Amstrong Ultra® 690 (QL and QL1 qualities) tuned to the particular specifications thickness = 10–100+mm

Technical solutions adapted to customer requirements









Spud poles EQ70 (ABS) - Neptune project - 1590 tonnes thickness = 58 mm

Neptune will work mainly in the offshore windfarm installation

By increasing the strength of steel, the structural sections can be reduced







# Industeel

# Mechanical construction







- Architecture, bridges,
- Steel buildings
- Penstocks
- Chassis of industrial machines

Reduction of wall thickness and weight with increasing strength of steel





# Thank you for your attention!

Dr Ir Patrick Toussaint

E-Mail patrick.toussaint@arcelormittal.com

Phone +32 71 441 627

Fax +32 71 441 956

Industeel Belgium Marketing Department

266 Rue de Châtelet B-6030 Marchienne-au-Pont Belgium





Welding and Post Weld Treatment of High Strenght Steel Joints

Thomas Baaten


- Introduction
- Welding Procedure Qualification
- Physical simulation of thermal history, characterisation, generation of samples
- Welding of high strength steel
- Post Weld Treatment Qualification
  - Parameters
  - Imperfections caused by HFMI
  - Indentation map
  - Finite element model of PIT proces
  - Is Post Weld Treatment Qualification needed?
- Conclusions



#### Introduction



- Geometry
- Residual <u>tensile</u> stress
- Possible softening of the HAZ (f.e. S700MC, aluminium, ...)



#### **Welding Procedure Qualification**

- Goal: make a weld method which fulfils EN 15614-1 requirements
- The mechanical and metallurgical properties of the weld metal and the heat affected zone are determined by:
  - Pre heat temperature
  - Welding parameters
- Tests needed for fillets welds:
  - Visual examination
  - Dye penetrant/magnetic examination
  - Cross section (looking for metallurgical changes in the HAZ as well)
  - Hardness measurements
  - Additional charpy impacts tests



#### Welding Procedure Qualification – pre heating

- Pre heating is done to avoid brittle zones (sensitive for hydrogen cracking)
- 4/5 factors are taking into account:
  - Hydrogen content of the filler metal
  - · Heat-input of the welding process
  - Chemical composition of the base metal
  - Material thickness
  - Limitions/recommendations from fabricant



#### Welding Procedure Qualification – pre heating

Solid ER100-SG welding wire -> scale <u>D</u>

| Table C.2 — | <ul> <li>Hydrogen</li> </ul> | scales |
|-------------|------------------------------|--------|
|-------------|------------------------------|--------|

| Diffusable h<br>ml/100 g of | ydroge<br>deposit | n content<br>ted metal | Hydrogen scale |
|-----------------------------|-------------------|------------------------|----------------|
|                             | >                 | 15                     | A              |
| 10                          | $\leq$            | 15                     | В              |
| 5                           | ≤                 | 10                     | с              |
| 3                           | 5                 | 5                      | D              |
|                             | <                 | 3                      | E              |

- Heat-input: 1,5 kJ/mm
- Base material: CEV max. : 0,67
- Combined thickness: 10+2\*15 = <u>40 mm</u> and 10+2\*40 mm= <u>90 mm</u>



For simultaneously deposited directly opposed twin fillet welds, combined thickness =  $\frac{1}{2} (d_1 + d_2 + d_3)$ 

Combined thickness =  $d_1 + d_2 + d_3$ 



#### Welding Procedure Qualification – pre heating

• 40°C for 15 mm base plate and 90°C for 40 mm base plate



1 Combined thickness, mm 2 Heat input, kJ/mm 4 Scale 5 To be used for carbon equivalent not exceeding

3 Minimum preheating temperature, ° C

#### Figure C.2 — Conditions for welding steels with defined carbon equivalents



#### **Welding Procedure Qualification**

 Weld Procedure Qualification of welding case A and H was done according to EN ISO 15614-1
 Start-stop on





location with lowest stress



| weldprog                | wire<br>(m/min)  | arc length corr.<br>(%) | dynamic or<br>pulse corr. | mode | welding<br>speed<br>m/min |
|-------------------------|------------------|-------------------------|---------------------------|------|---------------------------|
| 5a                      | 6                | 10                      | 4                         | std  | 0,18                      |
| 5b                      | 6                | 10                      | 4                         | std  | 0,24                      |
| 6a                      | 9,5              | 7                       | 3                         | puls | 0,3                       |
| 6b                      | 9,5              | 7                       | 3                         | puls | 0,24                      |
| 7a                      | 9                | 5                       | 4                         | puls | 0,3                       |
| 7b                      | 9                | 5                       | 4                         | puls | 0,25                      |
|                         | end time:        |                         | end curr: le              |      |                           |
|                         | te (s)           | 2                       | (%)                       | 50   |                           |
| Parameters<br>in source | slope Si1<br>(s) | 0.5                     | slope Si2 (s)             | 0.9  |                           |



Thomas Baaten, IWE.

- ing. .

Belgian Welding Institute









- ing. Thomas Baaten, IWE.

Belgian Welding Institute





Thomas Baaten, IWE.

Belgian Welding Institute - ing.













 input for physical weld simulations of thermal history of HAZ 1 and 2 (representing SC A and SC H)

C18 16-

- ∆t 8/5 HAZ 1 (welding case A) = 4.4s
- $\Delta t 8/5 HAZ 2$  (welding case H) = 7 s







# Physical simulation of thermal history, characterisation, generation of samples





# Physical simulation of thermal history, characterisation, generation of samples

 Tensile tests on weld simulation test samples of HAZ1 and HAZ2 (resp. welding case A and H).





- Quenched and tempered (Q&T)
  - S690QL
  - Thickness up to 200 mm
  - Low heat input can cause excessive hardness
  - Often preheating is needed
  - High heat input can cause softening
  - Centre of X joints is critical point in WPQ
  - Generaly good to weld

*Heat Input* =  $k \cdot \frac{U \cdot I}{v}$  [J/mm]























Cutting of the web and flanges was already done in steel factory

3h

3,5h

18h

2h

- Cutting stiffeners: 1,5h
- Mounting, tackwelding: 12h
- SAW welding + 100°C preheating: 14h
- Flame straightening:
- MAG welding of stiffeners: 24h
- Grinding edges:
- Visual examination + MPI central stiffeners: 4h
- Machining incorrect weld toe in corners: 8h
- Extra visual examination + MPI after repair: 2h
- Project management:
- PIT treatment:



Ref. : Optistraight



total of 92 hours labour

2 hours of PIT treatment in a



# Welding of HSS: Considerations/arguments to skip preheating and concerns

- recommendations for preheating of EN 1011-2 (2010), mainly based on hydrogen cracking, are conservative.
- At the side of the <u>filler metal</u> fabricants, seamless flux cored wires were developed in the 90ties (as a better alternative for folded FCW). Entrance of hydrogen is limited massively since 1990.
- At the side of the <u>steel makers</u> CE equivalents and %C of HSS can be kept low. The maximum Vickers hardness of the steel used in Optibri is estimated 422 HV10, which is far below the maximum limit of 450HV10 of the EN ISO 15614-1 standard for welding procedure qualification.
- Recent experience of BWI: no hydrogen damage analysis
- Cost saving



#### **Post Weld Treatment of HSS**



#### **Post Weld Treatment of HSS**

Research Fund for Coal & Steel

• S355 original (not treated)



S690QL PIT treated





#### **Post Weld Treatment of HSS**





#### **Post Weld Treatment qualification**

- Available finished fatigue tests samples with longitudonal stiffeners in S420MC and S700MC grades – thickness range 5 - 10 mm
- 5 PIT-parameters were applied (variations in pressure, diameter, frequency) (only 2 parameters were Ok for Pitec, based on their experience.)

| Condition | PIT parameters           |
|-----------|--------------------------|
| 1         | 6 bar, 90 Hz, r = 2 mm   |
| 2         | 6 bar, 90 Hz, r = 4 mm   |
| 3         | 6 bar, 90 Hz, r = 1,5 mm |
| 4         | 6 bar, 120 Hz, r = 2 mm  |
| 5         | 4 bar, 90 Hz, r = 2 mm   |

- Examination for Post Weld Treatment qualification:
  - Metallographic examination
  - Dimensional check
  - Hardness measurements



#### **Post Weld Treatment qualification**





#### Post weld treatment qualification

Metallographic examination example S700MC-5-087-PIT1







#### Post weld treatment qualification

3 imperfections were found on 21 samples:

- 1. Spread out
- 2. Inclusion of oxides
- 3. Sharp notch







#### Post weld treatment qualification

3 imperfections were found on 21 samples:

- 1. Spread out
- 2. Inclusion of oxides
- 3. Sharp notch









#### **Post Weld Treatment Qualification**





#### Post weld treatment qualification: Hertz theory

$$E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$$

$$R^* = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$$

$$p_0 = \frac{2}{\pi} E^* \left(\frac{d}{R}\right)^{1/2}$$
if  $p_m < 1.1 \sigma_y$ , elastic deformation occurs





#### Post weld treatment qualification: Hertz theory

$$E^* = \left(\frac{1-\nu_1^2}{E_1} + \frac{1-\nu_2^2}{E_2}\right)^{-1} = 224.000 \text{ N/mm}^2$$

$$R^* = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = 1.5 \text{ mm}$$
$$p_0 = \frac{2}{\pi} E^* \left(\frac{d}{R}\right)^{1/2} = 76.617 \text{ N/mm}^2 > 2.8 * 355 \text{ N/mm}^2$$



#### if $p_m > 1.8 \sigma_v$ , contained plastic deformation occurs



#### PIT treatment on S355 base material Indentor: compressed air 6 bar – indentor radius r = 2mm – frequency f= 90Hz

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

π



#### Post weld treatment qualification: indentation map

|                                                                                                                                                           | a/R                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S355 PIT 1                                                                                                                                                | 0,54                                                                                                                                                               |
| S355 PIT 2                                                                                                                                                | 0,25                                                                                                                                                               |
| S355 PIT 3                                                                                                                                                | 0,69                                                                                                                                                               |
| S355 PIT 4                                                                                                                                                | 0,19                                                                                                                                                               |
| S355 PIT 5                                                                                                                                                | 0,43                                                                                                                                                               |
|                                                                                                                                                           | a/R                                                                                                                                                                |
| S420 PIT 1                                                                                                                                                | 0,38                                                                                                                                                               |
| S420 PIT 2                                                                                                                                                | 0,23                                                                                                                                                               |
| S420 PIT 3                                                                                                                                                | 0,61                                                                                                                                                               |
| <b>S420 PIT 4</b>                                                                                                                                         | 0,19                                                                                                                                                               |
| <b>S420</b> PIT 5                                                                                                                                         | 0,35                                                                                                                                                               |
|                                                                                                                                                           | -                                                                                                                                                                  |
|                                                                                                                                                           | a/R                                                                                                                                                                |
| <b>S690 PIT1</b>                                                                                                                                          | <b>a/R</b><br>0,41                                                                                                                                                 |
| <b>S690 PIT1</b><br><b>S690 PIT2</b>                                                                                                                      | a/R<br>0,41<br>0,36                                                                                                                                                |
| S690 PIT1<br>S690 PIT2<br>S690 PIT3                                                                                                                       | a/R<br>0,41<br>0,36<br>0,38                                                                                                                                        |
| S690 PIT1           S690 PIT2           S690 PIT3           S690 PIT4                                                                                     | a/R<br>0,41<br>0,36<br>0,38<br>0,13                                                                                                                                |
| S690 PIT1           S690 PIT2           S690 PIT3           S690 PIT4           S690 PIT5                                                                 | a/R<br>0,41<br>0,36<br>0,38<br>0,13<br>0,39                                                                                                                        |
| S690 PIT1           S690 PIT2           S690 PIT3           S690 PIT4           S690 PIT5                                                                 | a/R<br>0,41<br>0,36<br>0,38<br>0,13<br>0,39<br>a/R                                                                                                                 |
| S690 PIT1           S690 PIT2           S690 PIT3           S690 PIT4           S690 PIT5           S700 PIT1                                             | a/R<br>0,41<br>0,36<br>0,38<br>0,13<br>0,39<br>a/R<br>0,35                                                                                                         |
| S690 PIT1           S690 PIT2           S690 PIT3           S690 PIT4           S690 PIT5           S700 PIT1           S700 PIT2                         | a/R<br>0,41<br>0,36<br>0,38<br>0,38<br>0,39<br>a/R<br>0,35<br>0,25                                                                                                 |
| S690 PIT1         S690 PIT2         S690 PIT3         S690 PIT4         S690 PIT5         S700 PIT1         S700 PIT2         S700 PIT3                   | a/R<br>0,41<br>0,36<br>0,38<br>0,39<br>a/R<br>0,35<br>0,25<br>0,25                                                                                                 |
| S690 PIT1         S690 PIT2         S690 PIT3         S690 PIT4         S690 PIT5         S700 PIT1         S700 PIT2         S700 PIT3         S700 PIT4 | <ul> <li>a/R</li> <li>0,41</li> <li>0,36</li> <li>0,38</li> <li>0,13</li> <li>0,39</li> <li>a/R</li> <li>0,35</li> <li>0,25</li> <li>0,48</li> <li>0,07</li> </ul> |

Belgian Welding Institute - ing. Thomas Baaten, IWE.



University of

Fleck)

R



#### Post weld treatment qualification: dimensional check




# Conclusions

- Welding of HSS depends on the chemical composition and the fabrication method
- The robustness of PIT is proven by means of fatigue test of different parameters, cross sections and dimensional checks
- <u>If</u> a Post Weld Treatment Qualification (PWTQ) is needed for Eurocode, a simple cross section is needed to show that a/R>0,2.
- New 'IIW Recommendations for the HFMI Treatment For Improving the Fatigue Strength of Welded Joints' is interesting.

# Thank you for your attention!



# ing. Thomas Baaten, IWE

Project Engineer T +32 (0)9 292 14 20

F +32 (0)9 292 14 01 M+32 (0)479 89 45 58 thomas.baaten@bil-ibs.be

Belgisch Instituut voor Lastechniek vzw Technologiepark 935, B-9052 Zwijnaarde info@bil-ibs.be | www.bil-ibs.be | www.nal-ans.be







A.M. Habraken, L. Duchêne, C. Bouffioux, C. Canalès





Characterization of Fatigue Behaviour, from Material Science to Civil Engineering Applications

OptiBri-Workshop

"Design Guidelines for Optimal Use of HSS in Bridges"

3<sup>rd</sup> May 2017

Chantal Bouffioux





OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"







NSM



- 4 materials:
  - Base Material: BM (HSS S690QL)
    - Heat Affected Zone:
      - HAZ1 (25 mm thick)
      - HAZ2 (40 mm thick)
    - Welded Metal: WM







Static tests:





OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"



# Static behavior – material laws & parameters :

Elastic part: Hooke's law. Ev

Plastic part: Hill's law (Hill48):

$$F_{HILL}(\sigma) = \frac{1}{2} \left[ H(\sigma_{xx} - \sigma_{yy})^2 + G(\sigma_{xx} - \sigma_{zz})^2 + F(\sigma_{yy} - \sigma_{zz})^2 + 2N(\sigma_{xy}^2 + \sigma_{xz}^2 + \sigma_{yz}^2) \right] - \sigma_F^2 = 0$$

Isotropic hardening: Voce formulation:

$$\sigma_F = \sigma_0 + K(1 - exp(-n)\varepsilon^{pl}))$$

Back-stress (kinematic hardening): Armstrong-Frederick's equation:

$$\underline{\dot{X}} = \underbrace{C_X (X_{sat})}_{\underline{\dot{\varepsilon}}^{pl}} - \overline{\dot{\varepsilon}}^{pl} \cdot \underline{X}$$

- E & v: defined by tensile tests
- F, G, H: defined by tensile tests in 3 directions (RD, TD, 45°)
- N,  $\sigma_0$ , K, n, C<sub>x</sub>, X<sub>sat</sub>: defined by Optim

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"





- Static behavior material data (inverse method):
  - **BM**: hardening fully kinematic
  - HAZ1 ≈ HAZ2: same static behaviour
  - WM

|             | For fatigue tests:           | For FEM:                      |  |  |
|-------------|------------------------------|-------------------------------|--|--|
|             | $\sigma_{u,eng} = F_i / A_0$ | $\sigma_{u,true} = F_i / A_i$ |  |  |
|             | Ultimate tensile             | e strength (Mpa)              |  |  |
|             | $\sigma_{u,eng}$             | $\sigma_{u,true}$             |  |  |
| BM (S690QL) | 838                          | 905                           |  |  |
| HAZ1, HAZ2  | 1338                         | 1424                          |  |  |
| WM          | 1008                         | 1101                          |  |  |

| Data for Hooke, Hill, Voce and Armstrong-Frederick laws (units: MPa, s) |           |     |   |             |   |       |     |                     |     |                |                  |  |
|-------------------------------------------------------------------------|-----------|-----|---|-------------|---|-------|-----|---------------------|-----|----------------|------------------|--|
|                                                                         |           |     |   |             |   |       |     |                     |     |                | Kinematic        |  |
|                                                                         | Elast. da | ta  |   | Yield locus |   |       |     | Isotropic hardening |     |                | hardening        |  |
| Material                                                                | E         | v   | F | G           | н | N=L=M | K   | σ                   | n   | C <sub>x</sub> | X <sub>sat</sub> |  |
| BM (S690QL)                                                             | 210 116   | 0.3 | 1 | 1           | 1 | 3.9   | 0   | 674                 | 0   | 31.9           | 167              |  |
| HAZ1, HAZ2                                                              | 210 000   | 0.3 | 1 | 1           | 1 | 4.45  | 371 | 827                 | 511 | 52.5           | 152              |  |
| WM                                                                      | 210 000   | 0.3 | 1 | 1           | 1 | 3.2   | 241 | 531                 | 285 | 42.6           | 218              |  |





Static behavior – comparison of material behavior:





- Fatigue tests:
  - On vibrophore
  - Axial loading
  - Frequency: 100 150 Hz
    - $(\rightarrow \text{ correction factor})$

#### R= $\sigma_{min}$ / $\sigma_{max}$ = 0.1 or 0.2 or ...

| Material           | Smooth | Notch   |  |  |
|--------------------|--------|---------|--|--|
| <b>BM (S690QL)</b> | 4 R    | 3 geom. |  |  |
| HAZ1               | 1 R    | 1 geom. |  |  |
| HAZ2               | 2 R    | 1 geom. |  |  |
| WM                 | 2 R    | 1 geom. |  |  |



Vibrophore









# Fatigue behavior – material laws & parameters :

# Multiaxial Lemaître Chaboche fatigue model

$$\begin{split} & \frac{\partial D}{\partial N} \begin{bmatrix} = 0 & \text{if } f_D < 0 \\ = \left[ 1 - (1 - D)^{\beta + 1} \right]^{\alpha} \left( \frac{A_{II}}{M} \right)^{\beta} & \text{if } f_D \ge 0 \\ & f_D = A_{II} - A_{II}^* \\ & A_{II} = \frac{1}{2} \sqrt{\frac{3}{2}} \left( \widehat{\sigma}_{ijmax} - \widehat{\sigma}_{ijmin} \right) \left( \widehat{\sigma}_{ijmax} - \widehat{\sigma}_{ijmin} \right) & \text{with } \widehat{\sigma}_{ij} = \sigma_{ij} - \sum_k \frac{1}{3} \sigma_{kk} \\ & A_{II}^* = \left( \overline{\sigma}_{10} \right) (1 - 3.b. \sigma_{Hm}) & (\text{Sines' criterion}) \\ & \widetilde{A}_{II} = \frac{A_{II}}{1 - D} \\ & M = \left( M_0 \right) (1 - 3.b. \sigma_{Hm}) & \alpha = 1 - \left( a \right) \left( \frac{A_{II} - A_{II}^*}{\sigma_{eqmax}} \right) \\ & \sigma_{Hm} = \frac{1}{3} \left[ \frac{1}{T} \int_{T} \text{Tr} \left( \underline{\sigma}(t) \right) dt \right] \end{split}$$

| D:                      | damage val., 0: sound material, 1: rupture                    |
|-------------------------|---------------------------------------------------------------|
| N:                      | number of cycle                                               |
| A <sub>II</sub> :       | $2^{\text{nd}}$ invar. of amplit. deviator of $\sigma$ tensor |
| A <sub>11</sub> *:      | fatigue limit                                                 |
| f <sub>D</sub> :        | damage yield locus                                            |
| σ <sub>Hm</sub> :       | mean hydrostatic stress                                       |
| $\sigma_{eqmax}$ :      | maximum Von Mises stress per cycle                            |
| <x></x>                 | = x if x > 0 else = 0                                         |
| b= $1/\sigma_u$         |                                                               |
| <b>σ</b> <sub>u</sub> : | ultimate tensile stress                                       |
| σ <sub>l0</sub> :       | endurance limit= fatigue limit at null $\sigma_{\text{mean}}$ |
| a, M0, β:               | other material data to define                                 |



# Fatigue behavior – material laws & parameters :

#### Volume averaged stress gradient method

For each element, variables  $\chi_{ip}$ : replaced by an average value of all the elements with their integration point inside the circle with a radius Ra

$$\overline{\chi_{ip}} = \frac{1}{V} \cdot \sum_{i=1}^{Nelem} \chi_{ip,i} \cdot V_i$$

$$\chi_{ip} = \{A_{II}, \sigma_{eqmax}, \sigma_{Hm}\}$$

 $V = \sum_{i=1}^{Nelem} V_i$ 

| A <sub>II</sub> :  | $2^{nd}$ invar. of amplit. deviator of $\sigma$ tensor |
|--------------------|--------------------------------------------------------|
| $\sigma_{eqmax}$ : | maximum Von Mises stress per cycle                     |
| $\sigma_{Hm}$ :    | mean hydrostatic stress                                |
| Ra:                | material data to define                                |





Fatigue behavior – material data (inverse modelling):

HAZ1 ≈ HAZ2: same fatigue behavior

|            | σ <sub>U</sub> | σ <sub>10</sub> |           |       |   |            | Ra   |                               |
|------------|----------------|-----------------|-----------|-------|---|------------|------|-------------------------------|
| Material   | (Mpa)          | (Mpa)           | b         | β     | а | M0         | (mm) | a* <b>(M0</b> - <sup>β)</sup> |
| BM         | 905.0          | 580.0           | 1.10 E-03 | 0.17  | 1 | 5.385 E+30 | 0.06 | 5.966E-06                     |
| HAZ1, HAZ2 | 1424.0         | 428.4           | 7.02E-04  | 2.094 | 1 | 4.410E+05  | 0.00 | 1.516E-12                     |
| WM         | 1101.0         | 319.4           | 9.08E-04  | 0.161 | 1 | 7.245E+32  | 0.00 | 5.182E-06                     |





Fatigue behavior – comparison experiments & fatigue law:
<u>Base material (BM)</u>







Fatigue behavior – comparison experiments & fatigue law:

Heat affected zone (HAZ) with HAZ1 ≈ HAZ2



**MSM** division

- MS<sup>2</sup>F sector

University of Liège - Argenco department



 Fatigue behavior – comparison experiments & fatigue law: <u>Weld metal (WM)</u>











OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

ASV M



# Fatigue tests on plates (length= 1070 mm):



| Case         | Post-treatment    | plate<br>thickness<br>(mm) | Stiffener<br>thickness<br>(mm) | Stiffener<br>length (mm) | distance to<br>edge | stress ratio<br>R |
|--------------|-------------------|----------------------------|--------------------------------|--------------------------|---------------------|-------------------|
| Plate        | No weld           | 25                         | -                              | -                        | -                   | 0.1               |
| A (ref case) | PIT               | 25                         | 15                             | 60                       | $\checkmark$        | 0.1, 0.3, 0.5     |
| В            | PIT               | 15                         | 15                             | 60                       | $\checkmark$        | 0.1               |
| E            | PIT               | 25                         | 15                             | 60                       | no                  | 0.1               |
| н            | PIT               | 40                         | 15                             | 60                       | no                  | 0.1               |
| С            | TIG remelting     | 15                         | 15                             | 60                       | $\checkmark$        | 0.1               |
| D            | TIG remelting     | 25                         | 15                             | 60                       | $\checkmark$        | 0.1               |
| F            | TIG remelting     | 25                         | 15                             | 40                       | $\checkmark$        | 0.1               |
| G            | TIG remelting     | 15                         | 6                              | 60                       | $\checkmark$        | 0.1               |
| 1            | No post-treatment | 15                         | 15                             | 60                       | $\checkmark$        | 0.1               |





# Fatigue behavior – material data (inverse modelling):

| Material | σ <sub>υ</sub><br>(Mpa) | σ <sub>ιο</sub><br>(Mpa) | b         | β    | а | M0         | Ra<br>(mm) | a* <b>(</b> M0 <sup>-β)</sup> |
|----------|-------------------------|--------------------------|-----------|------|---|------------|------------|-------------------------------|
| BM-SS    | 905.0                   | 580.0                    | 1.10 E-03 | 0.17 | 1 | 5.385 E+30 | 0.06       | 5.966E-06                     |
| BM-plate | 905.0                   | 203.0                    | 1.10 E-03 | 0.17 | 1 | 5.385 E+30 | 0.06       | 5.966E-06                     |

 $\sigma_{10}$  = endurance limit= fatigue limit at null  $\sigma_{mean}$ 















Fatigue tests: PIT post-treatment effect







## Fatigue tests: TIG remelting post-treatment effect









- MSM division

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

# Fatigue tests



Research Fund for Coal & Steel



**MSM** division

- MS<sup>2</sup>F sector



# Residual stress measurement

#### Several cases:

- 3 geometries
- 3 cases: PIT, TIG remelting, no post-treat.
- Mid-weld (MW), weld edge (WE), RD, TD
- X-ray, neutron diffraction





#### Ex: ref. case: A, with post-treatment (X-ray)







Fatigue - numerical analysis















- Fatigue numerical analysis
  - 1. Mesh analysis 🔶 element size at weld toe: 0.1 mm (results not mesh dependent)
  - 2. For several stress ranges and a specified stress ratio (here: 0.1):
- Numerical analysis 🔿 Stress distribution 📫 number of cycle at rupture 1.E+5 Mesh analysis **Small case samples** 9.E+4 8.E+4 1000 7.E+4 ž **Cycles to failure**, 7 5.E+4 4.E+4 3.E+4 2.E+4 1.E+4 Welded plates + PIT Δσ (MPa) Welded Num.: 1<sup>st</sup> tests plates welded plates 100 0.E+0 1E+4 1E+5 1E+6 1E+7 0.0 0.2 0.3 0.4 0.5 0.6 Cycles to failure, N Element size (mm) ---- Num.

#### Next steps:

- to add  $\sigma_{res}$  to model (welding + post-treatment)
- to improve fatigue mat. data of HAZ ( $\sigma_{10}$ )
- to study beams and critical bridge detail



• Fatigue - numerical analysis, crack propagation





## **Summary & conclusions**

Important test campaign has been done to prepare numerical fatigue study of bridge details:

- Static tests Fatigue tests
  on small samples
- Fatigue tests on large welded plates
- Residual stresses measurements
- Mesh analysis
- Crack propagation

- -
- Static behaviour Fatigue behaviour (small size)
- Effects of size, surface roughness, welding, geometry, post-treatments
- Effect of post-treatments for num. analysis
- welded plates: elem. size at weld toe: 0.1 mm
- deep analysis of fatigue study



Positive effect in fatigue life is shown on welded plates Fatigue characterisation almost ready for analysis on critical bridge detail





# Thank you for your attention!



E-Mail chantal.bouffioux@ulg.ac.be Telefon +32 (0) 4 366 92 19 Fax +32 (0) 4 366 95 34

University of Liège ARGENCO department Quartier Polytech 1, Allée de la découverte, 9 Bât B52/3 B-4000 Liège BELGIUM



#### University of Stuttgart

Institute of Structural Design Steel, Timber and Composite Constructions Prof. Dr.-Ing. Ulrike Kuhlmann







# **Overview**

"Categorization of Fatigue Details in View of Post-Weld-Treatments"

# 1.) General information on **High Frequency Mechanical Impact** (HFMI) **Treatment**

2.) Improvement and categorization of appropriate construction details

a) Benefits and influences on fatigue resistance of HFMI-treated construction details (example: transverse stiffener)

b) Possible existing approaches

3.) Beam Tests

- a) Motivation of test series
- b) Experimental procedure
- c) Results of beam tests
- 4.) Conclusions and outlook

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"



# 1.) General information on High Frequency Mechanical Impact (HFMI) Treatment



# a) Classification of Post-Weld Treatments



Jniversity of Stuttgart Institute of Structural Design Prof. Dr.-Ing. Ulrike Kuhlmann

# 1.) General information on High Frequency Mechanical Impact (HFMI) Treatment



b) Mechanism and variants of HFMI

# Pneumatic Impact Treatment (PIT)

- By pneumatic pressure mechanical impacts are given with a pneumatically controlled muscle over a hardened pin into the construction
- The intensity is not depending on the applied compressive force due to an integrated spring system




## 1.) General information on High Frequency Mechanical Impact (HFMI) Treatment

## c) Technical requirements



- For welded construction details with fatigue failure from weld toe HFMItreatment can improve fatigue resistance
- If fatigue failure cracks come from weld root, HFMI application is not successful
- Accessability to the welds, weld toe is needed

## 2.) Improvement and categorization of appropriate construction details



a) Benefits and influences on fatigue resistance of HFMI-treated construction details (example: transverse stiffener)

Investigated construction details:

- Butt weld <u>a</u>nd <u>v</u>ariants (a.v.)
- Transverse stiffener (a.v.)
- Longitudinal stiffener (a.v.)

Amount of improvement depends on construction detail

## Quantity of improvement depends on further parameters:

- Yield strength fy
- Stress ratio R
- Type of loading (height, quantity, time ...)
- Plate thickness t



. . .

## 2.) Improvement and categorization of appropriate construction details



a) Benefits and influences on fatigue resistance of HFMI-treated construction details (example: transverse stiffener)



## 2.) Improvement and categorization of appropriate construction details



a) Benefits and influences on fatigue resistance of HFMI-treated construction details (example: transverse stiffener)







a) Motivation of beam test series

- Improvement of fatigue resistance of several construction details is proved by small scale tests under laboratory conditions
- Component tests show drop of improvement of fatigue resistance due to:
  - More complex residual stress state
  - More complex welding conditions

Differences in fatigue resistance of small specimen and true scale
specimen

- drop of fatigue strength according to (Duerr, 2006)





## b) Experimental procedure - test setup



## **3.) Beam Tests** b) Experimental procedure



Research Fund for Coal & Steel

Τ1

T1<sub>(HFMI: Stiffener)</sub> and T2<sub>(HFMI: Stiffener)</sub> failure: Crack crossing the longitudinal fillet weld







OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

E



# **3.) Beam Tests** c) Results





## c) Test results – depending on failure modes









Beam test (aw)

Nominal Stress Range Δσ [MPa]





Beam test (aw)

Beam test (HFMI: Stiffener + Longi Weld)

• Failure Stiff (HFMI: Stiffener + Longi Weld)



c) Results for **transverse stiffener –** comparison to **small scale tests** 





 $\Delta \sigma_{c} = 112 - 125 \text{ N/mm}^{2}$ 

## 3.) Beam Testsc) Results for longitudinal weld failure



Beam test (HFMI: stiffener) A Beam test (HFMI: Stiffener + Longi Weld)

3<sup>rd</sup> May 2017

## 4.) Conclusions and Outlook

- Effectiveness of HFMI treatment could be shown for
  - Transverse stiffener beam tests (results between FAT 140 160)
  - Longitudinal fillet weld
- General uncritical construction details, such as longitudinal fillet welds, become decisive
- There is still **improvement potential** by HFMI for construction details not yet investigated (see longitudinal fillet welds)
- Clear and verified design guidelines have to be integrated into EC 3-1-9

Jniversity of Stuttgart Institute of Structural Design Prof. Dr.-Ing. Ulrike Kuhlmann









## Thank you for your attention!





#### **Stephanie Breunig**

E-Mail Stephanie.breunig@ke.uni-stuttgart.de Telefon +49 (0) 711 685- 69257 Fax +49 (0) 711 685-66236

University of Stuttgart Institute of Structural Design Prof. Dr.-Ing. Ulrike Kuhlmann Pfaffenwaldring 7 70569 Stuttgart





#### University of Stuttgart

Institute of Structural Design Steel, Timber and Composite Constructions Prof. Dr.-Ing. Ulrike Kuhlmann



Buckling Behavior of Slender Plates under Multiaxial Stresses

> OptiBri-Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

> > Vahid Pourostad



## Introduction





## Stability behavior of flat plates

## **Biaxial compression**

- Investigations conducted by (Braun, 2010)
- Proposal of "V-Factor" in the domain of biaxial compression:



 $\rightarrow$  Verified by numerical calculations for biaxial compression and unstiffened plates

 $\rightarrow$  Existing EN 1993-1-5 partly unsafe. Meanwhile official amendment is added.



## Stability behavior of flat plates

Consideration of tensile stresses?

- EN 1993-1-5, Ch. 10(5)) Note 2: .....In case of panels with tension and compression it is recommended to apply equations (10.4) and (10.5) only for the compressive parts.
- That means: "on the safe side the positive effect of tension stresses should be neglected when calculating the reduction factors"



 $\rightarrow$  The assumption leads to conservative results.



## Stability behavior of flat plates

Investigation in the frame of OptiBri

Buckling verification becomes more important for HSS plates:

AIM: To allow for taking account of positive effects of tension stresses





## **Experimental investigations**

## Test program and setup



| Test   | A1  | A2    | A3   | B1   | B2   | <b>B</b> 3 |
|--------|-----|-------|------|------|------|------------|
| a [mm] | 900 | 900   | 900  | 1500 | 1500 | 1500       |
| b [mm] | 900 | 900   | 900  | 500  | 500  | 500        |
| α      | 1   | 1     | 1    | 3    | 3    | 3          |
| t [mm] | 6   | 6     | 6    | 6    | 6    | 6          |
| b/t    | 150 | 150   | 150  | 83   | 83   | 83         |
| β      | 0   | -0.25 | -0.5 | 0    | -1.5 | -1         |





- Variation of aspect-ratio  $\alpha$  and slenderness
- Variation of stress-ratio

$$\beta = \frac{\sigma_z}{\sigma_x}$$

Material: S690

### $\rightarrow \beta$ = 0 as reference tests for the evaluation of the influence of tension stresses

b

t



## **Experimental investigations**





- Evaluations show increase of loading capacity by increased tension stresses
- Evaluation of the deformations shows the influence of tension stresses on the buckling shape





## **Numerical investigation**

## Recalculations of tests





#### Comparison of failure modes

→ The numerical model has been developed using the material curve from tensile tests and the measured imperfections





## **Numerical investigation**

### Recalculations of tests



#### → Good agreement between numerical and experimental buckling shapes



#### → Good agreement between numerical and experimental ultimate load



## **Parametric study**

Parametric study using ABAQUS (WP3.2)

- Influence of b/t- and aspect-ratio
- Influence tension stresses on compression
- Influence of boundary conditions





Influence of imperfection shape and amplitude







Parametric Study on Square Plates



- Investigated parameters:
  - interaction angle  $\theta = \tan^{-1} \frac{\sigma_z}{\sigma_x}$
  - b/t-ratio

## imperfection shape and amplitude

boundary conditions





## **Parametric study**

Parametric Study on Square Plates

- Investigated parameters:
  - interaction angle  $\theta$
  - b/t-ratio



- imperfection shape and amplitude
- boundary conditions



BC-A; α=1; b/t=100 1 half-wave imperfection shape

→ With increasing tension buckling shape changes from one halfwave to 3 half-wave



For compression-tension

• Verification formula acc. to EN 1993-1-5 for direct stresses:

$$\left(\frac{\sigma_{xEd}}{\rho_x \cdot f_y / \gamma_{M1}}\right)^2 + \left(\frac{\sigma_{zEd}}{\rho_z \cdot f_y / \gamma_{M1}}\right)^2 - \left(\frac{\sigma_{xEd}}{\rho_x \cdot f_y / \gamma_{M1}}\right) \cdot \left(\frac{\sigma_{zEd}}{\rho_z \cdot f_y / \gamma_{M1}}\right) \le 1$$

Modification of verification formula with "V-Factor" for direct stresses:

$$\left(\frac{\sigma_{xEd}}{\rho_x \cdot f_y / \gamma_{M1}}\right)^2 + \left(\frac{\sigma_{zEd}}{\rho_z \cdot f_y / \gamma_{M1}}\right)^2 - V \cdot \left(\frac{\sigma_{xEd}}{\rho_x \cdot f_y / \gamma_{M1}}\right) \cdot \left(\frac{\sigma_{zEd}}{\rho_z \cdot f_y / \gamma_{M1}}\right) \le 1$$

• "V-Factor" in case of biaxial compression proposed by (Braun, 2010)  $V = \rho_{c,x} \cdot \rho_{c,z}$ 

• "V-Factor" in case of compression-tension proposed by (Zizza, 2016)

$$V = 1/(\rho_{c,x} \cdot \rho_{c,z}^{2-\xi_z})$$



Proposed formula for calculation of buckling coefficient by Zizza for interaction of tension and compression



→ Neglecting the peaks in the calculation of the buckling coefficient for tension compression using:

$$k_{\sigma}^{\min} = 4(1-\beta)$$



Comparison of current design rules with proposed V-Factor (tension-compression)

0.2

 $\sigma_x/f_v$  [-]

0.8

1.2

0.6

0.4



- Current design rules neglecting tension stresses lead to conservative results
- Current design rules applying tension for calculating p without V factor partially on unsafe side
- Proposal considering of V factor and neglecting the peak of buckling coefficient leads to good results

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"





MISES





- FE (w0=b/420) Δ
- EN 1993-1-5:2006, neglecting tension stresses (without V factor)
- EN 1993-1-5:2006, considering tension stresses (without V factor)
- Proposal of Zizza (with V factor)



Comparison of current design rules with proposed V-Factor (compression-compression)



University of Stuttgart Institute of Structural Design Prof. Dr.-Ing. Ulrike Kuhlmann



## Flowchart of using MRS (sec. 10)

[reference numbers refer to EN 1993-1-5]





## Example

Panels subjected to tension and compression

#### Acting stresses:

 $\sigma_{x,Ed} = 242 N / mm^2$   $\sigma_{z,Ed} = -89 N / mm^2$ 

#### **Equivalent stress:**

$$\sigma_{v} = \sqrt{(\sigma_{y,Ed})^{2} + (\sigma_{z,Ed})^{2} + (\sigma_{x,Ed}) \cdot (\sigma_{z,Ed})} = 296.69 \ N / mm^{2}$$

#### Buckling value acc. to proposal of Zizza:

$$\beta = \frac{\sigma_{z,Ed}}{\sigma_{x,Ed}} = \frac{-89}{242} = -0.367 \implies k_{\sigma} = k_{\sigma}^{\min} = 4(1 - (-0.368)) = 5.47$$



#### Elastic critical plate-buckling stress and column-buckling stress

$$\sigma_{e} = 27.33 \ N / mm^{2}$$
  

$$\sigma_{cr,c,x} = \frac{\pi^{2} E t^{2}}{12(1 - v^{2})a^{2}} = 18.98 \ N / mm^{2}$$

**Slenderness and reduction factors:** 

$$\alpha_{cr} = \frac{\sigma_{cr,p}}{\sigma_{x,Ed}} = \frac{149.6}{242} = 0.618 \implies \alpha_{ult} = \frac{f_y}{\sigma_v} = \frac{690}{296.69} = 2.326 \implies \overline{\lambda_p} = \sqrt{\frac{\alpha_{ult}}{\alpha_{cr}}} = 1.94 \implies \rho_x = \frac{\overline{\lambda_p} - 0.055 \cdot (3+\psi)}{\overline{\lambda_p}^2} = 0.457$$

$$\xi_x = \frac{\sigma_{cr,p,x}}{\sigma_{cr,c,x}} - 1 \ge 1 \Rightarrow \xi_x = 1 \Rightarrow \rho_{c,x} = \rho_x = 0.457$$

 $\rho_{c,z} = 1$ 



## Example

Panels subjected to tension and compression

#### Verification acc. to proposal of Zizza:

$$V = 1/\left(\rho_{c,x} \cdot \rho_{c,z}^{2-\xi_z}\right) = 1/(0.457) = 2.188$$

$$\eta = \sqrt{\left(\frac{242}{0.457 \cdot 690/1.1}\right)^2 + \left(\frac{-89}{1 \cdot 690/1.1}\right)^2 - 2.188 \cdot \left(\frac{242}{0.457 \cdot 690/1.1}\right) \cdot \left(\frac{-89}{1 \cdot 690/1.1}\right)} = 1 \le 1$$

#### Comparison of proposal and current design rule with required thickness of panel

|        | EC1993-1-5:2006 | Proposal of<br>Zizza | EC1993-1-5:2006 | Proposal of<br>Zizza |
|--------|-----------------|----------------------|-----------------|----------------------|
| Steel  | S690            | S690                 | S355            | S355                 |
| t [mm] | 14              | 12                   | 24.7            | 21.2                 |
| η      | 1               | 1                    | 1               | 1                    |

## → Proposed verification considering tension stresses and V factor leads to efficient design of the panels


#### **Summary and Outlook**

- Six tests have been conducted and recalculated using the FEM
- Tension stresses may change the failure mode of a square panel from one halfwave into more half-waves.
- Tension stresses increase the buckling resistance of the panels.
- The ultimate loads acc. to Sec 10, EN 1993-1-5 with considering the positive effect of tension stresses on the reduction factors and proposed V factor by Zizza, enhance the accuracy of the "reduced stress method" and leads to more efficient design of the panels.

### Outlook

- Extension of the numerical investigations for interaction of tension and shear
- Investigations on stiffened plates





### Thank you for your attention!

#### Vahid Pourostad

E-Mail Vahid.pourostad@ke.uni-stuttgart.de Telephone +49 (0) 711 685- 66243 Fax +49 (0) 711 685-66236

University of Stuttgart Institute of Structural Design Prof. Dr.-Ing. Ulrike Kuhlmann Pfaffenwaldring 7 70569 Stuttgart



# GRID

INTERNATIONAL | CONSULTING ENGINEERS

A.Reis, J.O.Pedro, C.Baptista, F.Virtuoso, C.Vieira

### Improved Bridge Design by Use of High Strength Steel (HSS) with OPTIBRI developments

Research Fund for Coal & Steel

OptiBri-Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

RECTION A.M.

100

-

RECTION C-C - TEX STRVENERS



registed Greaters - Sectores (10) (10) - Rectores (10) (10)

DECK TYPICAL CROSS-SECTION - SUPPORT

The Parameter



- Design A S355 NL (current Eurocode versions)
- **Design B –** S690 QL (current Eurocode versions)
- **Design C** S690 QL (upgrade Eurocode versions)

#### **Direct Improvements for Bridge Design:**

- Reduction of maximum steel plate thickness: 120 to 70 mm
- Reduction of the welding volume: 65%
- Reduction of overall steel weight: 25%

#### However...

• Fatigue has become the critical ULS check !



- **Design A –** S355 NL (current Eurocode versions)
- Design B S690 QL (current Eurocode versions)
- Design C S690 QL, (upgrade Eurocode versions)

#### **Direct Improvements for Bridge Design:**

Reduction of maximum steel plate thickness: 120 to 70 mm



Design A – S355 NL

International | Consulting Engineers

Design B – S690 QL



#### **Direct Improvements for Bridge Design:**



#### **Reduction of the welding volume:**

65%



#### **Direct Improvements for Bridge Design:**

Reduction of brittle failure risk •

Design A (S355NL):

 $\sigma_{Ed} = 0.63 f_v(t) - t_{max} = 92$ mm (t=120mm)

Design B (S690QL1):  $\sigma_{Ed} = 0.53 f_v(t) - t_{max} = 63 \text{mm} (t=70 \text{mm})$ 

| Steel Class | Quality | K         | (V   | $\sigma = 0.75 fu(t)$ | $\sigma = 0.50 \text{ fv}(t)$ | $\sigma = 0.25 fv(t)$ |  |
|-------------|---------|-----------|------|-----------------------|-------------------------------|-----------------------|--|
| 01001 01033 | Quanty  | at T [°C] | Jmin | $O_{Ed} = 0,73$ fy(t) | $O_{Ed} = 0,30$ Fy(t)         | $O_{Ed} = 0,23$ Fy(t) |  |
| S355        | J2      | -20       | 27   | 40                    | 65                            | 110                   |  |
|             | K2,M,N  | -20       | 40   | 50                    | 80                            | 130                   |  |
|             | ML,NL   | -50       | 27   | 75                    | 110 (120)                     | 175                   |  |
| S690        | QL      | -20       | 40   | 25                    | 45                            | 85                    |  |
|             | QL1     | -40       | 40   | 40                    | 65 (70)                       | 120                   |  |
|             | QL1     | -60       | 30   | 50                    | 80                            | 140                   |  |

Reference temperature: Tref = -30°C

Design B:  $t \le 70$  mm (S690 QL1, 40J at -40°C) Design A:  $t \le 120 \text{ mm}$  (S355 NL);



### **ULS BRIDGE DECK BENDING DESIGN**

| Mid-span section<br>Class 1 – Plastic section analysis                                                                                      | Design A<br>S355 | Design B<br>S690 |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| $M_{\rm Ed}/M_{\rm pl.Rd}$ < 1                                                                                                              | 0.74             | 0.54             |
| $\{\sigma_{\rm Ed} / (f_{\rm yf} / \gamma_{\rm M0})\}$ Bottom flange < 1                                                                    | 0.93             | 0.65             |
| <b>Support section</b><br>Class 4 – <i>Elastic analysis with effective section</i>                                                          | Design A<br>S355 | Design B<br>S690 |
| $\{\sigma_{\rm Ed}/(f_{ m yf}/\gamma_{ m M0})\}$ Eff. bottom flange < 1                                                                     | 0.95             | 0.88             |
| $\{\sigma_{\rm Ed} / (\chi_{\rm LT} f_{\rm yf} / \gamma_{\rm M1})\}$ Eff. bottom flange < 1 (*)<br>(*) at 0.25 $L_k$ = 5 m from the support | 0.92             | 0.97             |





OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

**Consulting Engineers** 

International



#### **Transversal stiffener at support:**





#### **Cope holes on main beams:**





Solution: Avoid Cope holes













#### Transversal attachment on bottom flange of main beams:





#### **OVERVIEW OF FAT CHECK**

|                                               | -     | Cross-gird<br>@ 8.0m | lers — | T stiffe<br>+cross-g | irder  | 0      | T stiffe | ner    |        |        | [mm]   |
|-----------------------------------------------|-------|----------------------|--------|----------------------|--------|--------|----------|--------|--------|--------|--------|
|                                               |       |                      |        |                      | Desig  | n A    |          |        |        |        |        |
| Section                                       | 1     | 2                    | 3      | 4                    | 5      | 6      | 7        | 8      | 9      | 10     | 11     |
| (X)                                           | (0.0) | (4.0)                | (8.0)  | (12.0)               | (16.0) | (20.0) | (24.0)   | (28.0) | (32.0) | (36.0) | (40.0) |
| t <sub>f</sub> (mm)                           | 120   | 120                  | 120/80 | 80                   | 80     | 80/50  | 50       | 50     | 50     | 50     | 50     |
| $\gamma_{Mf} \gamma_{Ff} \Delta \sigma_{E,2}$ | 25.5  | 21.7                 | 32.1   | 36.5                 | 29.9   | 47.6   | 51.0     | 53.0   | 56.9   | 57.4   | 56.6   |
| FAT                                           | 56    | 80                   | 80     | 80                   | 80     | 80     | 80       | 80     | 80     | 80     | 80     |
|                                               |       |                      |        |                      | Desig  | n B    |          |        |        |        |        |
| t <sub>f</sub> (mm)                           | 70    | 70                   | 70/60  | 60                   | 60     | 60/45  | 45       | 45     | 45     | 45     | 45     |
| $\gamma_{Mf} \gamma_{Ff} \Delta \sigma_{E,2}$ | 49.8  | 42.7                 | 57.9   | 65.8                 | 55.2   | 66.9   | 71.9     | 70.7   | 76.5   | 77.8   | 77.1   |
| FAT                                           | 56    | 80                   | 80     | 80                   | 80     | 80     | 80       | 80     | 80     | 80     | 80     |

- HSS allows for 34% overall steel reduction in main beams
- Fatigue becomes the leading ULS check at span sections



#### **PWT Transversal attachment (beams and plates):**









#### Butt welds on bottom flange of main beams:









| size effect<br>for<br>t>25mm:<br>$k_{e}=(25/t)^{0.2}$ |  | <ul> <li>Without backing bar:         <ol> <li>Transverse splices in plates and flats.</li> <li>Flange and web splices in plate girders before assembly.</li> <li>Full cross-section butt welds of rolled sections without cope holes.</li> <li>Transverse splices in plates or flats tapered in width or in thickness, with a slope ≤ ¼.</li> </ol> </li> </ul> | <ul> <li>All welds ground flush to plate<br/>surface parallel to direction of<br/>the arrow.</li> <li>Weld run-on and run-off pieces<br/>to be used and subsequently<br/>removed, plate edges to be<br/>ground flush in direction of<br/>stress.</li> <li>Welded from both sides;<br/>checked by NDT.<br/><u>Detail 3):</u><br/>Applies only to joints of rolled<br/>sections, cut and rewelded.</li> </ul> |
|-------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



### Web-to-flange longitudinal weld:







| Detail<br>category | Constructional detail | Description                                                                                                                                                                                                                                                    | Requirements                                                                                                                                                                    |
|--------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | a.c. ()               | Continuous longitudinal welds:                                                                                                                                                                                                                                 | Details 1) and 2):                                                                                                                                                              |
| 125                |                       | <ol> <li>Automatic butt welds carried<br/>out from both sides.</li> <li>Automatic fillet welds. Cover<br/>plate ends to be checked using<br/>detail 6) or 7) in Table 8.5.</li> </ol>                                                                          | No stop'start position is permitted<br>except when the repair is<br>performed by a specialist and<br>inspection is carried out to verify<br>the proper execution of the repair. |
| 112                |                       | <ol> <li>Automatic fillet or butt weld<br/>carried out from both sides but<br/>containing stop/start positions.</li> <li>Automatic butt welds made<br/>from one side only, with a<br/>continuous backing bar, but<br/>without stop/start positions.</li> </ol> | <ol> <li>When this detail contains<br/>stop/start positions category 100<br/>to be used.</li> </ol>                                                                             |

#### **OVERVIEW OF FAT CHECK**



|                                               | -     | Cross-gird<br>@ 8.0m | lers — | T stif<br>+cross | fener<br>Girder |        | Tsti   | ffener |        |        | [mm]   |               |
|-----------------------------------------------|-------|----------------------|--------|------------------|-----------------|--------|--------|--------|--------|--------|--------|---------------|
|                                               |       |                      |        |                  | Desig           | in B   |        |        |        |        |        |               |
| Section                                       | 1     | 2                    | 3      | 4                | 5               | 6      | 7      | 8      | 9      | 10     | 11     |               |
| (X)                                           | (0.0) | (4.0)                | (8.0)  | (12.0)           | (16.0)          | (20.0) | (24.0) | (28.0) | (32.0) | (36.0) | (40.0) |               |
| t <sub>f</sub> (mm)                           | 70    | 70                   | 70/60  | 60               | 60              | 60/45  | 45     | 45     | 45     | 45     | 45     | $\mathbb{N}$  |
| $\gamma_{Mf} \gamma_{Ff} \Delta \sigma_{E,2}$ | 49.8  | 42.7                 | 57.9   | 65.8             | 55.2            | 66.9   | 71.9   | 70.7   | 76.5   | 77.8   | 77.1   |               |
| FAT                                           | 56    | 80                   | 80     | 80               | 80              | 80     | 80     | 80     | 80     | / 80   | 80     |               |
|                                               |       |                      |        |                  | Desig           | jn C   |        |        |        |        |        |               |
| t <sub>f</sub> (mm)                           | 70    | 70                   | 70/45  | 45               | 45              | 45/30  | 30     | 30     | 30     | 30     | 30     | $\mathcal{V}$ |
| $\gamma_{Mf} \gamma_{Ff} \Delta \sigma_{E,2}$ | 49.8  | 42.7                 | 88.7   | 100.3            | 83.4            | 90.5   | 96.9   | 100.8  | 109.1  | 110.3  | 102.6  |               |
| Detail                                        |       |                      | 112    |                  |                 | 112    |        | 112    | /      |        | 112    |               |
| Size effect                                   |       |                      | 0.89   |                  |                 | 0.96   |        | 0.96   |        |        | 0.96   |               |
| FAT                                           | 56    | 125                  | 100    | 125              | 125             | 108    | 125    | 108    | 125    | 125    | 108    |               |

#### PWT allows for 7% overall steel reduction







Safety to torsional buckling

 $\sigma_{cr} \geq \theta f_y$ 

- $\sigma_{cr}$  = elastic critical stress for torsional buckling of the stiffener
- $\theta$  = 6 for T stiffeners or  $\theta$  = 2 for flat stiffeners
- $f_{y}$  = is taken as the maximum stress  $\sigma_{max}$  and not the yielding stress

For DESIGN B:

$$\sigma_{cr} = 2969 \text{MPa} \approx 6 \sigma_{max,Ed} = 6 \times 472.78 \text{ MPa} >> 6 \sigma_{max,Ed} / \sigma_{cr} = 0.96$$

Often the critical criterion to design the transversal stiffeners

Minimum stiffness required to the stiffeners to act as rigid supports for shear verification web panels

Usually verified by a large margin

$$I_{\text{st}} \ge 1,5 \ h_{\text{w}}^3 \cdot t_{\text{w}}^3 / a^2 \quad \text{if} \quad a/h_{\text{w}} < \sqrt{2}$$
$$I_{\text{st}} \ge 0,75 \ h_{\text{w}} \cdot t_{\text{w}}^3 \quad \text{if} \quad a/h_{\text{w}} \ge \sqrt{2}$$





Tests show  $P_{exp} \leq 56\% P_{st}$  [Sinur & Beg, 2012]





#### Re-design of stiffeners allows for 7% overall steel reduction

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

5-



#### CONCLUSIONS

#### Advantages:

- The use of S690 HSS instead of S355 enables a reduction up to
  - 25% (Design B)
  - 35% (Design C)

| Comparative analysis<br>(structural steel weight ratios [kg/m²]) | Steel in the deck     | Reduction (%) |
|------------------------------------------------------------------|-----------------------|---------------|
| Design A – S355                                                  | 219 kg/m <sup>2</sup> |               |
| Design B – S690                                                  | 165 kg/m²             | -25%          |
| Design C – S690                                                  | 143 kg/m²             | (-14%) -35%   |



#### CONCLUSIONS

#### Advantages:

- The use of S690 HSS instead of S355 enables a reduction up to:
  - 25% (Design B)
  - 35% (Design C)
  - Aesthetics of bridge is improved by increased deck slenderness
  - S690 allows the use of thinner plates which:
    - Reduces the full penetration weld volume more than 65%
    - Reduces the brittle fracture problems
    - Reduces the size effect and thus increases fatigue resistance
- PWT details are effective and useful to take full advantage of the HSS steel



INTERNATIONAL | CONSULTING ENGINEERS

### Thank you for your attention!

#### **Claudio Baptista**

E-Mail Claudio.baptista@grid.pt Telefone +351 213 191 220 Fax +351 213 528 334

GRID International, Consulting Enginners Av. João Crisóstomo, nº25-4 floor 1050-125 Lisbon, PORTUGAL



FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA



Comparative Life-Time Assessment of the Use of HSS in Bridges

> OptiBri-Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

> > Constança Rigueiro







#### SCOPE OF THE ANALYSIS







# Life-time assessment of bridges

#### **SCOPE OF THE ANALYSIS ACCORDING TO EN 15978**







 $\checkmark$ Environmental data for different steel grades

#### Product 2.

#### Product description 2.1

This EPD applies to 1 t of structural steel (sections and plates). It covers steel products of the grades S235 to S960 rolled out to structural sections, merchant bars and heavy plates.

#### LCA: Results

| PRO                                                  | OUCT S    | TAGE          | CONST<br>ON PR                         | IRUCTI<br>OCESS<br>4GE |          |              | U                   | SE STA                     | GE                          |                           |                          | Ð                             | ID OF U   | FE STA           | GE       | BENEFITS AND<br>LOADS<br>BEYOND THE<br>SYSTEM<br>BOUNDARYS |
|------------------------------------------------------|-----------|---------------|----------------------------------------|------------------------|----------|--------------|---------------------|----------------------------|-----------------------------|---------------------------|--------------------------|-------------------------------|-----------|------------------|----------|------------------------------------------------------------|
| Raw material<br>supply                               | Transport | Manufacturing | Transport from the<br>gate to the site | Assembly               | Use      | Maintenance  | Repair              | Replacement <sup>(1)</sup> | Refurbishment <sup>11</sup> | Operational energy<br>use | Operational water<br>use | De-construction<br>demolition | Transport | Waste processing | Disposal | Reuse-<br>Recovery-<br>Recycling-<br>potential             |
| A1                                                   | A2        | A3            | A4                                     | A5                     | B1       | 82           | 83                  | B4                         | 85                          | B6                        | 87                       | C1                            | C2        | C3               | C4       | D                                                          |
| x                                                    | х         | х             | MND                                    | MND                    | MND      | MND          | MND                 | MND                        | MND                         | MND                       | MND                      | MND                           | MND       | MND              | MND      | x                                                          |
| REPAR                                                | LTS       | OF TH         | IE I.C.                                | - EN                   | VIRON    | MENT         | AL IN               | PACT                       | 1 tor                       | w stru                    | ctural                   | steel                         | 10 A.     | <u> in 1</u>     | in 1     | <u>6</u>                                                   |
| Parameter                                            |           |               |                                        |                        |          | Unit A1-A3   |                     |                            | 0                           |                           |                          | ),                            |           |                  |          |                                                            |
| Global warming potential                             |           |               |                                        |                        |          | p            | g CO <sub>2</sub> E | 1                          |                             | 1735                      |                          | -                             |           | -95              | 99       |                                                            |
| Depletion potential of the stratospheric caone layer |           |               |                                        |                        |          | Do.          | CFC11-              | Eq.]                       |                             | 1.39E-1                   | 7                        |                               |           | 6.29             | E-9      |                                                            |
| Additionation potential of land and water            |           |               |                                        |                        |          | 9            | (kg 90-Eq.) 3.52    |                            |                             |                           |                          | -1.2                          | 32        |                  |          |                                                            |
| Eutrophication potential                             |           |               |                                        |                        |          | 19           | PO_P-6              | 91                         |                             | 3.7E-1                    |                          | _                             |           | -126             | E-1      |                                                            |
| romat                                                | on pole   | THE OF BU     | puopren                                | comme p                | notochen | INCER COURSE | and by              | coner E                    | 71                          | _                         | 5 10E-                   |                               | -         |                  | -4.14    | E-1                                                        |
| Abiotic depletion potential for non fossil resources |           |               |                                        |                        |          | 1000         | -                   | NG 30 EQ                   | 4                           |                           | 2.00E-4                  | -1.11                         |           | C-4              |          |                                                            |



ENVIRONMENTAL PRODUCT DECLARATION



Departamento de Engenharia Civil

Universidade de Coimbra

- Faculdade de Ciências e Tecnologia



✓ Environmental data for different steel grades



Cumulated energy demand (CED) for heavy plates (closed-loop-approach) made of various steel grades

Source: Stroetmann, R. HSS for improvement of sustainability. Eurosteel 2011.







#### Environmental data for different steel grades referring to S235J2



Source: Stroetmann, R. HSS for improvement of sustainability. Eurosteel 2011.

 $\checkmark$ 



Environmental data for different steel grades referring to S235J2



Relation of CED,  $GWP_{100}$  and AP of heavy plates for various steel grades referring to S235J2

|                 | \$355J2 | S420N | S460N | S420M | S460M | \$460Q | S500Q | S550Q | S620Q | S690Q |
|-----------------|---------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| heavy plates    | 6,6     | 9,3   | 10,6  | 3,3   | 4,1   | 10,2   | 11,1  | 13,4  | 15,5  | 17,1  |
| rolled sections | 6,7     | 8,8   | 9,9   | 3,4   | 4,2   | 10,0   | 10,7  | 12,6  | 14,2  | 15,6  |

#### Required weight saving $\Delta G$ in [%] compared to steel grade S235J2

Source: Stroetmann, R. HSS for improvement of sustainability. Eurosteel 2011.



OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"

 $\checkmark$ 



Environmental data for different steel grades

#### Stainless steel - Cradle to gate: GWP

Base case & Net results including [Burden for scrap inputs - Credit for scrap outputs]



#### Cradle-to-gate results of two stainless steel grades.

Source: Hallberg, L. & Sperle, J. Assessing the environmental advantages of HSS. The Steel Eco-Cycle, Environmental Research Programme for the Swedish Steel Industry, 2004 – 2012.





#### Cost of different steel grades (production and fabrication)



Economic efficiency - Relative price comparison for heavy plates of various steel grades

A moderate increase in price that may be compensated by appropriate weight savings.

Source: Stroetmann, R. HSS for improvement of sustainability. Eurosteel 2011.

# Life-time assessment of bridges

| Indicator                  | Brief description                                                                                                                                                                                               | Unit                            |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Abiotic depletion          | Depletion of natural resources                                                                                                                                                                                  | kg of antimony (Sb) eq.         |
| Acidification              | Atmospheric pollution arising from<br>anthropogenically derived sulphur (S) and<br>nitrogen (N), which enhances the rates of<br>acidification of soils and may then exceed<br>its natural neutralising capacity | kg SO <sub>2</sub> eq.          |
| Eutrophication             | The gradual increase and enrichment of<br>ecosystems by nutrients such as nitrogen<br>(N) and/or phosphorus (P)                                                                                                 | kg PO₄ eq.                      |
| Global warming             | The potential contribution of a substance to the greenhouse effect.                                                                                                                                             | kg CO <sub>2</sub> eq.          |
| Ozone layer depletion      | Defines ozone depletion potential of<br>different gasses                                                                                                                                                        | kg CFC-11 eq.                   |
| Photochemical<br>oxidation | Formation of reactive substances (mainly ozone) which are injurious to human health and ecosystems                                                                                                              | kg of ethylene ( $C_2H_4$ ) eq. |




Life cycle performance - Analysis of use stage (modules B1-B5)



Focus on fatigue assessment

Departamento de Engenharia Civil – Faculdade de Ciências e Tecnologia – Universidade de Coimbra





### PROGRAM DEVELOPMENT

- Scope: Composite girder-bridge with numerous spans.
- Program developed in PYTHON 2.7.12.
- > Organised in 4 Main Modules
  - 1. Beam Analysis
  - 2. Influence line and FLM3
  - 3. Traffic simulation
  - 4. Cross-section and detail verification to fatigue
- Databases using SQLite





### **PROGRAM DEVELOPMENT**

### FLOWCHART







### PROGRAM DEVELOPMENT

- Scope: Composite girder-bridge with numerous spans.
- Program developed in PYTHON 2.7.12.
- Organised in 4 Main Modules
  - 1. Beam Analysis

This module aims to get the load effects on the main girders

#### (shear and bending moment).

- 2. Influence line and FLM3
- **3. Traffic simulation**
- 4. Cross-section and detail verification to fatigue



### **PROGRAM DEVELOPMENT**









### PROGRAM DEVELOPMENT

- Scope: Composite girder-bridge with numerous spans.
- Program developed in PYTHON 2.7.12.
- Organised in 4 Main Modules
  - 1. Beam Analysis
  - 2. Influence line and FLM3

Calculates the shear and moment influence lines for a particular cross-section and applies the FLM3 in order to get the absolute maximum load effects for that section.

- 3. Traffic simulation
- 4. Cross-section and detail verification to fatigue







This module allow us to study where should the loads be positioned in order to get maximum and minimum load effects in the cross-section where the detail under study is located.



# Life-time assessment of bridges PROGRAM DEVELOPMENT



The Eurocode proposes a load model - FLM3 - for fatigue design and verification when considering a finite life of the structure, which is most commonly used in practice along with the simplified damage equivalent factor method





### PROGRAM DEVELOPMENT

- Scope: Composite girder-bridge with numerous spans.
- Program developed in PYTHON 2.7.12.

### Organised in 4 Main Modules

- 1. Beam Analysis
- 2. Influence line and FLM3

#### 3. Traffic simulation

Generates a random stream of heavy load traffic and evaluates its action effects on the structure

4. Cross-section and detail verification to fatigue





# Life-time assessment of bridges PROGRAM DEVELOPMENT TRAFFIC SIMULATION Generate a stream of truck traffic in one lane Calculate the bridge load effects for a stream of truck traffic INPUTS

- Min and max truck speed [km/h]
- Min gap between vehicles [sec] (safety)
- Period of time [hr]
- Start of day period [hr]
- End of day period [hr]

- Min and max flow rate during day period [truck/h]
- Min and max flow rate during day night [truck/h]
- Time step [sec]

OptiBri Workshop "Design Guidelines for Optimal Use of HSS in Bridges"





### PROGRAM DEVELOPMENT

- Scope: Composite girder-bridge with numerous spans.
- Program developed in PYTHON 2.7.12.

### Organised in 4 Main Modules

- 1. Beam Analysis
- 2. Influence line and FLM3
- 3. Traffic simulation
- 4. Cross-section and detail verification to fatigue

Calculates the cross-section properties and checks the verification of the detail under fatigue using both damage equivalent and damage accumulation methods.







### **GENERAL DESCRIPTION**

- Composite steel-concrete girder bridge with a continuous multiple-span configuration
- Steel grades CASE A: S355 and CASE B: S690 (HSS).
- Concrete C35/45. Reinforcement steel B500B. Head stud connectors S235.
- 2 lanes of traffic per direction.
- 1 slow lane per direction.







Departamento de Engenharia Civil

- Faculdade de Ciências e Tecnologia - Universidade de Coimbra



# **Case study**

### Bill of main materials (case A vs. case B)

|                    | Case A  | Case B  |
|--------------------|---------|---------|
| Concrete slab (kg) | 1373100 | 1367810 |
| Steel girders (kg) | 159021  | 110097  |
| Connectors (kg)    | 790     | 790     |
| Stiffners (kg)     | 15084   | 14028   |
| Reinforcement (kg) | 67521   | 67261   |











#### Sensitivity analysis: assuming +10% for HSS







### STRUCTURAL STEEL DISTRIBUTION







### CUMULATIVE DAMAGE METHOD

#### Initial conditions:

| Days of<br>analysis | min<br>speed | max<br>speed | min<br>gap | time<br>analysis | min<br>flow<br>day | max<br>flow<br>day | min<br>flow<br>night | max<br>flow<br>night | start<br>time<br>day | end<br>time<br>day |
|---------------------|--------------|--------------|------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------------|
|                     | [km/h]       | [km/h]       | [sec]      | [hrs]            | [tr/hr]            | [tr/hr]            | [tr/hr]              | [tr/hr]              | [hr]                 | [hr]               |
| 28                  | 60           | 110          | 1.5        | 720              | 100                | 200                | 10                   | 100                  | 6                    | 22                 |



#### Maximum stress range:

| At intermediate support 6.247 14.321   At mid-span 24.505 30.667 | Δσ <sub>max</sub> [MPa] | S355   | S690   |  |
|------------------------------------------------------------------|-------------------------|--------|--------|--|
| At mid-span 24.505 30.667                                        | At intermediate support | 6.247  | 14.321 |  |
|                                                                  | At mid-span             | 24.505 | 30.667 |  |

| $\Delta \sigma_L$ | _ 32.4   | A MDa   |
|-------------------|----------|---------|
| ŶMf               | 1.35 - 2 | .4 Mira |

|                     | Mean | St. dev. |
|---------------------|------|----------|
| Truck speed [km/hr] | 84.9 | 14.44    |



#### Damage:

- Thus, minor repairs are expected to occur in both cases;  $\checkmark$
- However, as there is not traffic under the bridge, no significant differences are estimated for the  $\checkmark$ environmental performance of the bridges over their service lives.





- The use of HSS enables to reduce the amount of steel used in the structural system of bridges;
- This reduction leads to improvements in the life cycle environmental performance of the bridge as resources are saved and emissions are reduced;
- Steel structures made by HSS may be more vulnerable to fatigue problems;
- ✓ The use of post-welding treatments may enable to reduce this vulnerability (this will be assessed in the near future).





FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

# Thank you for your attention!



Constança Rigueiro

E-Mail mcsr@dec.uc.pt Telefon +351 239 797166 Fax +351 239 797166

University of Coimbra Department of Civil Engineering Rua Luís Reis Santos – Polo II 3030 Coimbra

