

Is the contamination of the Belgian population by endocrine disruptors linked to thyroid disorders?

P. Dufour, C. Pirard, C. Charlier Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège)

Endocrine system

A **hormone** is a molecule produced by an endocrine gland that travels through the blood to produce effects on distant cells and tissues (Melmed & Williams, 2011)

The main **endocrine glands** are:

Pituitary gland Growth hormone, prolactine....

Gonads Estrogens, androgens,...

Pancreas Insulin, glucagon

Thyroid hormones

Adrenal glands
Cortisol, epinephrine,...

Thyroid axis

Thyroid axis disruption

CIRM Seminars, February 20, 2018

Major public health concern

Disruption may lead to hyper- or hypothyroidism, two pathologies for which the incidence is growing.

Age-specific incidence of Basedow hyperthyroiditis in Malmö (Sweden) (Lantz, 2009)

Major public health concern

- Critical during the pregnancy and the early childhood (neurodevelopment)
- Mother or congenital hypothyroidism leads to cretinism

In healthy pregnant women, even a slight reduction of the thyroid hormones levels is associated with lower IQ score in the children

HO

Objective

- Thyroid disruptors exist
- 2. We are exposed
- 3. Health consequences

BUT

- High concentration
- 2. In vitro & animal models ≠ Human
- 3. Few epidemiological studies
- The objective of our work is to contribute to the assessment of the potential disruption of the human thyroid system by some environmental pollutants.

To reach this objective:

Assessment of the contamination in Belgian populations

Figure 2: correlation between the concentrations of ΣOH-PCB and ΣPCBs.

Statistical analyses to evaluate the associations between the parameters

Assessment of thyroid function

Two axes:

Newborns

Adults with thyroid pathologies

HO

Newborns

- We collected 281 cord blood samples (52.8% ♂ & 47.2% ♀)
- Obstetric service of the University Hospital of Liege
- Collected between 2013 and 2016
- Data:
 - <u>TSH</u> (neonatal screening test)
 - Sex
 - Birth weight
 - Mother age
 - Gestational age
 - Pre-pregnancy BMI
 - Parity
 - Tobacco habits
 - Hypothyroidism in the mother

Perfluoroalkyl substances 193× Solid phase extraction (Oasis WAX) LC-MS/MS

Organochlorine pesticides and PCBs 191× Solid phase extraction (Bond Elut Certify) GC-MS

In male newborns with detectable levels of 4,4'-DDE, there is an significant diminution of TSH levels compared to newborns with no detectable levels of 4,4'-DDE (p=0,035).

4,4'-DDE, ND vs D in male newborns

Negative correlation between PFNA levels and TSH levels in male newborns (p=0,01).

Consequences on neurodevelopment?

- Some mechanisms may explain our results:
 - PFNA displace T₄ from blood transport proteins →
 free T₄ ↑ & TSH ↓ (negative feedback)

 In rat, 4,4'-DDE disrupts the hypothalamuspituitary axis which consequently reduces the TSH level

- We must be careful when we interpret the results of <u>one single</u> epidemiological study.
 - Inverse causality?
 - Missed confounding factor?
 - Statistical power?
 - 0
- Results under revision in Environmental Pollution

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Adults

Affinity for transthyretin

Compounds	Relative potency (T ₄)
PFOA	0.064
PCB 153	0.55
BDE 47	0.0022
4-OH-CB 107	3.3
6-OH-BDE 47	0.26
PCP	0.6
ТВВРА	1.6
2,4,6-TBP	10

Organohalogenated phenolic compounds

POHs

Perfluoroalkyl substances

We developed a analytical method to determinate these compounds in serum

Pentachlorophenol: pesticide, wood protector

$$CH_3$$
 CH_3
 CH_3

Tetrabromobisphenol A: brominated flame retardant

5 Bromophenols: brominated flame retardants, synthesis intermediates, metabolites

7 Hydroxy-PCBs: PCBs' metabolites

3 Hydroxy-PBDEs: PBDEs' metabolites

Objective

- Apply this method for large epidemiological studies (200-300 samples).
 - Existing methods in the literature BUT numerous time & solvent consuming steps
 - Reach high sensitivity (some pg/mL) (in comparison, paracetamol: 5-25 µg/mL)
 - Use reasonable volume of serum
 - Perform a solid validation

Analytical method

Sample (1 ml serum)

Denaturation (formic acid)

SPE (Oasis MAX cartridge)

Conditioning cartridge

Loading sample

Ionizing

Washing cartridge

Eluting neutral compounds

Eluting phenolic compounds

Liquid-liquid extraction

Derivatization

Reconstitute in iso-octane

GC-MS

Validation with triplicate validation samples during three days and calibration curve in duplicate

Table 5Trueness, precision, uncertainty, limit of detection (LOD), lower limit of quantification (LLOQ), upper limit of quantification (ULOQ) and correlation coefficient (R²) for each analyte.

	Target Conc. (pg mL ⁻¹)	TBBPA	2,3,6-TBP	2,4,6-TBP	2,4,5-TBP	2,3,4,6- TeBP	4-OH—CB 107	3-OH—CB 138	4-OH—CB 146	3-OH—CB 153	4-OH—CB 172	3-OH—CB 180	4-OH—CB 187	6-OH-BDE 47	5-OH-BDE 47	5'-OH-BDE 99	Target Conc. (pg mL ⁻¹)	PCP
Trueness	2	_	_	_	_	_	_	_	_	_	6.25	_	-5.41	_	_	0.91	20	_
Relative bias (%)	5	-0.22	0.68	_	12.04	-0.15	-2.74	3.98	-3.72	-1.44	9.03	-1.56	-1.99	4.93	5.76	5.10	50	0.83
action Constitution	10	2.40	9.78	_	11.00	8.30	7.92	8.41	9.51	6.53	10.30	8.13	-2.59	7.28	6.60	9.29	100	5.29
	25	4.55	-0.75	_	11.79	2.03	4.36	2.52	6.08	5.16	3.90	1.82	6.96	2.19	3.49	6.63	250	7.17
	50	0.07	2.13	2.14	-1.54	-2.00	6.09	2.74	5.37	6.20	4.05	4.13	4.53	-1.66	-0.69	6.32	500	12.77
	500	-1.98	_	3.04	_	4.17	5.47	3.82	4.38	6.16	2.35	3.65	0.38	-0.77	-3.25	6.96	5000	-13.11
	800	-1.18	_	_	_	3.93	4.69	0.24	0.68	2.35	-0.92	0.10	-2.40	0.07	-0.25	4.60	8000	-11.86
Intra assay precision	2	_	_	_	_	_	_	_	_	_	11.97	_	6.24	_	_	13.21	20	_
Repeatability (RSD%)	5	15.77	10.93	_	17.07	15.92	9.65	11.44	9.97	8.54	4.63	4.40	4.07	6.35	7.90	10.77	50	8.13
	10	15.48	9.70	_	8.76	6.25	5.57	4.01	6.16	8.39	3.36	7.01	2.36	4.83	5.68	7.91	100	10.10
	25	12,75	8.72	_	8.24	7.78	7.16	5,43	5.08	3,17	2.35	1,77	6.57	6.70	6.12	3.05	250	7.13
	50	3.52	15.03	11.83	12,51	13.60	5.37	4.02	4.47	4.00	2.99	3.20	6.97	4.31	5.46	4.38	500	3.31
	500	9.18	_	8.55	_	6.47	2.87	2.04	2.03	2,52	1.37	1.63	1.06	4.08	4.69	4.83	5000	1.44
	800	11,96	-	_	-	9.05	4.67	4.19	3.56	4.27	2.65	2.82	2.60	8.68	10.34	6,79	8000	3.55
Inter assay precision	2	-	-	_	_	-	_	_	_	_	13,22	_	15,99	_	_	16.06	20	_
Intermediate precision (RSD%)	5	15,77	17,88	-	17.68	21,29	16.83	13,37	11,39	16,76	6.41	5.87	7.63	9.40	10,93	11.80	50	11.10
	10	18.15	11.12	_	9.10	10,95	14.83	7.66	11.19	13.89	3.67	7.01	4.45	9.24	9.51	10.96	100	10.10
	25	12,75	15.19	_	9.57	9.19	12,13	10.58	8.39	9.27	3.44	2.86	11,34	7.30	8.49	4.68	250	7.13
	50	15,27	17.55	15,88	13,59	16,57	12.04	9.31	9,20	11,67	3.22	4.19	6.97	12,44	15,42	9.18	500	4.21
	500	15,00	-	13,78	-	12,08	6,55	11,83	10.99	11,36	1.37	3.15	2.93	13.06	7.84	10.78	5000	8.14
	800	14.68	-	-	-	13.13	11,28	9.10	8,82	8.84	3,43	3,69	4,48	13,70	16,91	10.17	8000	7.89
Uncertainty	2	-	-	-	-	-	-	-	-	-	27,89	-	36.48	-	-	34,26	20	-
Relative expanded uncertainty (%)	5	33,09	39,01	-	37,52	45,98	36,87	28,41	24,56	36,88	13,82	12,62	17.20	20,37	23,48	24,88	50	24.45
• • •	10	38,77	23.58	_	19.19	23,94	32.86	16.82	24,52	30,30	7.73	14,58	10.02	20.37	20.76	23.63	100	21.29
	25	27.26	33,21	_	20.32	19,53	26.48	23.24	18,30	20,58	7.45	6.23	24.81	15.38	18.31	10.17	250	15.04
	50	34.06	37,27	34.41	28.63	35,34	26,57	20.56	20,25	25.90	6.76	9.00	24.51	27.58	34.20	20.21	500	9.03
	500	32,70	-	30.08	_	26,49	14.89	26.41	24,52	25,32	2.84	6.90	6.49	29.02	17.56	23,80	5000	18.15
	800	31.42	-	-	-	28,51	24,97	20.07	19.74	19.46	7.37	7.90	9.81	29,83	36,90	22.08	8000	17,42
LOD (pg mL ⁻¹)		1.24	0.71	15.00	1,51	1.24	0.96	0.92	0.67	0.90	0.67	0.67	0.67	0.76	0.70	0.67		13,50
LLOQ (pg mL ⁻¹)		4.10	2.35	49.60	5.00	4.10	3,16	3.05	2,20	2.98	2.00	2.07	2.00	2.50	2,31	2.00		44,55
ULOQ (pg mL ⁻¹) R ²		800 0.991	195 0.9821	722 0.9864	135 0.9942	800 0.9996	800 0.9999	800 0.9999	800 0.9998	800 0.9998	800 0.9999	800 0.9999	800 0.9999	800 0.9998	800 0.9990	800 0.9994		8000 0.9984
••		0,001	- in-o/E 1	0,0004	0,0074	0,000	4,0000	0,0000	4,000	0,0000	0,0000	0,0000	4,0000	0,000	0,0000	-in-mark		0,0004

- Number of steps ↓ ✓
- Sensitivity: LOQ between 2 and 5 pg/mL for all the compounds except for PCP: 45 pg/mL and 2,4,6-TBP: 50 pg/mL ✓
- ▶ Reasonable volume of serum (1 mL) ✓
- ▶ Validated for 16/17 compounds

This method was published:

Journal of Chromatography B, 1036 (2016) 66-75

Contents lists available at ScienceDirect

Journal of Chromatography B

journal homepage: www.elsevier.com/locate/chromb

Validation of a novel and rapid method for the simultaneous determination of some phenolic organohalogens in human serum by GC-MS

Patrice Dufour a,b,*, Catherine Pirard a,b, Corinne Charlier a,b

^a Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU (B35), 4000 Liege, Belgium

^b Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULg), CHU (B35), 4000 Liege, Belgium

We applied this method on 272 samples collected in the Province of Liège

Comparison with other populations

These results are published:

Science of the Total Environment 599-600 (2017) 1856-1866

Contents lists available at ScienceDirect

Science of the Total Environment

Determination of phenolic organohalogens in human serum from a Belgian population and assessment of parameters affecting the human contamination

Patrice Dufour *, Catherine Pirard, Corinne Charlier

Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg) CHU (B35), 4000, Liege, Belgium Center for Interdisciplinary Research on Medicines (CI.R.M.), University of Liege (ULg) CHU (B35), 4000, Liege, Belgium

Thyroid pathologies in adults

- Recruit 50 hypothyroid patients (Hashimoto) & 50 hyperthyroid patients (Basedow).
- Determinate in serum, contamination by PCBs, organochlorine pesticides, perfluoroalkyl substances, brominated flame retardants & phenolic organohalogenated compounds.
- Compare contamination with healthy population.

Conclusions

- It doesn't exist a miracle study that will prove with no doubt, that this or that chemical is a thyroid disruptor in human at environmental concentration.
- Our works are important because it constitutes another brick to add to the weight of evidence.

By adding our work to previous and future studies, maybe that the link between pollution and thyroid function will be finally firmly established.

Global conclusions

- Since many years, we develop expertise to assess the contamination by several pollutants in human
- Assessment of the contamination in the Belgian general population
- Impact on thyroid function
- New chemicals: Bisphenol A alternatives
- Other pathologies: Diabetes

Thank you for your attention

