GAMES AND MULTIDIMENSIONAL SHAPE-SYMMETRIC MORPHISMS

Michel Rigo

```
http://www.discmath.ulg.ac.be/
    http://orbi.ulg.ac.be/
```

Workshop on Words and Complexity Lyon, 19th February 2018

Why this talk?

- I started working with Eric Duchêne more than 10 years ago!
- I recently gave a course at CIRM
- A video is available http://library.cirm-math.fr/
- A chapter is on its way...
- Nice applications of combinatorics on words
- young researchers attending this workshop
\square MR3621222 Reviewed Duchêne, Eric; Parreau, Aline; Rigo, Michel Deciding game invariance. Inform. and Comput. 253 (2017), part 1, 127-142. 91A46 (03B25 68Q45)
Review PDF |Clipboard | Journal | Article
MR3544849 Reviewed Cassaigne, Julien; Duchêne, Eric; Rigo, Michel Nonhomogeneous Beatty sequences leading to invariant games. SIAM J. Discrete Math. 30 (2016), no. 3, 1798-1829. 91A05 (11B83 11P81 68R15 91A46)
Review PDF | Clipboard | Journal | Article | 1 Citation
\square MR2676861 Reviewed Duchêne, Eric; Rigo, Michel Invariant games. Theoret. Comput. Sci. 411 (2010), no. 34-36, 3169-3180. (Reviewer: Paweł Prałat) 91A46

Get iteuLėge
Review PDF | Clipboard Journal | Article 6 Citations
\square MR2600974 Reviewed Duchêne, Eric; Fraenkel, Aviezri S.; Nowakowski, Richard J.; Rigo, Michel Extensions and restrictions of Wythoff's game preserving its \mathscr{P} positions. J. Combin. Theory Ser. A 117 (2010), no. 5, 545-567. (Reviewer: Thane Earl Plambeck) 91A46 (91A43) Review PDF | Clipboard | Journal | Article | 22 Citations
\square MR2461578 Reviewed Duchêne, Eric; Rigo, Michel Cubic Pisot unit combinatorial games. Monatsh. Math. 155 (2008), no. 3-4, 217-249. (Reviewer: Petr Ambrož) 68R15 (11A67 91A05 91A46) Review PDF | Clipboard | Journal | Article 3 Citations

MR2401268 Reviewed Duchêne, Eric; Rigo, Michel A morphic approach to combinatorial games: the Tribonacci case. Theor. Inform. Appl. 42 (2008), no. 2, 375-393. (Reviewer: Narad Rampersad) 91A46 (68Q45 68R15)

Crash course on subtraction games

Wythoff's game or, the Queen $\begin{aligned} & \text { Mis gees to }(0,0)\end{aligned}$

- two players playing alternatively;
- the player unable to move loses the game (Normal play);
- two piles of token;
- Nim rule : remove a positive number of token from one pile 总

$$
\text { Moves }=\{(i, 0),(0, i) \mid i \geq 1\}
$$

- Wythoff's rule: remove simultaneously the same number of token from both piles

$$
\text { Moves }=\{(i, 0),(0, i),(i, i) \mid i \geq 1\} .
$$

粒 $(6,3)$

$$
6,3
$$

欮 $(6,3)$

$$
\text { 㘳 }(6,3) \xrightarrow{A}(4,1)
$$

$$
\text { 岰 }(6,3) \xrightarrow{A}(4,1) \xrightarrow{B}(2,1)
$$

$$
\text { 㘘 }(6,3) \xrightarrow{A}(4,1) \xrightarrow{B}(2,1) \xrightarrow{A}(1,0)
$$

$$
\text { 業 }(6,3) \xrightarrow{A}(4,1) \xrightarrow{B}(2,1) \xrightarrow{A}(1,0) \xrightarrow{B}(0,0)
$$

Winning and losing positions:

Status \mathcal{N} (NEXT MOVE) OR \mathcal{P} (PREVIOUS PLAYER)

A position is \mathcal{P}, if all its options are \mathcal{N}; A position is \mathcal{N}, if there exists an option in \mathcal{P}.

If the game-graph is acyclic

- vertices $=$ positions
- edges = available options, every position is either \mathcal{N}, or \mathcal{P}.

REMARK (GRAPH-THEORETIC NOTION)

- The set of \mathcal{P}-positions is the kernel of the game-graph:
- stable set: $k \nrightarrow k^{\prime}$;
- absorbing set: $\ell \longrightarrow k$;
- always exists for acyclic graphs.
- The game-graph grows exponentially.

A winning strategy is a map from \mathcal{N} to \mathcal{P} assigning to every winning position in \mathcal{N} an available option in \mathcal{P}.

\mathcal{P}-positions and \mathcal{N}-positions for W ythoff's game.

\mathcal{P}-positions and \mathcal{N}-positions for Wythoff's game.

\mathcal{P}-positions and \mathcal{N}-positions for Wythoff's game.

\mathcal{P}-positions and \mathcal{N}-positions for W ythoff's game.

\mathcal{P}-positions and \mathcal{N}-positions for Wythoff's game.

\mathcal{P}-positions and \mathcal{N}-positions for Wythoff's game.

Definition

Let $S \subset \mathbb{N}$. MeX (minimum excluded value) of $S=\min \mathbb{N} \backslash S$.
Let G be a combinatorial game and x be a position.
The Grundy function is given by

$$
\mathcal{G}(x)=\operatorname{MeX}(\mathcal{G}(\operatorname{Opt}(x))) .
$$

$\operatorname{MeX}\{0,1,3,5\}=2, \quad \operatorname{MeX}\{2,3,6\}=0, \quad \operatorname{MeX} \emptyset=0$.

CHARACTERIZATION OF THE P-POSITIONS

Let x be a position. We have $\mathcal{G}(x)=0$ iff x is in \mathcal{P}.

NIM ON ONE PILE

$\mathcal{G}(p)=p$ where p is the number of token left.

Theorem (Sprague-Grundy)

Let G_{i} be combinatorial games with \mathcal{G}_{i} as Grundy function, $i=1, \ldots, n$. Then the disjunctive sum of games $G_{1}+\cdots+G_{n}$ has Grundy function

$$
\mathcal{G}\left(x_{1}, \ldots, x_{n}\right)=\mathcal{G}_{1}\left(x_{1}\right) \oplus \cdots \oplus \mathcal{G}_{n}\left(x_{n}\right)
$$

where \oplus is the Nim-sum.
Nim on n piles is the sum of n games of Nim on one pile.

Application

Let's play on four boards simultaneously:

- $G_{1} \operatorname{Nim} \mathcal{G}_{1}(2,5)=7$
- G_{2} Wythoff $\mathcal{G}_{2}(3,4)=2$
- $G_{3} \mathrm{Nim}$ on three piles $\mathcal{G}_{3}(8,7,6)=9$
- G_{4} Wythoff $\mathcal{G}_{4}(3,9)=12$

Should you start? Just compute whether $7 \oplus 2 \oplus 9 \oplus 12$ is 0 or not?

General questions

- Characterize the set of \mathcal{P}-positions?
- Is it computationally hard to determine these positions?
- Compute a winning strategy.

Thanks to Sprague-Grundy theorem, we have an extra motivation:

- Compute the Grundy function of all positions.

For the game of Nim, first few values of $(x, y) \mapsto \mathcal{G}_{N}(x, y)=x \oplus y$

\vdots	\vdots										\therefore
9	9	8	11	10	13	12	15	14	1	0	
8	8	9	10	11	12	13	14	15	0	1	
7	7	6	5	4	3	2	1	0	15	14	
6	6	7	4	5	2	3	0	1	14	15	
5	5	4	7	6	1	0	3	2	13	12	
4	4	5	6	7	0	1	2	3	12	13	
3	3	2	1	0	7	6	5	4	11	10	
2	2	3	0	1	6	7	4	5	10	11	
1	1	0	3	2	5	4	7	6	9	8	
0	0	1	2	3	4	5	6	7	8	9	\cdots
	0	1	2	3	4	5	6	7	8	9	\cdots

\rightsquigarrow Exercises 21 and 22 in Section 16.6, p.451, Allouche-Shallit'03.

Regular sequences

What can be said about the structure of this table?

- Let us start with multidimensional k-automatic sequences;
- then move to k-regular sequences.

O. Salon, Suites automatiques à multi-indices, Séminaire de théorie des nombres, Bordeaux, 1986-1987, exposé 4.

Tracking the past

$$
x(12,10) \quad \operatorname{rep}_{2}(12)=1100, \quad \operatorname{rep}_{2}(10)=1010
$$

Tracking the past

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

$$
x(12,10) \quad \operatorname{rep}_{2}(12)=1100, \quad \operatorname{rep}_{2}(10)=1010
$$

Tracking the past

$x(6,5) \rightarrow x(12,10) \quad \operatorname{rep}_{2}(6)=110, \quad \operatorname{rep}_{2}(5)=101$

Tracking the past

$$
x(3,2) \rightarrow x(6,5) \rightarrow x(12,10) \quad \operatorname{rep}_{2}(3)=11, \quad \operatorname{rep}_{2}(2)=10
$$

Tracking the past

$x(1,1) \rightarrow x(3,2) \rightarrow x(6,5) \rightarrow x(12,10) \quad \operatorname{rep}_{2}(3) \equiv 1, \equiv \operatorname{rep}_{2}(2)=1$

Definition of the k-kernel in a multidimensional setting

DEFINITION

Consider a bi-dimensional sequence $\mathbf{x}=(x(m, n))_{m, n \geq 0}$. It is a set of bi-dimensional subsequences:

$$
\operatorname{Ker}_{k}(\mathbf{x})=\left\{\left(x\left(k^{i} m+r, k^{i} n+s\right)\right)_{m, n \geq 0} \mid i \geq 0,0 \leq r, s<k^{i}\right\} .
$$

This corresponds to selecting the suffixes

$$
\left(0^{i-p} r_{p} \cdots r_{1}, 0^{i-q} s_{q} \cdots s_{1}\right)
$$

where $\operatorname{rep}_{k}(r)=r_{p} \cdots r_{1}$ and $\operatorname{rep}_{k}(s)=s_{q} \cdots s_{1}$.

Some of these subsequences $(0,0)$

Some of these subsequences $(1,0)$

Some of these subsequences $(0,1)$

Some of these subsequences $(1,1)$

Some of these subsequences $(00,00)$

Some of these subsequences $(01,00)$

Some of these subsequences $(10,00)$

\rightsquigarrow We can define multidimensional k-regular sequences.
The \mathbb{Z}-module generated by $\operatorname{Ker}_{k}(\mathbf{x})$ is finitely generated.

Proposition (Exercise)

For the game of $\operatorname{Nim},\left(\mathcal{G}_{N}(m, n)\right)_{m, n \geq 0}$ is 2-regular.
Proof. We have

$$
\begin{array}{rlrl}
\mathcal{G}_{N}(2 m, 2 n) & = & 2 m \oplus 2 n & \\
\mathcal{G}_{N}(2 m+1,2 n) & = & (2 m+1) \oplus 2 n & \\
\mathcal{G}_{N}(2 m, 2 n+1) & = & 2 m \oplus(2 n+1) & \\
\mathcal{G}_{N}(m, n) \\
\mathcal{G}_{N}(m, n)+1 \\
\mathcal{G}_{N}(2 m+1,2 n+1) & = & (2 m+1) \oplus(2 n+1) & \\
\mathcal{G}_{N}(m, n)+1 \\
\mathcal{G}_{N}(m, n)
\end{array}
$$

thus the 2-kernel is generated by $\left(\mathcal{G}_{N}(m, n)\right)_{m, n \geq 0}$ and the constant sequence (1).

Is that clear for any element of the 2-kernel?
Can $\left(\mathcal{G}_{N}(8 m+5,8 n+2)\right)_{m, n \geq 0}$ be expressed as a \mathbb{Z}-linear combination of these two sequences?

$$
\begin{aligned}
\mathcal{G}_{N}(8 m+5,8 n+2) & =\mathcal{G}_{N}(2(4 m+2)+1,2(4 n+1)) \\
& =2 \mathcal{G}_{N}(4 m+2,4 n+1)+1 \\
& =2 \mathcal{G}_{N}(2(2 m+1), 2.2 n+1)+1 \\
& =2\left[2 \mathcal{G}_{N}(2 m+1,2 n)+1\right]+1 \\
& =4 \mathcal{G}_{N}(2 m+1,2 n)+3 \\
& =4\left[2 \mathcal{G}_{N}(m, n)+1\right]+3 \\
& =8 \mathcal{G}_{N}(m, n)+7
\end{aligned}
$$

Meaning of these relations within the table:

9	8	11	10	13	12	15	14	1	0
8	9	10	11	12	13	14	15	0	1
7	6	5	4	3	2	1	0	15	14
6	7	4	5	2	3	0	1	14	15
5	4	7	6	1	0	3	2	13	12
4	5	6	7	0	1	2	3	12	13
3	2	1	0	7	6	5	4	11	10
2	3	0	1	6	7	4	5	10	11
1	0	3	2	5	4	7	6	9	8
0	1	2	3	4	5	6	7	8	9

First few values of $\mathcal{G}_{N}(m, n)$.

$$
\mathcal{G}_{N}(m, n) \mapsto \begin{array}{|c|c|}
\hline 2 \mathcal{G}_{N}(m, n)+1 & 2 \mathcal{G}_{N}(m, n) \\
\hline 2 \mathcal{G}_{N}(m, n) & 2 \mathcal{G}_{N}(m, n)+1 \\
\hline
\end{array}
$$

For the game of Wythoff, first few values of $(x, y) \mapsto \mathcal{G}_{W}(x, y)$

\vdots											\therefore
9	9	10	11	12	8	7	13	14	15	16	
8	8	6	7	10	1	2	5	3	4	15	
7	7	8	6	9	0	1	4	5	3	14	
6	6	7	8	1	9	10	3	4	5	13	
5	5	3	4	0	6	8	10	1	2	7	
4	4	5	3	2	7	6	9	0	1	8	
3	3	4	5	6	2	0	1	9	10	12	
2	2	0	1	5	3	4	8	6	7	11	
1	1	2	0	4	5	3	7	8	6	10	
0	0	1	2	3	4	5	6	7	8	9	\cdots
	0	1	2	3	4	5	6	7	8	9	\cdots

For Wythoff's game, not so many results are known

- U. Blass, A.S. Fraenkel, The Sprague-Grundy function for Wythoff's game. Theoret. Comput. Sci. 75 (1990), no. 3, 311-333.
- Y. Jiao, On the Sprague-Grundy values of the \mathcal{F}-Wythoff game. Electron. J. Combin. 20 (2013).
- A. Gu, Sprague-Grundy values of the \mathcal{R}-Wythoff game. Electron. J. Combin. 22 (2015).
- M. Weinstein, Invariance of the Sprague-Grundy function for variants of Wythoff's game. Integers 16 (2016).

It's challenging, we quote the Siegel's book:
"No general formula is known for computing arbitrary \mathcal{G}-values of WYTHOFF. In general, they appear chaotic, though they exhibit a striking fractal-like pattern ... Despite this apparent chaos, the \mathcal{G}-values nonetheless have a high degree of geometric regularity."

$$
\mathcal{G}_{W}(m, n), m, n \leq 100
$$

Proposition (Allouche-Shallit)
The projection on a finite alphabet of a k-regular sequence is a k-automatic sequence.

SHAPE-SYMMETRIC MORPHISMS

Question: What can be said about the (morphic) structure of the \mathcal{P}-positions of Wythoff's 㗀 game?

$$
\left(P_{i, j}\right)_{i, j \geq 0}=\left\lvert\, \begin{array}{llllllllllll}
\vdots & & & & & & & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\hline
\end{array}\right.
$$

Let's try something...

$$
\begin{aligned}
& f \mapsto \begin{array}{|c|c|}
\hline h & d \\
\hline g & b \\
\hline
\end{array} \quad g \mapsto \begin{array}{|c|c|}
\hline h & d \\
\hline f & b \\
\hline
\end{array} \quad h \mapsto \begin{array}{|l|l|}
\hline i & m \\
\hline
\end{array} \quad i \mapsto \begin{array}{|c|c|}
\hline h & d \\
\hline i & m \\
\hline
\end{array} \\
& j \mapsto \begin{array}{|c|c|}
\hline c \\
\hline k \\
\hline c & d \\
\hline l & m \\
\hline
\end{array} \quad l \mapsto \begin{array}{|c|c|}
\hline c & d \\
\hline k & m \\
\hline
\end{array} \quad m \mapsto \begin{array}{|c|}
\hline h \\
\hline i \\
\hline
\end{array}
\end{aligned}
$$

and the coding

$$
\mu_{W}: a, e, g, j, l \mapsto 1, \quad b, c, d, f, h, i, k, m \mapsto 0
$$

Let $d \geq 2$
A d-dimensional picture over A is a map

$$
x: \llbracket 0, s_{1}-1 \rrbracket \times \cdots \times \llbracket 0, s_{d}-1 \rrbracket \rightarrow A
$$

$\left(s_{1}, \ldots, s_{d}\right)$ is the shape of x; if $s_{i}<\infty$, for all i, x is bounded. The set of bounded pictures over A is denoted by $\mathcal{B}_{d}(A)$.

If for some $i \in \llbracket 1, d \rrbracket,|x|_{\widehat{i}}=|y|_{\widehat{i}}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{d}\right)$, then we define the concatenation of x and y in the direction i to be the d-dimensional picture $x \odot^{i} y$ of shape

$$
\left(s_{1}, \ldots, s_{i-1},|x|_{i}+|y|_{i}, s_{i+1}, \ldots, s_{d}\right)
$$

AN EXAMPLE

$$
x=\begin{array}{|c|c|}
\hline a & b \\
\hline c & d \\
\hline
\end{array} \quad \text { and } \quad y=\begin{array}{|l|l|l|}
\hline a & a & b \\
\hline b & c & d \\
\hline
\end{array}
$$

of shape respectively $|x|=(2,2)$ and $|y|=(2,3)$.

Since $|x|_{\widehat{2}}=|y|_{\widehat{2}}=2$, we get

$$
x \odot^{2} y=\begin{array}{|l|l|l|l|l|}
\hline a & b & a & a & b \\
\hline c & d & b & c & d \\
\hline
\end{array}
$$

However $x \odot^{1} y$ is not defined because $2=|x|_{\hat{1}} \neq|y|_{\hat{1}}=3$.

Remark

A map $\gamma: A \rightarrow \mathcal{B}_{d}(A)$ cannot necessarily be extended to a morphism $\gamma: \mathcal{B}_{d}(A) \rightarrow \mathcal{B}_{d}(A)$.

$$
\gamma: a \mapsto \begin{array}{|c|c|}
\hline b & d \\
\hline a & a \\
\hline
\end{array}, \quad b \mapsto \begin{array}{|c|}
\hline b \\
\hline c \\
\hline
\end{array}, \quad c \mapsto \begin{array}{|c|c|}
\hline a & a \\
\hline
\end{array}, \quad d \mapsto \boxed{ } .
$$

$\odot^{2}:|\gamma(c)|_{\widehat{2}}=|\gamma(d)|_{\widehat{2}}=1, \quad|\gamma(a)|_{\widehat{2}}=|\gamma(b)|_{\widehat{2}}=2$,
$\odot^{1}:|\gamma(a)|_{\hat{1}}=|\gamma(c)|_{\hat{1}}=2, \quad|\gamma(d)|_{\hat{1}}=|\gamma(b)|_{\hat{1}}=1$.

$$
x=\begin{array}{|c|c|}
\hline c & d \\
\hline a & b \\
\hline
\end{array}, \quad \gamma(x)=\begin{array}{|c|c|c|}
\hline a & a & d \\
\hline b & d & b \\
\hline a & a & c \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \gamma: \quad a \mapsto \begin{array}{|c|c|}
\hline b & d \\
\hline a & a \\
\hline
\end{array}, \quad b \mapsto \begin{array}{|c|c|}
\hline b \\
\hline c \\
\hline
\end{array}, \quad c \mapsto \begin{array}{|c|c|}
\hline a & a \\
\hline
\end{array}, \quad d \mapsto \begin{array}{|}
\\
\hline
\end{array} \\
& x=\begin{array}{|l|l|}
\hline c & d \\
\hline a & b \\
\hline
\end{array}, \quad \gamma(x)=\begin{array}{|l|l|l|}
\hline a & a & d \\
\hline b & d & b \\
\hline a & a & c \\
\hline
\end{array}
\end{aligned}
$$

but $\gamma^{2}(x)$ is not well-defined:

$$
\begin{gathered}
\gamma^{2}(x) \leadsto \begin{array}{|l|l|}
\hline b & d \\
\hline a & a \\
\hline
\end{array} \\
\begin{array}{|l|l|}
\hline b & \begin{array}{|l|l|}
\hline b & d \\
\hline a & a \\
\hline
\end{array} \\
\hline \begin{array}{|l|l|}
\hline b & \begin{array}{|c|}
\hline b \\
\hline
\end{array} \\
\hline a & d \\
\hline a & a \\
\hline
\end{array} & \begin{array}{|l|l|}
\hline b & d \\
\hline a & a \\
\hline
\end{array} \\
\begin{array}{|l|l|}
\hline a & a \\
\hline
\end{array}
\end{array}
\end{gathered}
$$

What do we need for $\gamma(x)$ to be defined?

\rightsquigarrow the images of any two symbols on a row (resp. column) have the same number of rows (resp. columns).

IN A FORMAL WAY (\star)

Let $\gamma: A \rightarrow \mathcal{B}_{d}(A)$ be a map and x be a bounded d-dimensional picture such that

$$
\forall i \in\{1, \ldots, d\}, \forall k<|x|_{i}, \forall a, b \in \operatorname{Alph}\left(x_{\mid i, k}\right):|\gamma(a)|_{i}=|\gamma(b)|_{i}
$$

$\operatorname{Alph}\left(x_{\mid i, k}\right)$ is the set of letters occurring in the section $x_{\mid i, k}$.

Then the image of x by γ is the d-dimensional picture defined as

$$
\gamma(x)=\odot_{0 \leq n_{1}<|x|_{1}}^{1}\left(\cdots\left(\odot_{0 \leq n_{d}<|x|_{d}}^{d} \gamma\left(x\left(n_{1}, \ldots, n_{d}\right)\right)\right) \cdots\right) .
$$

Definition

If for all $a \in A$ and all $n \geq 1, \gamma^{n}(a)$ is well-defined from $\gamma^{n-1}(a)$, then γ is said to be a d-dimensional morphism. We can define accordingly a prolongable morphism.

Definition

Let $\gamma: \mathcal{B}_{d}(A) \rightarrow \mathcal{B}_{d}(A)$ be a d-dimensional morphism having the d-dimensional infinite word \mathbf{x} as a fixed point.

This word is shape-symmetric with respect to γ if, for all permutations ν of $\llbracket 1, d \rrbracket$, we have, for all $n_{1}, \ldots, n_{d} \geq 0$,

$$
\begin{aligned}
\left|\gamma\left(\mathbf{x}\left(n_{1}, \ldots, n_{d}\right)\right)\right| & =\left(s_{1}, \ldots, s_{d}\right) \\
\Downarrow & \\
\left|\gamma\left(\mathbf{x}\left(n_{\nu(1)}, \ldots, n_{\nu(d)}\right)\right)\right| & =\left(s_{\nu(1)}, \ldots, s_{\nu(d)}\right) .
\end{aligned}
$$

Reconsider our map φ_{W} (one can indeed prove that it is a d-dimensional morphism having a shape-symmetric fixed point).

$a \mapsto$| c | d |
| :---: | :---: |
\mathbf{a}	b	\mapsto	i	\mathbf{j}	i			
c	d	\mathbf{e}						
\mathbf{a}	b	i	\mapsto	h	d	c	h	d
:---:	:---:	:---:	:---:	:---:				
i	m	k	i	m				
i	\mathbf{j}	i	f	b				
c	d	\mathbf{e}	h	d				
\mathbf{a}	b	i	i	m				

sizes: $1,2,3,5$
$\cdots \stackrel{|c| c|c| c|c| c|c| c \mid}{\mid i}$
size : $8, \ldots$

Initial blocks of some 3-dimensional shape-symmetric picture Maes' thesis p. 107.

Theorem (Maes 1999)

- Determining whether or not a map $\mu: \mathcal{B}_{d}(A) \rightarrow \mathcal{B}_{d}(A)$ is a d-dimensional morphism is a decidable problem.
- If μ is prolongable on a letter a, then it is decidable whether or not the fixed point $\mu^{\omega}(a)$ is shape-symmetric.

Theorem (Duchêne, Fraenkel, Nowakowski, R.)

The image by μ_{W} of the fixed point $\varphi_{W}^{\omega}(a)$ gives exactly the \mathcal{P}-positions of Wythoff's game.

Sketch of the proof of Maes's results

Cobham, Dumont-Thomas, Maes, Shallit, ...

$$
\text { Morphism } \leftrightarrow \text { Automata }
$$

Links with non-standard numeration systems: J. Shallit (1988), J.-P. Allouche, E. Cateland, et al. (1997), J.-P. Allouche, K. Scheicher, R. Tichy (2000), Marsault-Sakarovitch, M. R., . . .

GENERAL THEOREM "MORPHIC \Rightarrow AUTOMATIC"

Let A be an ordered alphabet. Let $\mathbf{w} \in A^{\mathbb{N}}$ be an infinite word, fixed point $f^{\omega}(a)$ of a morphism $f: A^{*} \rightarrow A^{*}$.

- associate with f a DFA \mathcal{M} over the alphabet $\{0, \ldots, \max |f(b)|-1\} ;$
- A is the set of states;
- the initial state is a, all states are final;
- if $f(b)=c_{0} \cdots c_{m}$, then $b \xrightarrow{j} c_{j}, j \leq m$;
- consider the language L accepted by \mathcal{M} except words starting with 0 ;
- genealogically order L : $L=\left\{w_{0}<w_{1}<w_{2}<\cdots\right\}$.

The nth symbol of $\mathbf{w}, n \geq 0$, is

$$
\mathcal{M} \cdot w_{n} .
$$

Examples (first, in 1D):

- Take your favorite k-uniform morphism, the associated regular language is $\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*}$

$$
f:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & \mathrm{abc} \\
\mathrm{~b} & \mapsto & \mathrm{cbc} \\
\mathrm{c} & \mapsto & \mathrm{bca}
\end{array}\right.
$$

- Take the Fibonacci morphism $a \mapsto a b, b \mapsto a$, the associated regular language is $\{\varepsilon\} \cup 1\{0,01\}^{*}$

We can do the same in a multidimensional setting.

- There are $d \geq 2$ associated regular languages (details missing, idea on the next slide).

Assume that the images of letters have shape $\left(s_{1}, s_{2}\right), s_{i} \leq 2$. Associate with φ an automaton with input alphabet:

$$
\begin{gathered}
\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} \\
\varphi(r)=\begin{array}{|l|l|}
\hline u & v \\
\hline s & t \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline s & t \\
\hline s \\
\hline
\end{array}
\end{gathered}
$$

we have transitions like

$$
r \xrightarrow{\binom{0}{0}} s, \quad r \xrightarrow{\binom{1}{0}} t, \quad r \xrightarrow{\binom{0}{1}} u, \quad r \xrightarrow{\binom{1}{1}} v
$$

Associated languages - example of product of substitutions

$$
f:\left\{\begin{array}{rll}
a & \mapsto & a b c \\
b & \mapsto & c b c \\
c & \mapsto & b c a
\end{array} \quad g:\left\{\begin{array}{lll}
0 & \mapsto & 01 \\
1 & \mapsto & 0
\end{array}\right.\right.
$$

$f \times g:$

$$
\begin{aligned}
& (a, 0) \mapsto \begin{array}{|l|l|l|}
\hline(a, 1) & (b, 1) & (c, 1) \\
\hline(a, 0) & (b, 0) & (c, 0) \\
\hline
\end{array} \quad(a, 1) \mapsto \begin{array}{|l|l|l|l|l|}
\hline(a, 0) & (b, 0) & (c, 0) \\
(b, 0) & \mapsto \begin{array}{|l|l|l|l|}
\hline(c, 1) & (b, 1) & (c, 1) \\
\hline(c, 0) & (b, 0) & (c, 0) \\
\hline
\end{array} \quad(b, 1) \mapsto \begin{array}{|l|l|l|}
\hline(c, 0) & (b, 0) & (c, 0) \\
\hline
\end{array} \\
(c, 0) \mapsto \begin{array}{|l|l|l|}
\hline(b, 1) & (c, 1) & (a, 1) \\
\hline(b, 0) & (c, 0) & (a, 0) \\
\hline
\end{array} & (c, 1) \mapsto \begin{array}{|c|c|c|}
\hline(b, 0) & (c, 0) & (a, 0) \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\end{array}
\end{aligned}
$$

$\{\varepsilon\} \cup\{1,2\}\{0,1,2\}^{*}$ and $\{\varepsilon\} \cup 1\{0,01\}^{*}$

The growth is derived from these languages

The growth is derived from these languages

The growth is derived from these languages

Can this map be extended to a morphism?

$$
\gamma: a \mapsto \begin{array}{|c|c|}
\hline b & d \\
\hline a & a \\
\hline
\end{array}, \quad b \mapsto \begin{array}{|c|}
\hline b \\
\hline c \\
\hline
\end{array}, \quad c \mapsto \begin{array}{|c|c|}
\hline a & a \\
\hline
\end{array}, \quad d \mapsto \begin{array}{|}
\hline
\end{array} .
$$

Recall the condition (\star):
$\forall i \in\{1, \ldots, d\}, \forall k<|x|_{i}, \forall a, b \in \operatorname{Alph}\left(x_{\mid i, k}\right):|\gamma(a)|_{i}=|\gamma(b)|_{i}$.

$$
\begin{gathered}
\binom{10}{00},\binom{10}{01},\binom{10}{10},\binom{10}{11} \\
\binom{010}{100},\binom{010}{101}, \ldots \\
\binom{0^{|w|-2} 10}{w}
\end{gathered}
$$

The image by γ of all these elements should have the same number of columns.

Recall the condition (\star) :

$$
\forall i \in\{1, \ldots, d\}, \forall k<|x|_{i}, \forall a, b \in \operatorname{Alph}\left(x_{\mid i, k}\right):|\gamma(a)|_{i}=|\gamma(b)|_{i}
$$

$$
\begin{aligned}
\binom{000}{100},\binom{001}{100}, & \binom{010}{100},\binom{011}{100},\binom{100}{100}, \ldots \\
& \binom{w}{0^{|w|-3} 100}
\end{aligned}
$$

The image by γ of all these elements should have the same number of rows.

- Take the projections of the DFA \mathcal{A}
- We get 2 NFAs: \mathcal{N}_{1} and \mathcal{N}_{2}
- The set of initial states is made of those reached by 0^{*}
- Determinize (Rabin-Scott's subset construction): \mathcal{D}_{1} and \mathcal{D}_{2}
$Q=\left\{q_{1}, \ldots, q_{r}\right\}$ is a state of \mathcal{D}_{1} reached when reading w,
IFF, in \mathcal{N}_{1}, there is a path from I_{1} to q_{j} with label $w, \forall j$,
IFF, in $\mathcal{A}, \forall j$, there is a path from the initial state to q_{j} with a label of the form

$$
\binom{0 \cdots 0 w}{z_{j}}
$$

$\gamma\left(q_{1}\right), \ldots, \gamma\left(q_{r}\right)$ must have the same number of columns

- Take the projections of the DFA \mathcal{A}
- We get 2 NFAs: \mathcal{N}_{1} and \mathcal{N}_{2}
- The set of initial states is made of those reached by 0^{*}
- Determinize (Rabin-Scott's subset construction): \mathcal{D}_{1} and \mathcal{D}_{2}
$Q=\left\{q_{1}, \ldots, q_{r}\right\}$ is a state of \mathcal{D}_{2} reached when reading w,
IFF, in \mathcal{N}_{2}, there is a path from I_{1} to q_{j} with label $w, \forall j$,
IFF, in $\mathcal{A}, \forall j$, there is a path from the initial state to q_{j} with a label of the form

$$
\binom{z_{j}}{0 \cdots 0 w} .
$$

$\gamma\left(q_{1}\right), \ldots, \gamma\left(q_{r}\right)$ must have the same number of rows

$\gamma: a \mapsto$| b | d |
| :---: | :---: |
| a | a |,$\quad b \mapsto$| b |
| :---: |
| c |,$\quad c \mapsto$| a | a |
| :---: | :---: |$\quad d \mapsto$

	state of \mathcal{D}_{2}	$\|\gamma(\cdot)\|_{2}$
$\mathcal{D}_{2} \cdot \varepsilon$	$\{a, b, c\}$	$2,2,1$
$\mathcal{D}_{2} \cdot 1$	$\{a, d\}$	2,1
$\mathcal{D}_{2} \cdot 10$	$\{a, b, d\}$	$2,2,1$
$\mathcal{D}_{2} \cdot 100$	$\{a, b, c, d\}$	$2,2,1,1$

Theorem (MaEs 1999)

- If μ is prolongable on a letter a, then it is decidable whether or not the fixed point $\mu^{\omega}(a)$ is shape-symmetric.

IFF the associated languages are the same.

Is THERE SOME TIME LEFT?

Theorem (Duchêne, Fraenkel, Nowakowski, R.)

The image by μ_{W} of the fixed point $\varphi_{W}^{\omega}(a)$ gives exactly the \mathcal{P}-positions of Wythoff's game.

We associate with φ an automaton with input alphabet

$$
\begin{gathered}
\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\} \\
\varphi(r)=\begin{array}{|l|l|}
\hline u & v \\
\hline s & t \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline s & t \\
\hline
\end{array} \quad \begin{array}{|l|}
\hline \\
\hline
\end{array}
\end{gathered}
$$

we have transitions like

$$
r \xrightarrow{\binom{0}{0}} s, \quad r \xrightarrow{\binom{1}{0}} t, \quad r \xrightarrow{\binom{0}{1}} u, \quad r \xrightarrow{\binom{1}{1}} v
$$

From morphism to automaton, we get

1) If all states are assumed to be final, this automaton accepts the words

$$
\binom{u}{v}
$$

where $|u|=|v|$ and u, v are both valid F-representation (possibly padded with zeroes).
2) If we restrict to the "blue" part, this automaton accepts the words

$$
\binom{0 w_{1} \cdots w_{\ell}}{w_{1} \cdots w_{\ell} 0} \text { and }\binom{w_{1} \cdots w_{\ell} 0}{0 w_{1} \cdots w_{\ell}}
$$

where $w_{1} \cdots w_{\ell}$ is a valid F-representation.
3) Now, if the set of final states is $\{a, e, g, j, l\}$, we have the extra condition that $w_{1} \cdots w_{\ell}$ ends with an even number of zeroes.

With Fraenkel's characterization of \mathcal{P}-positions, this concludes the proof.

Theorem (A. S. Fraenkel, 1982)

(x, y), with $x<y$, is a \mathcal{P}-position of Wythoff's game iff $\operatorname{rep}_{F}(x)$ ends with an even number of zeroes and $\operatorname{rep}_{F}(y)=\operatorname{rep}_{F}(x) 0$.

Selected references

- J.-P. Allouche, J. Shallit, Automatic sequences. Theory, applications, generalizations. Cambridge Univ. Press (2003).
- V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. 1 (1994).
- É. Charlier, T. Kärki, M. Rigo, Multidimensional generalized automatic sequences and shape-symmetric morphic words, Discrete Math. 310 (2010).
- E. Duchêne, A.S. Fraenkel, R. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff's game preserving its \mathcal{P}-positions, J. Combin. Theory Ser. A 117 (2010).
- A.S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982).
- A. Maes, Morphic predicates and applications to the decidability of arithmetic theories, UMH Univ. Mons-Hainaut, Ph.D. thesis 1999.
- M. Rigo, Formal Languages, Automata and Numeration Systems, vol. 2, Applications to recognizability and decidability. ISTE, London; John Wiley \& Sons, (2014).
- A. Siegel, Combinatorial game theory, Graduate Studies in Mathematics, 146, AMS (2013).

