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Chapter 1

Introduction

1.1 Motivation

During the atmospheric reentry phase, space vehicles enter the atmosphere at hypersonic
speeds and a strong bow shock wave is formed in front of the vehicle (Fig. 1.1a). At
the interface of the shock, the air is strongly compressed and the massive amount of the
�ow kinetic energy is converted into internal energy of the gas. Very high temperatures are
reached in the shock layer and causing molecules to reach excited states and for su�ciently
high temperatures, gas to be ionized. At the nose of the vehicle, a stagnation point exists
with a surrounding subsonic region. The heat �ux from this subsonic boundary layer to
the space vehicle reaches a maximum, and e�cient Thermal Protection Systems (TPS)
need to be developed for the integrity of the space vehicle and the crew survival. For
this reason, the design of TPS is one of the most important challenge in the conception
of spacecraft. In Fig. 1.1 an example of a real �ight test on thermal protection systems,

(a) Representation of the reentry phase. (b) IXV after reentry phase.

Figure 1.1: ESA Intermediate eXperimental Vehicle.

recently conducted by the ESA1 is shown. This test was representative of low Earth orbit
atmosphere.

1.2 Ground-based facilities

However, real �ight tests are seldom feasible and ground-based facilities are needed in
order to reproduce the thermal conditions characterizing reentries. Ground-based facilities
are therefore well-suited for the reproducibility of real �ight experiments and allow the
Thermal Protection Materials (TPMs) to be tested at a lower cost. In particular, the

1European Space Agency



1.3. Instabilities Phenomena Experienced in Ground-Based Facilities

properties of TPMs are determined in plasma wind tunnels, based on a Local Heat Transfer
Simulation (LHTS) methodology [18]. Experimental reproducibility of the heat transfer to
the stagnation point is achieved, ensuring similarity between enthalpy (or temperature),
pressure and velocity gradient along the body wall at the outer edge of the boundary layer.
Plasma wind tunnels reproduce such high subsonic enthalpy �ows.

In the past, more interest was given to arc-jet and induction-type plasma wind tunnels.
Arc jets were usually preferred for quali�cation testing of large-scale samples at very high
heat �ux, thanks to their high-power capabilities. However, all arc-driven facilities are
polluted by electrode erosion which results in a �ow slightly seeded with electrode particles
(usually copper). These particles are then deposited in the sample being tested and the
catalytic properties of the TPMs are modi�ed in the process.

Figure 1.2: Plasmatron 1.2 [MW] facility.

In contrast, plasma facilities using electrodeless technology for the plasma discharge
generation ensure a superior �ow purity. Therefore, they are usually more dedicated to the
study of aerothermochemistry and gas-surface interaction phenomena. In the end of the
20th century, no ICP (Inductively-Coupled Plasma) facility of high power was available
in Europe to satisfy those needs. This fact led towards the end of 1994 to the fabrication
and assembly of the 1.2 [MW] Plasmatron at the VKI2 (Fig. 1.2). This facility is, at the
present time, the most powerful of its kind in the world. The VKI Plasmatron is usually
operated at the subsonic regime, from which the complete reproducibility of the actual
�ight conditions is achieved locally, at the stagnation point [8].

1.3 Instabilities Phenomena Experienced in Ground-Based

Facilities

Although the plasma generated in the Plasmatron appears temporally stable and axisym-
metric for naked-eye observations, it is known that jets usually undergo instability phe-
nomena. In the case of the plasma jet, these unstable features must be investigated for a
correct characterization of the testing thermal protection material.

In the past, it was possible to investigate the �uctuation features of the plasma jet
by means of High-Speed Camera (HSC) imaging (Fig. 1.3). Experimental results from
Benito et al. highlighted that the supplied electrical power Pel and the test chamber static
pressure ptc were the main driving parameters of the unsteady phenomena occurring in
the �ow [4]. Following this, Cipullo et al. went further in the analysis and investigated
the results provided from the HSC device in the frequency domain and related them in
the spatial domain [8]. In this work, a large test campaign in the VKI Plasmatron was
performed, with parameters Pel and ptc respectively varying from 120 to 300 [kW] and
from 1500 to 20000 [Pa], and mass �ow rate ṁ �xed to 16 [g/s]. It appeared that the

2It was inaugurated on December 8, 1997.
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instabilities were attributed to the supplied voltage at 600 [Hz] (network power supply
after being recti�ed by a 12-pulses bridge recti�er) and its strongest harmonics. They
were not observable when ptc was increased. However, instabilities at 50 [Hz] (the network
power supply) and its harmonics were also observed. Conversely, as ptc was increased, the
50 [Hz] component signi�cantly increased. Finally, one large component at 900 [Hz] was
also observed. The power stored in this mode was mainly located in the freestream of the
jet.

Figure 1.3: Unsteady features of the plasma jet measured by the high-speed camera. The
high frequency acquisition by the HSC of light emission allows to get a qualitative picture
of the unsteady heat and mass transfers occurring in the plasma �ow [8]. The streamwise
direction of the jet is from right to left.

1.4 Numerical Study of Plasma Jet Instabilities

Following the design of the Plasmatron, a numerical approach for the characterisation
of thermal protection materials was developed as well. A numerical model for inductive
plasma wind tunnels was implemented and integrated to a numerical solver CooLFluiD3

both developed in the VKI [25]. The numerical model is used to provide the mean �ow
of the plasma jet corresponding to several operating conditions of the Plasmatron and the
heat �ux at stagnation point can be computed. Due to the unstable features of the jet that
are not predicted by the code, di�erences between numerical and experimental results can
sometimes be observed. Therefore, for a correct interpretation of the experimental results,
the instabilities that occur in the jet must be understood and quanti�ed.

More recently, a numerical code for the investigation of the stability, developed at the
VKI, was developed [29]. Vesta toolkit4 was �rst developed for the study of the linear
stability of high speed �ow, but it was extended to the stability of the high temperature
plasma jet [12][7]. It was possible in some cases to identify the unstable features that were
observed experimentally. In other cases, no link could be made with the experiments.

3Computational Object-Oriented Libraries for Fluid Dynamics.
4VKI Extensible Stability and Transition Analysis toolkit
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By combining both the numerical simulations of the jet and the numerical study of
the stability, it would be therefore possible to predict the complete experimental tests.
However, a strong link between the results obtained from the numerical stability study
and the experimental results needs still to be done.

1.5 Objectives and Overview of the Work

In this work, a numerical approach for the investigation of the plasma jet instabilities
occurring in the Plasmatron is used. Two main research objectives are addressed in

this work:

• The �rst objective consists in the identi�cation of the main parameters

that are responsible for the instabilities in the plasma jet. For this purpose,
a sensitivity analysis on the in�uence of the thermodynamic and transport properties
on the instability of a plasma jet, when local thermodynamic equilibrium is assumed,
is made. Di�erent levels of approximation can be obtained for the expression of the
thermodynamic and transport properties that are used in stability analysis calcu-
lations. The properties will modi�ed one by one, choosing either the accurate or
the less accurate approximation, and relevant quantity of interests translating the
unstable features of the jet will be computed. A measure of the change in these
quantities of interest will be needed in order to determine the relative importance of
each parameter.

• The second question consists of implementing a methodology for the un-

certainty quanti�cation of the instability of the jet, when one of its input

parameters is uncertain. The uncertain input considered here is the electric power
that is transferred from the generator of the Plasmatron to the plasma �ow.

In order to achieved these objectives, the work is divided in four parts (the �rst part
being the current introduction).

Modelling gas dissociation behind bow shocks around space vehicles requires to take
into account complex chemistry mechanisms and detailed transport phenomena. Short
review of kinetic theory is made in Chap. 2. Thermodynamic and transport properties
for the simple case of Calorically Perfect Gas (CPG) are derived. More elaborated models
based on statistical mechanics and the Chapman-Enskog perturbative method for trans-
port properties are then introduced. In the view of their use in the Vesta code, gas
properties for plasma �ow in Local Thermodynamic Equilibrium (LTE) are also empha-
sized. A comparison of the �ow properties obtained for a calorically perfect gas and for the
chemically reacting mixture of perfect gas, is made. Finally, these properties are applied
to a practical example of plasma jet obtained from the ICP CooLFluiD solver an this
case will be used as the reference case through this work.

Chap. 3 is concerned with the stability analysis of the plasma �ow using the Vesta
toolkit. First, the Linear Stability Theory is addressed. LST is the base of all computations
that will be made in this work, as only linear stability is investigated. Then, a short review
of the state-of-the-art on jet instabilities is made in order to get global comprehension of
the instability phenomena that can happen in jet �ows. Results with the LTE solver of
Vesta applied to the reference case for the plasma �ow are presented and the main features
of the instabilities are analysed.

In Chap. 4 the two main research questions of the project are addressed. Thus, the
sensistivity analysis is investigated in Sec. 4.1. The in�uence of the �ow parameters is
investigated on two main quantities of interest: the growth rate of an unstable mode and
its most ampli�ed frequency. This analysis is performed for di�erent types of instabilities
encountered in the plasma jet. Then, in Sec. 4.2 a methodology for quantifying the
uncertainty on the instability of the plasma jet is presented. A stochastic collocation

4
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method is used. As many simulations may be required for uncertainty quanti�cation, two
cases will be considered. On the one hand, the analysis will be made on approximated
numerical solutions, obtained from a limited set of simulations. On the other hand, new
simulations are computed in order to improve accuracy of the analysis and the two results
are compared. In Sec. 4.3, the sensitivity analysis made in Sec. 4 is investigated with an
uncertain input using the methodology developed in Sec. 4.2.

Finally, in Chap. 5.1 some conclusions are provided, reviewing the main results ob-
tained in this work. Recommendations for future work are also suggested.

Several appendices are also added for readers who would be interested in more tech-
nical notes. In Appendix A, a typical example for the manipulation of the Maxwellian
species distribution function for computing macroscopic properties is shown. Appendix B
is devoted to the linearization of the gas state equation for the mixture, as parameters
appearing in this expression are of utmost importance for the stability of the jet. In Ap-
pendix C, the new simulations ran for the uncertainty quanti�cation are presented and
their dependence on electric power is shown.

5
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Chapter 2

Transport and Thermodynamic

Properties of Plasma Flow

Study of plasma �ow, and more generally the study of high-temperature or high-enthalpy
gas, is of great interest in the �eld of hypersonic atmospheric reentry. The physics of these
kinds of �ow is however completely di�erent than low-temperature �ows encountered every
day. This chapter is mainly concerned with the physics of high-temperature gas.

The VKI Plasmatron is used to generate high-enthalpy plasma �ows that reproduce the
real �ight conditions at the nose of a spacecraft. The main characteristics of this facility
and its operating conditions are �rst presented in this chapter.

Then, the study of high-temperature gas dynamic, particularized to the plasma �ow
generated in the Plasmatron is addressed. A simple kinetic model is �rst described for the
representation of transport properties. This model is useful for understanding the basic
of kinetic theory and allows us to derived the classical Sutherland's law that can be used
to describe the thermal variation of the dynamic viscosity and thermal conductivity for
simple gases [35]. Following this, a more rigorous theory based on statistical mechanics
is presented: Boltzmann equation and Maxwell transfer equations are derived. Assuming
a Maxwellian velocity distribution function leads to the expression of the classical Euler
equations and the gas state equation can be retrieved. The Chapman-Enskog perturbative
method is developed and Navier-Stokes equations are derived for a plasma jet. Methodol-
ogy used for deriving rigorous transport properties is presented.

Thermodynamics properties of high-enthalpy �ow are then introduced. In classical
studies of thermodynamics and compressible �ows, the gas is assumed to be calorically
perfect and non reacting. The ratio of speci�c heat γ = cp/cv is assumed to be constant.
These assumptions lead however to unrealistic values of the temperature in the shock
layer of hypersonic reentry. Thermodynamics properties of a chemically reacting mixture
of perfect gases, under the assumption of local thermodynamic equilibrium are therefore
presented.

Finally, a short resume of free jet �ows is presented and the Navier-Stokes equations for
the plasma jet that will be used for the stability analysis are derived. Thermodynamic and
transport properties for the nominal case of plasma jet analysed in this work are �nally
presented.

2.1 The Plasmatron Facility

The VKI plasmatron facility is the biggest and the most powerful Iductively-Coupled
Plasma (ICP) toch in the world. It is used to reproduce actual �ight conditions locally,
at the stagnation point boundary layer, of a spacecraft during atmospheric reentry phase
and to test Thermal Protection Materials (TPMs) that can be used as shields against the
heat on spacecraft [5].

The Plasmatron is based on an Inductively-Coupled Plasma (ICP) torch that preserves



2.1. The Plasmatron Facility

the heated plasma from pollutants, that were present within former combustion-heated
facilities and arc-heaters. Combustion-heated facilities added heavy pollutants from com-
bustion products while arc-heaters produced the electrodes to erode and both were not
well-suited for TPS tests. Therefore, Plasmatron facilities using electrodeless technology
for the plasma discharge ensure a superior �ow purity and are usually more dedicated to
the study of aerothermochemistry and gas-surface interaction phenomena.

2.1.1 The plasma torch

In the case of the ICP torch, a tube of quartz is surrounded by a coil that is connected to a
high-voltage and high-frequency generator: a few thousand volts and frequencies ranging
from 400 [kHz] to several megahertz. When operating, the alternative current is �owing
through the coil and creates a magnetic �eld inside the tube, with magnetic �eld lines
parallel to the axis. According to Faraday's law of induction, this varying magnetic �eld
creates itself an electromotive force that can moves the free electrons existing in the gas,
and thus generated and eddy currents (also Foucault currents) that heat the gas by Joule
e�ect. The process is sketched on Fig. 2.1.

(a) High-frequency current through coil. (b) Induced current loops in the plasma.

Figure 2.1: Electric and magnetic �eld lines inside de ICP torch. The cold gas is heated
by the current loops iind by Joule e�ect.

The concept of the ICP torch is sketched on Fig. 2.2. An interior quartz tube is added
in order to prevent the exterior tube from melting and con�ne the plasma in the centre of
the tube. A thin layer of cold air is �owing between the two tubes. The cold cage serves as
an additional protection for the quartz tube. The gas is injected inside the torch through
an annular section and �ows around a translational block. The translational block causes
a recirculation region behind it that forces the gas to increase its residence time and thus
the power received.

A word should be given concerning the translational block. The recirculation region
behind it is ideally axisymmetric, but due to manufacturing errors or unbalancing of the
test gas injection, it is usually not the case. Vortex shedding can therefore be triggered and
the vortices are transported downstream generating instabilities in the jet (this is a second
potential source of instability; the �rst one was already presented in the introduction).

Finally, the heated plasma exits the nozzle in the form of a subsonic jet.

2.1.2 The facility

The Plasmatron facility is equipped with two interchangeable torches, one of 80 [mm]
diameter for the test of small samples and one of 160 [mm]. The whole plasmatron facility
is sketched on Fig. 2.3. At the exit of the torch, the subsonic plasma enters the test
chamber, where the test article is placed. The chamber is usually kept at a pressure
between 1200 and 25000 [Pa], depending on the testing conditions. The plasma exists
through a di�user, and it is cooled down by a water-cooled heat exchanger (H/X). The
vacuum system is based on a roots pump and a set of three rotating vanes pumps. After

8
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Figure 2.2: Concept of the ICP torch

proper dilution, the products are �nally released to the atmosphere through an exhaust.
The overall facility is equipped with a cooling system using a closed loop deionized water
circuit coupled to fan coolers.

Figure 2.3: Plasmatron facility schematics

2.1.3 Electric system

The plasmatron facility uses a 1.2 MW RF power supply to ignite and sustain the plasma
discharge. First, the 11 [kV], 50 [Hz] voltage level coming from the network is adapted
using a 1.7 mega volt ampere ([MVA]) transformer (Fig. 2.4). The output signal is then
recti�ed using a 12-pulses bridge and smoothed using chokes. The nominal values of DC
voltage and current are 250 [V] and 5000 [A], respectively. A 1.2 [MW], 400 [kHz] metal-
oxide-semiconductor (MOS) inverter is then used to feed a single turn �at coil inductor.

Three parameters fully de�ned operating conditions of the Plasmatron during TPMs
testing: the electric power supply Pel ([kW]), the pressure in the test chamber ptc ([Pa])
and the mass �ow rate of �uid ṁ ([g/s]). These parameters are well-de�ned during a test
and typical operating condition ranges are Pel between 120 and 300 [kW], ptc between 1500
and 20000 [Pa] and the mass �ow rate is often �xed to 16 [g/s]1 [5].

Plasma jet generated in the VKI Plasmatron can be numerically simulated using the

1But it can be modi�ed as well.
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2.1. The Plasmatron Facility

Figure 2.4: Simpli�ed scheme of the VKI Plasmatron system [8]).

VKI solver CooLFluiD2. For a numerical simulation, ptc and ṁ need to be speci�ed but
also the electric power that is e�ectively transmitted to the �ow. While the electric power
supplying the Plasmatron facility is well-known as it comes from the network, the power
transmitted to the plasma that is actually heating it is not well de�ned. It is only a fraction
of the initial power supply and it can be expressed as

Pfl = ηPel , (2.1)

where Pfl is the electric power transmitted to the plasma �ow and η an uncertain pa-
rameter. We will come to this relation later when uncertainty quanti�cation on the input
electric power will be addressed.

2.1.4 Thermal plasma

A plasma is a gas that have the property to conduct an electric current when subjected to
an electromagnetic �eld. Plasma are generally assumed to be the fourth state of matter.

At high temperature, the energy exchange between particles during a collision is suf-
�ciently large for electrons to be extracted and molecules to dissociate: the gas becomes
ionized. A gas composed of electrons and ions has the capability of conducting an electric
current. The global charge of the gas remains neutral. Therefore, plasma are partially
ionized gas and the charge is globally neutral. The plasma investigated for reentry is re-
stricted to unmagnetized plasma, which are plasma for which the e�ect of the magnetic
�eld on transport properties is assumed to be negligible.

When subjected to an electromagnetic �eld, the plasma allows a �ow of charged parti-
cles (either electrons or ions), but they do not allow a separation of the constituent of the
gas to be physically separated.

Figure 2.5: Subsonic plasma jet generated inside the Plasmatron with ICP toch of 80 [mm]
diameter.

Plasma can be classi�ed in di�erent categories. Plasma jet generated by the Plasmatron
facility belong to the �eld of the thermal plasma. Compared to other �elds, like fusion
plasma, thermal plasma are of relatively low temperature, and their temperature range is
usually assumed to vary between 5000 and 25000 [K]. Inductive plasma generated inside
the Plasmatron facility have a typical temperature about 10000 [K].

2Computational Object-Oriented Libraries for Fluid Dynamics.
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It becomes then obvious that classical laws that described the thermodynamic and
transport properties of a gas at low temperature will be completely di�erent for such
plasma �ow and more generally for any high-temperature gas.

2.2 Kinetic Theory of Gases

While thermodynamics deals with phenomenological law for describing macroscopic sys-
tems at equilibrium and the transition between them, kinetic theory is a description of the
microscopic world based on collisions amongst molecules and atoms. Statistical mechanics
allows a bridge to be made between the two descriptions.

Description of the thermodynamics and transport properties is necessary in this work
as the stability of the plasma jet will be studied for two di�erent gas model. Correct
physical interpretation of the properties based on kinetic theory is exposed in the following
sections. Most mathematical development are omitted and the results are assumed to be
given.

2.2.1 Simple kinetic model for the transport properties

Transport properties are the results of the spatial non-uniformity of some macroscopic
quantity of the gas (as �ow velocity, temperature, concentration).

Consider a situation where all the molecules in the gas are assumed to be of one species.
These molecules follow a hard sphere model and they all have the same diameter d moving
at a relative mean velocity C̄ which is the thermal speed, with respect to an immobile
particle. The hard sphere model implies that any colliding molecule whose center comes
within a distance d of the given molecule is going to cause a collision. We thus de�ne
σ = πd2 to be the collision cross-section. During a time ∆t, the particle will have travelled
a volume VI = σC̄∆t. Introducing the particle density n = N/V , the number of particle N
per unit volume, then the mean number of collisions occurring in the volume of in�uence
VI is Nc = nσC̄∆t. Finally, de�ning the mean free path l as the mean distance between
two collisions, we have

l =
C̄∆t

Nc
=

1

nσ
(2.2)

From the discussion on transport properties at the beginning of the section, we expect
that the transport properties will be expressed as a function of the mean free path.

Consider a local stream of particles moving in the x coordinate carrying the same
quantity Q, which can be either momentum or energy3. We assume that there exists a
gradient of the macroscopic property P of the �ow in the y coordinate, that is, ∂P/∂y 6=
0. The quantity carrying by the local particles thus depend on their location on the y
coordinate, that is, Q = Q(y). It is also assumed that quantity Q did not change of
value on a distance equal to the mean free path l, corresponding to the latest collision
between two particles. The �ux of particles in the y-direction is nC̄/6; on average 1/6 of
the particles travel in one direction in the 3D space. The �ux of the quantity Q is therefore
proportional to nQC̄/6 and the net �ux through some surface located at y is therefore

Fy ∝
n

6
Q(y + l)C̄ − n

6
Q(y − l)C̄

≈ n

6
C̄

(
Q(y) +

∂Q

∂y
l −Q(y) +

∂Q

∂y
l

)
≈ n

3
C̄
∂Q

∂y
l (2.3)

3Transport of mass could also be considered when there is a gradient of concentration
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Classical macroscopic theory assumes that momentum and heat �uxes are something pro-
portional to the gradient of velocity and temperature respectively

τ = µ
∂u

∂y
, (2.4)

q = −k∂T
∂y

, (2.5)

where µ is the dynamic viscosity and k the thermal conductivity. Considering Q = mu and
Q = cvT respectively for momentum and heat transport, the coe�cients can be identi�ed

µ = βµ nC̄l, (2.6)

k = βk nC̄cvl, (2.7)

where βµ and βk are new constants of proportionality. Finally, it can be shown from
statistical mechanics (see Appendix A) that

C̄ =

(
8kBT

πm

) 1
2

, (2.8)

where kB is the Boltzmann constant (see Tab. 2). Therefore, from these simple kinetic
considerations, we can say that the viscosity µ and the thermal conductivity k are at �rst
approximation proportional to T 1/2. These results also suggest that transport properties
are independent from pressure. However it will be shown later that they are not exactly
independent from pressure, but the importance of pressure compared to the thermal vari-
ation is almost negligible.

Sutherland's law

Consider now the hard sphere model with a weak attractive �eld in its surrounding. The
attractive force will cause more molecules to collide and a greater collision cross-section
than the simple πd2 used previously can be considered. An e�ective diameter can be used
instead (Vincenti & Kruger)

d2e� = d2
(

1 +
S

T

)
, (2.9)

where S is a constant that is positive for attractive force and is sometimes called the
Sutherland's temperature. Replacing d in the expression of the mean free path Eq. 2.2 by
this e�ective diameter and together with Eq. 2.6, we obtain

µ = βµ
T

1
2

1 + S
T

, (2.10)

where βmu denotes again a constant of proportionality for the viscosity. Eq. 2.10 is known
as the Sutherland's law and this one predicts a more rapid variation of µ with temperature
than the previous simple law in T 1/2. In fact, at low temperature, attractive intermolecular
force is enough for causing a molecule to collide, that would have continued its way if there
were no attractive �eld. At higher temperature, thermal agitation becomes predominant
and the weak �eld is not felt any more by the incoming molecule. In this case, the two
models predict a growth of viscosity proportional to T 1/2.

De�ning a reference viscosity µ = µref at T = Tref, we can identify the constant

βµ = µref/T
1/2
ref (1 + S/Tref). After some manipulation, this can be rewritten in the more

familiar form of the Sutherland's law

µ = µref

(
T

Tref

) 3
2 Tref + S

T + S
, (2.11)
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where the reference values and the Sutherland's temperature S can be determined empir-
ically. For air, we have µref = 1.7894 10−5 [kg/(m · s)], Tref = 288.16 [K] and S = 110.4
[K]. Using these values, the Sutherland's law often gives fairly accurate results for gas such
as N2, O2, and therefore for air, at low or moderate temperature.

Same considerations can be made for the thermal conductivity and a similar Suther-
land's law can be derived:

k = kref

(
T

Tref

) 3
2 Tref + S

T + S
, (2.12)

In this last formula, kref = 2.428 10−5 [kW/(m · K)].

2.2.2 Boltzmann equation

A more rigorous treatment of the kinetic theory by means of statistical mechanics is now
addressed. Through the following sections, the basic mathematical treatments of the mi-
croscopic description of gases is presented. The aim is to give an idea of the methodology
used in order to obtain an accurate description of transport properties necessary for high
temperature �ow modelling as in the case of plasma jet. In particular, description of the
plasma �ow in terms on mixture species quantities must be introduced.

A gas is composed of a huge amount of particles. If we were able to know exactly the
position x and the velocity of every individual species ci (i.e. by knowing exactly the
microstate of the gas at a particular instant of time), the evolution of the system could be
exactly predicted. This is however a completely hopeless task and a statistical description
of the problem must be investigated. Going in this direction, each particles of species i is
described in the one-particle phase space (x, ci) by fi, the so-called velocity distribution
function. It gives the probability of �nding one particle species i at position x and time t
with a velocity ci [24].

The temporal evolution of the species velocity distribution function fi is governed
by the nonlinear integro-di�erential Boltzmann equation. This equation can be obtained
by expressing the conservation of particles in the phase space. The general form of the
equation with no reactive or chemistry source term is

∂tfi + ci · ∂xfi + bi · ∂cifi =
∑
j∈S
Jij (fi, fj) , i ∈ S, (2.13)

where ci, mi are the particle velocity and mass and bi are the speci�c external force acting
on the ith species. This equation can be rewritten more compactly as

Di(fi) = Ji, (2.14)

where the streaming di�erential operator Di(·) and the scattering collision operator Ji has
respectively been introduced as

Di(fi) = ∂tfi + ci · ∂xfi + bi · ∂cifi, (2.15)

Ji =
∑
j∈S
Jij(fi, fj). (2.16)

In the case of the plasma jet, the only external force considered acting on the particle
is the Lorentz force mibi = qi (E + ci ∧B), with the electric �eld E, magnetic �eld B
and species charge qi. The electric and magnetic �elds can be obtained from Maxwell's
equations but they are not described in this work. Their expression and the derivation of
the electromagnetic �eld in order to model the inductively coupled plasma can be found
in [25].

The introduction of the species velocity distribution functions allows for the following
mixture and species properties to be de�ned (i ∈ S):
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- species number density

ni =

∫
fidci, (2.17)

- mixture number density

n =
∑
j∈S

nj , (2.18)

- species mass density

ρi =

∫
mifidci

= nimi, (2.19)

- mass density

ρ =
∑
j∈S

ρj , (2.20)

- hydrodynamic velocity

ρu =
∑
j∈S

∫
mjcjfjdcj , (2.21)

2.2.3 Maxwell-Boltzmann velocity distribution function

The Maxwell-Boltzmann velocity distribution function fMi is introduced:

fMi = ni

(
mi

2πkBT

)3/2

exp

(
−mi (ci − u)2

2kBT

)
. (2.22)

It corresponds to the velocity distribution for a gas in an equilibrium state.

2.2.4 Maxwell transfer equations

Maxwell transfer equations express conservation of the microscopic properties at the macro-
scopic level of the �ow. There are used to make the link between the two descriptions and
the well-know equations of classical �uid mechanics can be retrieved.

First, collisional invariants are introduced. They are microscopic quantity that are
globally conserved during a collision between two particles i, j ∈ S such as the mass,
momentum and energy. The conserved quantity are

ψl = (miδil)i∈S , l ∈ S (2.23a)

ψn
S+ν = (miciν)i∈S , ν ∈ {1, 2, 3} (2.23b)

ψn
S+4 =

(
1

2
mici · ci

)
i∈S

, (2.23c)

where δil is the Kronecker symbol and nS denotes the number of species in the mixture.
Collisional invariance is then expressed as

ψli + ψlj = ψl
′
i + ψl

′
j , l ∈

{
1, . . . , nS + 4

}
. (2.24)

Note that ψli is a species quantity (mass, momentum or energy), while ψl is a species
vector. In the same order of idea, ψ can be seen as the species tensor for which the ns×ns
�rst block is diagonal and contains the mass species.
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Global conservation equations are then obtained by multiplying the Boltzmann equa-
tion by the collisional invariants, integrating over the velocity and summing over the species
in the mixture. For that purpose, the following scalar product is introduced

〈〈ξ, ζ〉〉 =
∑
j∈S

∫
ξj � ζjdcj , (2.25)

Projecting the Boltzmann relation 2.13 onto the collisional invariants de�ned in Eqs. 2.23
and using the scalar product 2.25, we obtain

〈〈∂t, ψl〉〉+ 〈〈c · ∂xf, ψ
l〉〉+ 〈〈 q

m
(E + c ∧B) · ∂cf, ψ

l〉〉 = 0, (2.26)

with l ∈ {1, . . . , n4 + 4}. After some algera, conservation equations of mass, momentum
and energy are obtained

∂tρi + ∂x · (ρiu) + ∂x · (ρiVi) = 0, i ∈ S, (2.27a)

∂t(ρu) + ∂x · (ρu⊗ u) + ∂x ·Π = nqE + j ∧B (2.27b)

∂tE + ∂x · (uE) + ∂x · q + ∂x · (Π · u) = j ·E, (2.27c)

The following species and mixture properties have been introduced:

- di�usion mass �ux of species l

ρlVl =

∫
mlfl(cl − u)dcl, l ∈ S, (2.28)

- mixture stress tensor

Π =
∑
j∈S

∫
mjfj(cj − u)⊗ (cj − u)dcj , (2.29)

- mixture heat �ux

q =
∑
j∈S

∫
1

2
mjfj(cj − u)(cj − u)2dcj , (2.30)

- mixture charge

nq =
∑
j∈S

njqj (2.31)

- total electric current density

j = nqu +
∑
j∈S

njqjVj (2.32)

Gas in equilibrium state

At thermodynamic equilibrium, species di�usion mass �ux ρlVl, l ∈ S and heat �ux q
vanish. The total electric current density is only due to convection. Mixture stress tensor
can be derived explicitly using the Maxwellian distribution velocity fMi from Eq. 2.22 and
using the change of variable Cj = cj − u, where the Ci are referred as to the peculiar
di�usion velocity

Π =
∑
j∈S

∫
mjf

M
j (cj − u)⊗ (cj − u)dcj

= nkBT I, (2.33)

where I stands for the 3D identity matrix. By identifying this deviatoric shear stress tensor
to the hydrostatic pressure, perfect gas law is obtained

p = nkBT. (2.34)

Thus, kinetic theory allows the perfect gas equation to be established. It can also be shown
for the gas in equilibrium state that the Euler equations are retrieved.
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Review

From Eqs. 2.28, 2.29 and 2.30, we saw that for evaluating the transport coe�cients,
the expressions for the species velocity distribution functions is required. The Maxwell-
Boltzmann distribution function, which corresponds to the velocity distribution for a gas
in an equilibrium state, led to the Euler equations and allowed the gas state equation to
be derived. However, in order to describe the system out of equilibrium and account for
dissipative e�ects in the transport �uxes due to macroscopic forces, we need an evaluation
of the velocity distribution function that diverts from the equilibrium. This can be achieved
using the Chapman-Enskog perturbative method which is brie�y described below.

2.2.5 Chapman-Enskog perturbative method

In order to derive an approximate solution to the Boltzmann equation, species distribution
functions are developed in the Enskog expansion

fi = f0i (1 + εφi) +O(ε2), i ∈ S. (2.35)

The parameter ε can be seen as a measure of the degree of departure from local equilibrium.
When the zero-order term of the Enskog expansion is injected to the Boltzmann equation,
the solution lead to the Maxwellian distribution and Euler equations can be derived from
Maxwell transfer equations. Considering the �rst order expansion, the linearized Boltz-
mann equation can be found and lead to the Navier-Stokes equations. Expressions for the
transport coe�cients can then be derived. Complete mathematical development of the
�rst order solution and the mathematical treatments of the transport coe�cient can be
found in [35][14].

What should be retained from this section is that there exists no closed solution for
the Boltzmann equation (as it is for the Navier-Stokes equations; Boltzmann equation
contains however much more information than NS as it this derived from microscopic
considerations). An approximation of this equation is thus sought using the Chapman-
Enskog series expansion. This theory is the base on which transport property calculations
are made.

2.3 Local Thermodynamic Equilibrium Properties

The �ow is assumed to be in the state of local chemical and thermal equilibrium, de�ned as
the Local Thermodynamic Equilibrium (LTE) state. The LTE description is only valid for
the last portion of a �ight trajectoty, where the pressure is large enough such that thermal
and chemical relaxation occur rapidly at the characteristic time of the �ow.

In the Plasmatron, the thermodynamic state of the plasma has been investigated by
Cipullo using optical emission spectroscopy [8]. The results showed that the plasma could
be considered at the LTE condition for all the testing conditions.

The thermodynamic and transport properties of air in LTE are presented in this section.
The library Mutation, developed at the VKI is used to compute the di�erent properties.

2.3.1 Mixture composition

When the temperature is increased, the gas must be considered in a �non perfect� fashion
as several physico-chemical processes happen: Internal energy as well as chemical reactions
must be taken into account.

1) When temperature increased, vibrational energy of molecules becomes excited. Spe-
ci�c heats also becomes a function of temperature and γ is no longer a constant. In
this case of variable cp and cv, the gas is de�ned as Thermally Perfect Gas (as oppo-
sition to the classical calorically perfect gas). For air, this e�ect becomes important
above 800 [K].
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2) Increasing further the temperature, the gas starts to dissociate and chemical reaction
occur. For air, oxygen molecules begin to dissociate when temperature is about 2500
[K] while nitrogen begins dissociate at about 4000 [K].

3) Finally, when temperature reaches the 9000 [K], ionization process begins and be-
comes more and more signi�cant as temperature increases further.

In the two last cases, the gas can be classi�ed in a third categories, namely the Chemically
Reacting Mixture of Perfect Gases (CRG). These phenomena are illustrated in Fig. 2.6,
reproduced from Anderson [2]. The simpli�ed model of air composed of 5 elements (O2,
N2, O, N, e−) is considered in this example.

No reactions

O2 begins to dissociate

N2 begins to dissociate

Ionization begins

N2 → 2N

9000 [K]

4000 [K]

2500 [K]

0 [K]

800 [K]

Vibrational
excitation

N→ N+ + e−

O→ O+ + e−

O2 → 2O

Figure 2.6: Ranges of vibrational excitation, dissociation and ionization for a 5-species air
mixture at 1 [atm].

This simple example for the Earth atmosphere composed of �ve elements illustrates
the di�erent phenomena that can happen when the temperature of a gas is increased. A
more elaborated model for air is used here as described below. On Earth, the sea-level
composition of (dry) air, that is, at a temperature of 288.15 [K] and 101325 [Pa], is taken
to be 78.08% N2, 20, 95% O2, 0.93% Ar, 0.03% CO2 and small amounts of other gases
[21]. In this work, we consider the simpli�ed model of an 11-species air mixture composed
of N2, NO, O2, N, O, N+

2 , NO+, N+, O+
2 , O+ and e−, with 79% of nitrogen and 21% of

oxygen.
In the LTE framework, given the elemental molar composition and for a thermodynamic

state of pressure p and temperature T , the mixture composition can be computed. The
thermal variation of the molar composition for the 11-species air mixture at a pressure of
17143 [Pa]4 is computed in the Mutation library and the result is presented in Fig. 2.7

At low temperature, the elemental composition is retrieved. When temperature in-
creases, O2 dissociate �rst and then N2. Note that there is a peak of NO near 2500 [K].
The ionization starts near 7500 [K] and becomes noticeable at 8000 [K].

2.3.2 Thermodynamic properties

In the preceding section 2.2 on kinetic theory, the particles were assumed to have only a
translational energy. This model corresponds in fact to a mixture of perfect gas where no
chemical reactions and no internal structure are taken into account. However, we have just
seen that molecules dissociate and react with each other and can even ionize.

4This value is typical of what is encountered in the Plasmatron. We chose to represent thermodynamic
and transport properties at this value as it will be used as the nominal pressure through this work.
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Figure 2.7: LTE composition of major components of air (Air11) at p = 17143 [Pa].

The following decoupling of the enthalpy5 modes is generally assumed

hi(T ) = hTi (T ) + hEi (T ) + hFi (T ), i ∈ Ha, (2.36)

hi(T ) = hTi (T ) + hEi (T ) + +hRi (T ) + hVi (T ) + hFi (T ), i ∈ Hp, (2.37)

he(T ) = hTe + hFe , (2.38)

where Ha is the symbol for the set of indices for atoms, Hp is the symbol for the set of
indices for molecules, e denotes electrons and i ∈ S. For molecules, all modes of energy are
possible, namely translational, electronic, rotational vibrational and formation. Formation
enthalpy account for the energy realised in the gas by chemical reactions between species.
Translational, rotational and vibrational account for the di�erent degree of freedoms in the
movement of molecules. For atoms, only translational, electronic and formation modes are
possible. For electrons, there are only translational and formation.

The expression of these di�erent energy modes can be obtained from quantum me-
chanics and statistical mechanics. Quantum mechanics is used for deriving the expressions
of fundamental energy states. For instance, translational energies can be obtained from
the solution of the Schrödinger equation for a particle con�ned in a box. Rotational and
vibrational energies can be obtained considering the solution for the rigid rotator and the
harmonic oscillator. Statistical mechanics is used to derive thermodynamics properties
from the fundamental energy equations enumerating the number of di�erent states and
their degeneracy. Expressions for the di�erent enthalpy (as well as energy and entropy)
modes are not recall here but can be found in standard textbooks [35]. Only physical
interpretation of the relations obtained is made here.

The mixture enthalpy is �nally obtained by weighting the species properties by the
mass densities. The mixture enthalpy reads as

h =
∑
j∈S

cjhj , (2.39)

where cj is the mass fraction ρj/ρ of the species j, which can also be expressed in terms
of molar fractions as cj = xjMj/M , where M is the mixture molar weight and Mj the
species mixture molar weight.

5The same can be made for energy and entropy modes. Only the relations for the enthalpy are presented
as the energy conservation in the Navier-Stokes equations will be expressed in its enthalpy form.

18



Chapter 2. Transport and Thermodynamic Properties of Plasma Flow

Enthalpy of air at p = 17143 [Pa] computed by means of the Mutation library is
represented in Fig. 2.8. As can be seen, the main contribution come from the total
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(b) Zoom on rotational and vibrational enthalpy

Figure 2.8: Contributions to enthalpy for air at p = 17143 [Pa].

formation enthalpy hF . Other contribution to the equilibrium enthalpy is the translational
enthalpy hT , which is mainly due to molecular agitation in the gas. A zoom on the range
of temperatures where vibrational and rotational enthalpies increase is shown in Fig. 2.8b.
Above 7000 [K], all the molecules are fully dissociated, and it is not possible anymore to
have rotational and vibrational modes of energy as only single particles are considered.

Other thermodynamics properties can be derived from the expression of the equilibrium
mixture enthalpy, as the equilibrium speci�c heat at constant pressure

cp =
∂h

∂T

∣∣∣∣
p

. (2.40)

2.3.3 Gas state equation

Under the LTE assumption, the gas state equation (2.33) is still of application locally. It
can be written in terms of the molar fractions as follows. From kB = R/NA, n = N/V
and mNA/N = M , we have

p = ρ
R
M

T. (2.41)

Using R0 = R/M0, where R0 and M0 are the speci�c gas constant and the mixture molar
weight of the air mixture at sea-level conditions (also referred as the undissociated values).
Mixture molar weight can be expressed from the composition of the gas using the molar
fractions xi as

M =
m

N
=

∑
mi

N
=

∑
NiMi

N
=
∑

xiMi (2.42)

Therefore the gas state law can be written, for a mixture of perfect gas in LTE as

p = ρR0Tζ, (2.43)

where we introduced the factor of compressibility ζ which expressed as

ζ =

∑
i∈S x0,iM0,i∑
i∈S xiMi

, (2.44)

=
Mundiss

Mdiss

. (2.45)
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Figure 2.9: Viscosity of air as a function of temperature and variation with pressure.

where M0,i corresponds to the molar weight of species i at sea-level (standard pressure and
temperature), x0,i the elemental fraction of element. The others quantities that appear in
Eq. 2.45 are de�ned at the local equilibrium temperature T . For the 79% of nitrogen and
21% of oxygen Earth atmosphere, Mundiss = 28.84 [g/mol].

If we were considering a 5-species air mixture (N2, NO, O2, N, O), we would have
ζ → 2 at su�ciently high temperature (T > 8000 [K]), when all N2 and O2 are dissociated
in N and O. However, for the 11-species air mixture, ionization is triggered near 7000 [K]
and ζ increases further. Of course, for the calorically perfect gas, there is no dissociation
(Mundiss = Mdiss) and ζ = 1.

2.3.4 Transport properties

The transport properties can be obtained from the rigorous theory of Chapman-Enskog
considering a chemically reacting mixture of perfect gas. A correction from the kinetic
theory shown in the previous section is needed in order to account for chemical reactions
and internal structures. Elaborated cross-section that consider accurate particle interac-
tions can also be derived. Their development requires a mathematical treatment that is
out of the scope of this work and it is not reviewed here. They are however implemented
in the Mutation library and the transport properties thus obtained are discussed from a
physical point of view.

Viscosity

The shear viscosity computed with the Mutation library is shown in Fig. 2.9. As pre-
dicted by the simple kinetic theory, the viscosity increases with temperature, except that
now some modulations can be observed. These ones can be linked to the change of the
composition of air due to molecular dissociation that could not be predicted from the sim-
ple model. For temperatures greater than 8000 [K], the viscosity starts decreasing. This
corresponds to the ionization process that is triggered in the gas. In fact, the growth in the
number of charged particles increases the number of collisions in the gas and the mean free
path is reduced. The overall viscosity is therefore reduced (consider Eq. 2.6). For higher
temperatures, the e�ect of ionization would be much more e�ective and the decrease more
signi�cant.

In Fig. 2.9, the in�uence of pressure is also considered. The range of pressure rep-
resented corresponds to conditions that can be met in the Plasmatron. Compare to the
thermal variation, the pressure has a little in�uence on the viscosity. The pressure modi�es
slightly the viscosity when ionization starts.
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Thermal conductivity

The mixture heat �ux is written here as

q = −k∂xT, (2.46)

where k is the equilibrium thermal conductivity of the gas mixture, is still applicable,
if heat transport due to chemical reactions and the contribution of internal energy are
considered. The thermal conductivity comes from several physical phenomena and the
following decomposition in its di�erent contributions is assumed:

k = kreact + ksoret + kint + kh + ke, (2.47)

where kreact is the thermal reactive conductivity due to di�usion of mass species (Fick's
law), ksoret is the Soret thermal conducitivity (also linked to di�usion heat �ux), kint is the
contribution of internal energy modes, gathering the roational, vibrational and electronic
thermal conductivity, kh the translational thermal conductivity of heavy particles and ke
the translational thermal conductivity of electrons. The result obtained from Mutation

is shown in Fig. 2.10. The di�erent contributions are shown in Fig. 2.10a and variation
with pressure in Fig. 2.10b.
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Figure 2.10: (a) Contribution to thermal conductivity for air at ptc = 17143 [Pa] and (b)
variation of thermal conductivity with pressure.

The term kreact is responsible of the major contribution to the thermal conductivity. It
is associated to the transport of enthalpy due to di�usion mass species and a large amount
of energy is released when molecules dissociate. The peaks in the thermal conductivity are
therefore linked to the dissociation and the maximum occur where strong variations in the
molar fractions xi are observed, or equivalently, when the enthalpy increases (Figs. 2.7
and Fig. 2.8a). The translational thermal conductivity of heavy particles kh presents the
same behaviour as the viscosity. kh and kint are the major component below 2000 [K] and
between the peaks. Translational thermal conductivity of electrons appear when ionization
starts, i.e. above 7500 [K].

Considering the variation of the thermal conductivity with pressure presented in Fig.
2.10b, it can be seen once again that this e�ect is very negligible compared to the thermal
variation.

2.3.5 Comparison of the properties of a calorically perfect gas with the

properties of a mixture of perfect gases in LTE

The properties obtained from the Mutation library are compared with the classical law
of a calorically perfect gas in Fig. 2.11. It can be noted that the two theories are in good
agreement at low temperature gas.
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The viscosity (Fig. 2.11a) computed from Sutherland's law predicts a lower increase
with temperature than the accurate relation obtained from Mutation. The two results
are not so di�erent and moreover the coe�cients in the Sutherland's law could be �tted
in order to correspond better to the accurate curve. Of course, at high temperatures,
Sutherland's law can not predict the decrease in the viscosity due to ionization, as the gas
is considered to be perfect.

The comparison of the Sutherland's law for the thermal conductivity with its accurate
expression shows that these two results are quite di�erent. The Sutherland's law was only
an expression of the thermal conductivity due to the transport of energy of heavy particles
(kh) and predicted a

√
T growth (compare with kh in Fig. 2.10a, they look quite similar).

The di�erent peaks due to reactive thermal conductivity could not be predicted by the
simple kinetic model.

The second viscosity coe�cient λ (Fig. 2.11c) is equal to −2/3µ (Stoke's hypothesis)
and has therefore exactly the same shape as µ.

By de�nittion, a calorically perfect gas is one with constant speci�c heats cp and cv.
In turns, the ratio of speci�c heats γ = cp/cv is constant. For this gas, the enthalpy and
internal energy are functions of temperature only, given explicitly by

h = cpT, (2.48)

e = cvT, (2.49)

where cp = 7/2R0 and cv = 5/2R0 for the air considered as a calorically perfect gas.
Comparison between the CPG and the CRG gases is made in Fig. 2.11d. It can be noticed
once again that the Sutherland's law is well representing the translational enthalpy (refer
to Fig. 2.8a). On the other hand, discrepancies between the two laws can become very
high at high temperature as the enthalpy of the CPG gas does not account the chemical
reactions, which are the most in�uencing the total mixture enthalpy.

Density ρ in Fig. 2.11e is given by the classical gas state equation ρ = p/(R0T ) for a
calorically perfect gas. The two models give almost the same result. At high temperature,
the gas has a very low density and the role played by the factor of compressibility ζ in the
expression for the density is negligible.

Finally, ζ is shown in Fig. 2.11. For the CPG gas, it is trivially equal to one. For
the CRG gas, ζ is an increasing function of temperature. The increase in ζ can again be
related to the di�erent molecular dissociations and ionization: the �rst increases in the
range T ∈ [3000, 4000] K, is due to the dissociation of O2 in O and the second increase in
the range T ∈ [5000, 8000] is due to the dissociation of N2 in N. Finally above 8000 [K],
ionization starts slowly an ζ increases further. Thus, the changes in ζ are only due to the
molar fraction xi.
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Figure 2.11: Comparison of the properties of a calorically perfect gas with the properties
of a chemically reacting mixture of perfect gases in LTE as a function of temperature.
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2.4 Properties of the Plasma Jet in Local Thermodynamic

Equilibrium

2.4.1 General description of free jet �ows

A jet is an e�ux of �uid originated from a long and narrow ori�ce. Jets are also called
free jet �ows as they are not con�ned by solid walls. The ori�ce can be planar or circular
and in the latter case the jet �ow is naturally called a circular jet. The surrounding is
assumed to be made up of the same �uid as the jet itself, and some of this ambient �uid
is carried along with the jet by the viscous drag at the outer edge of the jet, as sketched
on Fig. 2.12. The process of drawing in the surrounding �uid from the sides of the jet by
frictional forces is called entrainment. The ambient �uid can be at rest or moving at very
low velocities.

Potential core region

r

z

TransitionalPotential core
w̄ = w̄cl

Axisymmetric
shear layer zone

Fully

region
developed

v̄

ū

w̄

Figure 2.12: Sketch of a free jet �ow.

The �ow �eld of a jet can be roughly divided into three distinct regions:

• The potential core region: in this �rst section, there is a core of �ow with undi-
minished velocity equal to the exit velocity and the centerline velocityWcl. This core
is surrounded by two convergent annular shear layers where turbulence occurs. At
the beginning of the core region, the shear layer is very thin and often modeled by
a vortex sheet, as in the theoretical studies of Gill and Tam and Hu. The �tophat�
pro�le also belongs to the potential core region with a thin but �nite shear layer.
This region can be represented by hyperbolic-tangent functions.

• The transitional zone:

• The fully developed region: this region can be represented by a Gaussian or a
parabolic pro�le and this pro�le is self-similar. The studies of Batchelor and Gill,
Lessen and Singh and Morris all chose the same parabolic pro�le. The pro�le is
characterized by a thick shear layer with slowly varying velocity

A comprehensive account of the theory of free turbulent jets was given by Abramovich
[1] and Rajaratnam [30]. In most practical cases the circular jet is turbulent and has been
widely studied in literature. However the case of laminar jet leads to similar behaviour as
for the turbulent jet [31]. Jet �ows are parts of free shear �ows that can all be related to
the boundary layer theory. Indeed, boundary layers exist not only next solid walls but also
in jets and wakes which are all characterized by a �nite viscous layers. The transition from
the centerline velocity in the potential core to the zero free stream velocity at some distance
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of the jet takes place in a very thin layer, the so-called boundary layer. The boundary
layer theory has been widely studied by H. Schlichting [31] and he devoted major e�ort
to the problem of the stability of laminar boundary-layer �ows. More recent study on
boundary-layer theory and stability are found in the work of Kundu and Cohen [19].

Jet governing equations

As circular free jets are investigated in this work, a cylindrical coordinate framework is
used for the description of the jet. In this framework, r stands for the radial direction,
θ for the azimuthal angle and z to the streamwise (or axial) direction. We shall adopt a
system of coordinates with its origin in the slit and with its longitudinal axis coinciding
with the jet axis. The velocity vector is again denotes by u with velocity components u,
v and w respectively the radial, azimuthal and axial velocity. The velocity vector can be
written as u = (u, v, w). An axisymetric con�guration is retained to model the jet, that
implies that derivatives in the azimuthal direction θ cancel, ∂

∂θ = 0.
The strong coupling between the Maxwell's and the Navier-Stokes equations mainly

takes place inside the torch, where the plasma is heated.
The plasma jet is described by the full set of Navier-Stokes equations for which the elec-

tromagnetic �eld is obtained from Maxwell's equations. This must be rigorously resolved
in order to obtain the correct �ow �eld.

In the case of the linear stability theory, some simpli�cations are made. The strong
coupling between Maxwell and Navier-Stokes equations mainly takes place inside the torch,
where the plasma is heated. Outside the jet, the mass forces due to the electromagnetic
�eld are assumed to be negligible and the terms in the right-hand side vanished. The
Plasma jet considered will be considered decoupled from Maxwell's equations, which is
quite correct when a solution su�ciently far from the nozzle is sought.

The following hypothesis are assumed for the jet �ow.

• Stationary �ow ( ∂∂t = 0).

• Axisymmetric con�guration ( ∂∂θ = 0).

• The mass forces are negligible (Fr >> 1). This approximation does not hold inside
the torch as strong electromagnetic �eld is produced for the heating of the plasma.
However, only the �ow outside the torch is investigated in this work and Lorentz
forces can be neglected.

• Jet is a slender structure (lz >> lr).

• Boundary layer approximation (p = p(z)).

• No swirl (v = 0).

The dimensionless equations that describes a hot jet in cylindrical coordinates are

∂(ρw)

∂z
+

1

r

∂(ρru)

∂r
= 0, (2.50a)

ρw
∂w

∂z
+ ρu

∂w

∂r
=

1

Re

1

r

∂

∂r

(
rµ
∂w

∂r

)
, (2.50b)

ρw
∂T

∂z
+ ρu

∂T

∂r
=

1

PrRe

1

r

∂

∂r

(
rk
∂T

∂r

)
+

(γ − 1)M2

Re

(
∂w

∂r

)2

. (2.50c)

µ and k are the dimensionless dynamic viscosity and thermal conductivity respectively.
All these variables are made dimensionless with their centerline value at the aperture
and with the nozzle radius for length variables. The adimensional numbers are therefore:
Re = ρcWcR/µc for the Reynolds number, Pr = µc, cp/kc for the Prandtl number, M =
Wc/
√
γRTc for the Mach number. γ is the ratio of speci�c heats cp/cv and R is the
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universal gas constant with R = 8314 [J/(Kmol K)]. Eq. 2.50a is the mass conservation, or
continuity equation for stationary compressible �ow. Eq. 2.50b is the momentum equation
in the streamwise direction. Momentum equation in radial direction can be substituted
equivalently by the boundary layer assumption while the azimuthal momentum equation
is automatically satis�ed for axisymmetric problems. Eq. 2.50c is the energy equation.
Streamwise momentum (2.50b) is obtained assuming a newtonian �uid and using Stokes'
hypothesis. Stokes' hypothesis has no impact when �uid is considered as incompressible,
as the second viscosity coe�cient λ multiplies as divergence term in momentum and energy
equations. For most compressible �ow, this hypothesis works but is unproven. However,
for hypersonic �ow and inductive plasma (thermal expansion), these terms could not be
negligible [10].

These equations must be completed with adequate boundary conditions

r = 0 :
∂W

∂r
= U =

∂T

∂r
= 0, (2.51a)

r →∞ : W = T − Tamb

T0
= 0 (2.51b)

and initial conditions at z = 0

0 ≤ r ≤ 1 : W (r)− Wj(r)

W0
= T − Tj(r)

T0
= 0, (2.51c)

r > 1 : W = T − Tamb

T0
= 0. (2.51d)

2.4.2 Numerical model for the plasma jet

The numerical solution of the Navier-Stokes equations, coupled with Maxwell's equations,
are solved numerically by the solver CooLFluiD developed at the VKI. An implicit time
marching method is used to reach a steady state solution. At each time step, two linear
system are solved using iterative methods. The equations for the electromagnetic �eld are
�rst solved independently of the hydrodynamic �eld and then Navier-Stokes equations are
solved. At each iteration step, thermodynamic and transports properties are evaluated,
increasing signi�cantly the computational cost.

Practically, a mean solution for the plasma �ow can be obtained providing the mass
�ow rate ṁ, the pressure in the test chamber ptc and the power injected to the plasma �ow
Pfl. In Fig. 2.13, the numerical simulation for the plasma jet at ptc = 17143 [Pa], ṁ = 16
[g/s], Pfl = 85 [kW] is presented. The �ow �eld is computed assuming the 11-species air
mixture model. The parameters are summarized in Tab. 2.1 and this case will be called
the nominal case (the meaning of zjet will be explained in a few lines). Sensitivity analysis

ptc [Pa] ṁ [g/s] Pfl [kW] zjet [m] Fluid mixture

17143 16 85 0.6 Air11

Table 2.1: Parameters of the nominal case.

and uncertainty quanti�cation will be based on this reference case. It seems therefore
important to present the solution obtained for this set of parameters and its main features.
In this work, the case of the jet with no probe (no TPM) in the Plasmatron is considered,
so that no ablation species can be found inside the jet.

Figs. 2.13a and 2.13b are the mean streamwise velocity and temperature �elds. Rel-
atively low values for the streamwise velocity and high temperature values near the cen-
terline can be observed. Fig. 2.13c con�rms the boundary layer approximation (outside
the nozzle) as the relative pressure ∆p = |p − ptc| is almost zero everywhere inside the
chamber.
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Figure 2.13: Numerical simulation of mean streamwise velocity, temperature and pressure
of the plasma jet from the ICP CooLFluiD solver.

The linear stability analysis of the plasma jet will be performed only at a given location
inside the chamber. We will limit ourselves to the case zjet = 0.6 [m]. Referring to Fig.
2.13 this is the solution extracted at z = 0.6 [m] inside the chamber. The one dimensional
pro�les obtained are given in Fig. 2.14. Values for the centerline velocity and the centerline
temperature are respectively Wcl = 79.14 [m/s] and Tcl = 7537.5 [K]. The extraction is
necessary for the stability analysis (presented in the next chapter) for which local parallel
�ow hypothesis is made.

Note

In the sensitivity analysis performs in chapter 4, the stability of the jet when thermody-
namic and transport properties are modi�ed is investigated. It is important to mention
at this point that the in�uence of the �ow properties on the �ow �eld obtained from
CooLFluiD is of course not investigated. Using non accurate laws for the properties
could lead to non plausible results and a stability analysis would be hopeless. The pro�les
obtained from these numerical simulations are thus considered to be the raw data on which
stability analysis is directly performed.
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Figure 2.14: Mean streamwise velocity and mean temperature pro�les for the nominal case
at zjet = 0.6 [m].

2.4.3 Thermodynamic and transport properties of the jet in local ther-

modynamic equilibrium

The properties of the chemically reacting mixture of perfect gases in LTE are applied to
the temperature pro�le of the jet obtained from the CooLFluiD numerical simulation with
the parameter of the nominal case. Results are show on Fig. 2.15 and are represented by
the continuous lines. This representation was made possible thanks to the LTE hypoth-
esis. Assuming this, the properties of the jet can be determined by local inspection. In
fact, the corresponding property at a particular location in the radial coordinate can be
assigned locally a temperature and an equilibrium state and the MUTATION properties
at equilibrium, presented in the previous section, can be used as a look-up table.

Properties for a calorically perfect gas are also used for the high temperature jet and
are represented in dotted in Fig. 2.15. For each �ow properties, its value is underestimated
near the centerline, as the temperature is high. On the contrary, outside the jet the two
theory predict quite well the properties of the �ow. As expected, the two theory converge
at low temperature. Note that ρ is not very di�erent considering either the CRG or the
CPG properties. Near the centerline, density is very low and the parameter ζ, i.e., the
mixture composition, has only a small in�uence on the density.

Once all pro�les are knwon, adimensional number can be obtained. Considering either
the CRG or the CPG properties, they will be slightly di�erent. From the values of Mach
and Reynolds, the �ow is subsonic and laminar, as already stated.

Re M Pr Ec H

CRG 127.38 0.035 0.847 0.00013 0.00289

CPG 423.102 0.0455 0.626 0.00082 0.00289

Table 2.2: Adimensional numbers for the nominal case of the plasma jet.

The properties of the jet obtained in this section are directly used, after adimensional-
ization, for the study of the stability. It is worth to mention that these pro�les are actually
mean pro�les, as they were computed using the mean temperature. Velocity, tempera-
ture, thermodynamic and transport properties altogether determine the stability of the
jet. Their derivatives can also play a signi�cant role in the stability. The linear stability
presented in the next chapter will be used to investigate the evolution of these pro�les
when they are subjected to small perturbations.
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Figure 2.15: Comparison of the properties of a calorically perfect gas with the ones of a
chemically reacting mixture of perfect gases in LTE applied to the nominal case of the high
temperature plasma jet as a function of the adimensional radial coordinate.

2.5 Summary of the Chapter

Two models for high temperature gas were investigated. On the one hand, a simple model
based on the kinetic theory and neglecting internal energy as well as chemical reactions.
This model was referred to as the calorically perfect gas model and showed to be accurate
for low or moderate temperature �ow. On the other hand, a more sophisticated model
based on a kinetic theory and the statistical mechanic of the Boltzmann equation and
accounting for internal energy as well as the chemistry of high temperature �ow in local
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2.5. Summary of the Chapter

thermodynamic equilibrium. The calorically perfect gas model was shown to underestimate
all the properties predicted by the more accurate model. These accurate and non accurate
thermodynamic and transport properties were then applied to a new reference case for the
high temperature plasma jet in LTE.

30



Chapter 3

Hydrodynamic Instabilities and

Linear Stability Theory

The �rst interest in the study of stability was in the prediction of the transition from
laminar to turbulent regimes. In aeronautics, the prediction and control of the transition
is of great interest for limiting drag due to turbulence and thus reducing fuel consumption.
In aerospace design, it is desirable to predict accurately the transition during reentry phase
for a better sizing of the TPS and thus enhancing the overall e�ciency of the spacecraft.
In the present case of the plasma jet, the stability analysis is not used to de�ne the
parameters at which transition occurs. It is rather used to determine the intrinsic behaviour
of the unstable plasma jet and try to identify the mechanisms that are responsible for the
instabilities observed during experimental tests. By combining both numerical simulations
of the mean �ow and stability analysis, it would be possible to reproduce numerically the
experimental behaviour.

The restricted number of existing codes devoted to the study of the linear stability of
high-temperature and hypersonic �ows, and the growing interest in the aerospace �eld for
such transitions led to the development of a consistent toolkit in the VKI. Vesta (VKI
Extensible Stability and Transition Analysis), developed �rst by Pinna, is aimed to study
the stability of �ow at di�erent regimes, from low to high Mach numbers [29].

The toolkit gathers a number of codes used for the resolution of di�erent �ow regimes.
They are all based on the same Chebyshev pseudo-spectral collocation method for the
resolution of the di�erential stability equations of �uid mechanics. The code was developed
in a very modular way in order to allow further developments to be added to the existing
core. Historically speaking, the code was �rst developed by Pinna (2012) for the linear
stability analysis for �ow from low to high Mach numbers in a Cartesian coordinates system.
The validation of the code was made on blasius boundary layer test cases. A branch
taking into account the stability of �ow mixture in LTE was also developed. Shortly after,
Parabolized Stability Equations (PSE) have been developed by Groot and incorporated
to the compressible solver of Vesta [16]. Although PSE can take into account a slow
streamwise evolution of the �ow, which would be more suited to the case of the plasma
jet, these ones are not considered in this work (and PSE has not been yet extended to
the LTE solver). The code of Pinna was then extended to cylindrical problems by Garcìa
Rubio (2013) and veri�cation test cases were made from simple poiseuille �ow to the
axisymmetric hot jet, considered at that time as a calorically perfect gas [12]. He performed
a study on the length of the domain for unbounded �ow (jet) for the determination of the
computational domain that is required for the discretisation in order to remove the in�uence
of the boundary conditions. It appears that the jet domain must be of the order of 10 to
15 times the jet radius. The range of valid Mach numbers also appeared to be lower than
3. The linear stability equations in a cylindrical reference frame were �nally extended to
�ow under the LTE hypothesis by Chiatto (2014) and veri�cation test cases were made on
axisymmetric jets and for the plasma jet in the VKI Plasmatron. Nevertheless, a strong



3.1. Hydrodynamic Instabilities

link between the results coming from Vesta with the experiments for the plasma jet still
need to be done for the validation.

In this chapter, we discuss �rst some few aspects about the interest of studying stability
and why it is important in the case of the plasma jet. A short introduction to the linear
stability theory is presented as it is the tool that will be used is this work. Then, a short
review of the state-of-the-art on jet instabilities is presented. This review is necessary in
order to interpret correctly the results that are obtained from the numerical linear stability
analysis. A practical application of Vesta is then presented for the nominal case, that was
de�ned in Sec. 2.4.2 (see Tab. 2.1). This analysis will be used to illustrate the di�erent
features introduced in the review on instability and it will serve to pose the limit of the
sensitivity analysis and uncertainty quanti�cation that will be made in the next chapter.

3.1 Hydrodynamic Instabilities

Hydrodynamic stability theory is concerned with the response of a laminar �ow to a dis-
turbance of small or moderate amplitude. If the �ow returns to its original laminar state
(the disturbance is damped) then the �ow is de�ned as stable, whereas if the disturbance
grows and causes the laminar �ow to change into a di�erent state (that can be a more
complex laminar state or a turbulent state), then the �ow is said to be unstable. Stability
theory deals with the mathematical analysis of the superposition of many disturbances on
the laminar base �ow.

3.1.1 Interest of stability analysis

The solution obtained from CooLFluiD for particular operating conditions in the VKI
plasmatron gives us a steady state solution of the plasma jet. We saw that in the VKI
Plasmatron the �ow �eld had some oscillations in space which could not be predicted by
the steady numerical simulation. The exact results of the Navier-Stokes equations coule
be obtained, for example by Direct-Numerical-Simulation. However, this would be very
painful and computationally expensive.

It is therefore useful to investigate the unsteady features of the �ow by means of stability
analysis. It is natural to investigate the solution of the dynamic equations of the laminar
�ow of the real �uid motion to small disturbances. Small disturbances of the motion,
that are always present, must be damped in time or space so as to not change the general
nature of the �ow. In the other case, when small disturbances increase in time or space, the
motion deviates considerably from its original solution. It is therefore desirable to derive
conditions for instability of a �uid. Methods for �nding such conditions are the objectives
of the hydrodynamic stability theory.

The study of stability carried in this work does not aim in determining a critical pa-
rameters that described a transition from one laminar state to an other, but rather in
determining the unstable modes (i.e. the particular disturbances) that are inherent parts
of the mean �ow that is investigated. The modes thus obtained can show us if the �ow
�eld is stable on unstable, and in the latter case it will show us the di�erent modes that
are actually ampli�ed in the plasma jet �ow. We would like therefore to know to which
disturbance this behaviour can be related to.

One of the objective of the stability analysis of the plasma jet was �rst to confront the
experimental observations with the numerical ones. Thus, numerical simulations of the
mean �ow plus the linear stability analysis could be used to predict the overall behaviour of
the jet generated inside the Plasmatron. Going further, by understanding the mechanisms
of formation of the di�erent modes of instability, we would be able to control them and
even remove them.
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3.2 Linear stability theory

The simplest means of investigating hydrodynamic stability is the general method of small
disturbances. In this case we assume the disturbances to have small amplitudes so that
many simpli�cations on the basic equations can be made. As the general Navier-Stokes
equations are non-linear, the linear equations can fail to predict accurately the evolution of
the disturbance after the amplitude reached a certain value above the basic �ow. However,
the linear stability theory is very useful for detecting physical growth mechanism and
identifying dominant disturbance type.

The basic idea of the method is to write the �ow �eld as the sum of a mean part and
a perturbed part, the latter being small compared to the mean �ow. Considering a generic
�ow variables Φ, like the velocity or the pressure, the instantaneous variable can be written
as

Φ = Φ + φ′. (3.1)

Inserting this decomposition in the Navier-Stokes equations and developing all the
products, a set of second order equations in the disturbances is obtained. Then, the Linear
Stability Theory (LST) consists of linearising these equations by neglecting the second
order terms as the �uctuating quantities are assumed to be very small. The mean �ow is
also supposed to satisfy Navier-Stokes equations and these terms therefore cancelled out.
The only remaining terms are the perturbation ones and the problem can be stated as an
homogeneous eigenvalue problem

Lφ′ = 0, (3.2)

where L is a linear operator including both the linearized Navier-Stokes equations and
the boundary conditions. Eq. 3.2 admits the trivial solution φ′ = 0 for which the mean
�ow is retrieved. Other non-trivial solutions of Eq. 3.2 will give the expression for the
perturbations. Either the perturbation will grow in space or time and therefore is said to
be unstable either it will be damped and the perturbation is said to be stable. However this
equation seems to encounter mathematical di�culties for �ow in tubes, boundary layers
on solid bodies or jets [37]. Two more assumptions can therefore be introduced in the LST,
namely the Parallel Flow Hypothesis, which is related to the mean �ow, and the Modal

Decomposition, which is related to the perturbations. The decomposition of the solution
in di�erent modes is also called the Method of Normal Modes.

3.2.1 Parallel �ow hypothesis

LST considers the �ow to be particularly simple, namely not depending on the streamwise
component z but only on the radial component r. While channel or pipe �ow correspond
exactly to this representation (in established �ow), it is only approximated for boundary
layer and for jet �ows. The collapse of the potential core in the case of free jets is the prove
that these �ows are only approximative parallel �ows. However, as Michalke proposes, in
order to investigate round jet instabilities, it is acceptable to assume that the basic jet
�ow is parallel, meaning that the jet velocity vector u has only as non zero component the
streamwise velocity w and that the mean variables depend only on the radial direction r,
i.e. w̄ = w̄(r) [27]. Indeed, as already said, jets are slender structures where characteristic
lengths are greater in the streamwise direction than in the radial direction (lz >> lr)
resulting in much stronger gradients in the radial direction. Therefore, the parallel �ow
hypothesis will be assumed to be valid locally. In means that the analysis at a particular
section in the jet will not be representative of the whole jet. It is also worth to note that
jet instability with swirling velocity V (r) 6= 0 could be investigated but it is not the aim
of this project. Therefore, in the case of boundary layer of free jet study, the parallel �ow
assumption where the jet is treated as locally parallel is introduced.
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3.2.2 Modal decomposition

So far nothing has been said about the nature of the disturbances that are investigated.
The modal decomposition consists of assuming that each �uctuating quantity φ′ propagates
independently from each other and has the following general form:

φ′ = φ̃(r) exp (i(αz + qθ − ωt)) + c.c. (3.3)

where �c.c� stands for complex conjugate. This expression is equivalent to say that we are
interesting in wave-like solution of disturbances. There exists a lot of di�erent shape for
the �uctuating quantity (dirac, rectangle, ...) but the expression in Eq. 3.3 is the most
used as many simpli�cations can be made further with little loss of generality.

3.2.3 Temporal and spatial analysis

The wavenumber α and the angular frequency ω are generally belonging to C. Azimuthal
wave number can only be real number, as an azimuthal growth rate is not possible. More-
over, it will take only integer values as θ ∈ [0, 2π].

Depending on the complex nature of either α or ω, two cases are considered.

Temporal ampli�cation theory

In this case, angular frequency ω is complex and α is real. Decomposing ω in its real and
imaginary part, i.e ω = ωR + iωI , Eq. 3.3 can be rewritten as

φ′ = φ̃(r) exp(ωRt) exp(i(αz + qθ − ωIt) (3.4)

One see that the real part of omega is related to the temporal ampli�cation of the distur-
bance. When ωR is positive, the mode is stable. On the contrary, when ωR is negative,
the mode is unstable. The imaginary part is linked to the temporal frequency of the mode
(its oscillating behaviour). The case of a temporally growing disturbance is represented in
Fig. 3.1a

Spatial ampli�cation theory

In this case, the streamwise wavenumber α is complex and the angular frequency ω is real.
Once again, we consider the decomposition α = αR + iαI and the modal decomposition
reads as

φ′ = φ̃(r) exp(−αIz) exp(i(αRz + qθ − ωt)) (3.5)

Here, αI is the spatial growth rate. The mode will be ampli�ed if αI is negative and it will
be stable if αI is positive (it was the opposite for ω). Later in the document, the quantity
−αI will be often used. The real part of α is linked to the phase speed of the mode, as
cph = ω/αR. The case of a spatially growing disturbance is represented in Fig. 3.1b.

From the previous discussion, we see that the spatial theory will correspond more
to the physics of the plasma jet inside the VKI plasmatron. Indeed, we are looking at
disturbances that are triggered inside the ICP torch (or somewhere inside the jet) and
its behaviour (stable or unstable) when they are convected downstream is tracked. It
corresponds therefore to the case represented in Fig. 3.1b and thus to the spatial theory.
The case of temporal theory would be seek if the initial disturbance were present in the
whole jet initially.
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Figure 3.1: Comparison of the evolution of a disturbance using (a) temporal analysis and
(b) spatial analysis. In the spatial theory, initial disturbance at t > t0 is represented in
dotted line (� �).

3.3 Jet instabilities

Instabilities in jet �ows have been widely investigated in the past for their great interest
in noise generation in supersonic jets [33][34] and in more recent applications as jet-like
galactic structures [11]. It is still of great interest in many domains and a state-of-the-art
on �ndings on jet instabilities needs to be �rst done before the application to the VKI
Plasmatron jet plasma.

In previous studies, two types of instability modes have been found: vortical and
acoustic modes. The vortical mode is the generalisation of the Kelvin-Helmholtz instability
for compressible �ow. The term �vortical� refers to the origin of the instability that is
generated when there is strong vorticity in the �ow �eld, i.e. inside the shear layer. A
large review of �ndings on vortical mode instability for di�erent �ow con�guration has
been given by Michalke [27]. The acoustic mode instability was �rst discovered by Mack
in compressible boundary layers and by Gill in jets and wakes [23][13].

Vortical mode

Vortical mode is the extension to the compressible regime of the Kelvin-Helmholtz in-
stability. Therefore, the mechanism that generates this type of mode is the same. Fig.
3.2 represents the formation of a one dimensional instability wave based on the Ackeret's
explanation [34].

First a vortex sheet is deformed by a small perturbation in a sinusoidal wave with phase
speed cph, as shown in Fig. 3.2a. Ackeret suggested that one should view the �ow not in
the stationary frame of reference but with a frame of reference moving with the travelling
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3.3. Jet instabilities

wave with phase velocity cph. In this new frame of reference, the �ow is as shown in Fig.
3.2b. Now assuming the �ow is in a quasi-steady approximation, one should view it as a
�ow past a wavy-wall. At subsonic jet Mach number for the jet and the phase speed in
the moving frame of reference, pressure is lowest at crests of the wavy-wall and highest at
the troughs. Since the crests and the troughs interchange on the two sides of the vortex
sheet the result is that a net pressure imbalance would exist across the thin mixing layer in
the quasi-steady approximation. The pressure imbalance is in phase with the vortex sheet
displacement and hence would tend to increase its amplitude leading to the well known
Kelvin-Helmholtz instability.

w̄

cph

(a) Stationnary frame of reference.

w̄ − cph

cph

(b) Wave frame of reference.

Figure 3.2: Kelvin-Helmholtz instability mechanism at subsonic Mach number. The plus
and minus signs denote high and low pressure regions respectively.

For supersonic velocities on the two sides of the wavy-wall, the phenomenon is slightly
di�erent. In this case, the pressure distribution along the wall is no longer in phase but
rather 90 degrees out of phase. This results in identical pressure in both side of the vortex
sheet and gives rise to neutral waves (or neutrally stable waves) that are neither ampli�ed
nor damped.

Considering the case of the jet, the existence of this kind of mode can be easily con-
sidered. Jet �ows are characterized by strong gradient in the velocity �eld in the shear
layer.

Acoustic mode

The acoustic mode refers to the sound wave than can be re�ected back and forth between
the wall and the sonic line, for boundary layer, and between the boundaries of the cylin-
drical vortex sheet for the jet, as represented in Fig. 3.3. As sound wave are convected
with the �ow, it is necessary to introduce the notion of relative Mach number, for both

36



Chapter 3. Hydrodynamic Instabilities and Linear Stability Theory

the jet and the ambient �uid. They are de�ned in cylindrical coordinates as follows [34]:

M r
cl = Mcl cosφ

(
w̄cl −

cph
cosφ

)
, (3.6)

M r
∞ =

Mcl√
T̄∞

cosφ

(
cph

cosφ
− w̄∞

)
(3.7)

where φ = α/(α2+q2/r2)1/2. The superscript r stands for relative, and subscripts cl and∞
stand for centerline and ambient value respectively. By de�nition, a relative Mach number
is a wave Mach number in the direction of the wave travelling at an angle φ relative to the
z-axis with phase speed

cph =
ω

α
. (3.8)

w̄ − cph

cph

Figure 3.3: Pictorial representation of an acoustic mode inside a round jet with re�ecting
acoustic disturbances.

From this pictorial representation of acoustic modes, it seems obvious that the pressure
disturbance of an acoustic wave is basically con�ned within the jet. The condition under
which such a Mach wave system can exist is that in the wave frame of reference, the �ow
inside the jet is supersonic [34]. This condition is often referred as to the Mack's criterion,
which can be stated as follows: �acoustic modes exist whenever there is an embedded region

of locally supersonic �ow relative to the phase speed of the instability wave�. Therefore,
an acoustic mode will correspond to Mr1 > 1. Relative Mach number is therefore a very
practical tool for identifying the nature of the mode.

It is also useful to distinguish modes that have subsonic and supersonic relative Mach
numbers to the ambient (Eq. 3.7). A mode for which M r

∞ < 1, i.e. it is subsonic to the
ambient �uid, is said to be non-radiating. The pressure disturbance of these modes are
con�ned strictly inside de jet. On the contrary, modes with M r

∞ > 1 are called radiating
modes as their pressure disturbance dynamic can be showed to extend far away from the
jet.
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3.4 Vesta Toolkit

A brief description of the Vesta toolkit is given in this section. The di�erential linear
stability equations for the Navier-Stokes systems are solved by means of a pseudo-spectral
Chebyshev collocation methods. The development of the methodology implemented in
Vesta can be found in [29]. The inputs parameters required for a single computation a
presented and the di�erent steps for the calculation of the linear stability analysis of the
plasma jet are described.

3.4.1 Input parameters

When creating a test case, several inputs need to be provided to Vesta. These inputs
concern:

• the mean �ow variables,

• transport and thermodynamic properties,

• adimensional numbers,

• modal and discretization parameters.

The �rst two set of inputs can be obtained from numerical simulations or they can be
provided from direct experimental measurements. The CooLFluiD solver and the Mu-

tation library are used to compute mean �ow �elds and �ow properties respectively.
Characteristic scales for the adimensional number are all considered at the centerline of
the jet. For the length scale, the choice of the nozzle radius is adopted. Finally, a set of
modal inputs, coming from the modal decomposition Eq. 3.3, and numerical parameters
used by Vesta for the discretization of the physical domain, must be provided. Tab. 3.1
summarizes all the parameters that the user must provide to Vesta for a single test case.
Note that all the �ow variables and properties are mean values and are must provided in
dimensionless form. All the test cases will be solved using discretization parameters as well

Vesta input parameters Notation

Streamwise velocity pro�le and its derivatives w, wr, wrr
Azimuthal velocity pro�le and its �rst derivative v, vr

Temperature pro�le and its �rst derivative T , Tr
Pressure pro�le and its �rst derivative p, pT

Computational domain (radial coordinate) r
Dynamic viscosity pro�le, its �rst and second derivatives µ, µT , µTT , µP , µPP , µPT
Second viscosity coe�cient pro�le and its derivatives λ, λT , λTT , λP , λPP , λPT

Thermal conductivity pro�le and its derivatives k, kt, kTT , kP , kPP , kPT
Enthalpy pro�le h, hT , hTT , hP , hPP , hPT

Compressibility factor pro�le and its derivatives ζ, ζT , ζTT , ζP , ζPP , ζPT
F and G parameters F , G
Reynolds number Re
Mach number M
Prandtl number Pr
Eckert number Ec
H number H

Azimuhtal wavenumber q
Frequency or streamwise wave number ω or α

Number of collocation points N
Mapping parameter ri

Table 3.1: Input parameters for the LTE solver of Vesta in cylindrical coordinates.
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N ri q

Value 220 1.5 0

Table 3.2: Values of the discretization parameters of Vesta and azimuthal wavenumber.

as azimuthal wave number �xed. Their value are given in Tab. 3.2. Parameters N and ri
were discussed in the work of Garcìa Rubio and their value are such that the stability of
the jet is independent of the boundary conditions used. The choice of a �xed value of q is
for simplicity reasons. It means that only axisymmetric perturbation waves will be sought.
Note that stability of the jet for di�erent values of q could also be investigated.

3.4.2 Generation of analytic pro�les

Mean streamwise velocity and temperature pro�les are obtained from numerical simula-
tions coming from CooLFluiD for which we extracted data at a particular position inside
the jet (Sec. 2.4.2). However, convergence rate of spectral methods depends strongly
on the regularity of the functions that have to be di�erentiated. Therefore, both mean
streamwise velocity and temperature pro�les, after being extracted, will be �tted to ana-
lytical functions in order to ensure su�ciently high regularity in the functions and their
derivatives.

Following the methodology applied in previous studies on the stability of the plasma
jet, we will assume that w̄ and T̄ can be expressed as the sum of some base functions. We
consider the following Gaussian and hyperbolic tri-parametrized functions

fGauss(r; a, µ, σ) =
a

σ
√

2π
exp

(
−(r − µ)2

σ2

)
, (3.9)

ftanh(r; b, c, d) = b (1− tanh (c(r − d))) , (3.10)

as base functions, where a, µ, and σ are the parameters of the Gaussian curve (µ and σ are
the mean and standard deviation respectively, while a is an amplitude parameter), and b,
c, d the parameters for the hyperbolic tangent function. This choice of base functions can
be easily motivated by the general shape of free jet �ows, as discussed in Sec. 2.4.1. Free
jets approach an hyperbolic tangent function in the potential core region and converge to
a bell-shaped function in the fully-developed region. Therefore, it would be reasonable to
think that the mean velocity pro�le can be described by a combination of these kind of
functions. Hyperbolic tangent can represent strong gradient. The choice of the Gaussian
curve is then motivated by the fact that it admits a zero derivative at r = µ which is
interesting for reproducing the pro�les near the centerline of the jet.

We then assume that the mean streamwise and temperature pro�le express as

w̄ =fGauss(r; a1w, µ1w, σ1w) + ftanh(r; bw, cw, dw)

+ fGauss(r; a2w, µ2w, σ2w) + fGauss(r; a3w, µ3w, σ3w), (3.11)

T̄ =fGauss(r; aT , µT , σT ) + ftanh(r; b1T , c1T , d1T )

+ ftanh(r; b2T , c2T , d2T ) + hT . (3.12)

w̄ is thus a function of 12 parameters while T̄ is a function of 10 parameters. The fourth
term in Eq. 3.11 has been added, compared to previous studies, in order to catch correctly
the fact that w̄(r = 0) = 1 The number of terms in the expression of the �tted pro�les
depends mainly on the shape of the pro�le. Regularity of both Gaussian curve and hy-
perbolic tangent allows us to compute their derivatives analytically using the same set of
parameters. Parameters of the function in Eqs. (3.11) and (3.12) are determined by a
regression �tting of the analytical pro�le on the CFD pro�les in a least-square sense. This
optimization problem is directly solved in Matlab and is therefore not discussed here. The
parameters obtained for the �tting of the nominal case are summarized in Tab. 3.3. In this
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Figure 3.4: Mean streamwise velocity and mean temperature pro�les after the �tting
process and their components.

Parameter Value

a1w 0.383460

µ1w 0.009466

σ1w 0.259274

bw 0.201468

cw 25.062732

dw 0.995030

a2w 0.012325

µ2w 0.863672

σ2w 0.117673

a3w 10.567959

µ3w −2.379240

σ3w 0.3869191

(a) Mean streamwise velocity

Parameter Value

aT 0.201040

µT 0

σT 0.289825

b1T 0.175395

c1T 10.973974

d1T 0.158824

b2T 16.769290

c2T 0.912363

d2T 0.046437

hT 10.567959

(b) Mean temperature

Table 3.3: Parameters of the analytical �tting for the mean velocity and temperature
pro�les.

case, the obtained residual mean square distance between correct and analytical pro�les
are 0.000833 and 0.001463 respectively for velocity and temperature pro�les. Graphical
results for the �tting of the nominal case are presented in Fig. 3.4, where the di�erent
terms that composed the pro�les are represented.

This �tting procedure is applied each time a pro�le has been extracted fromCooLFluiD.
Once a set of �tted parameters is available for a pro�le, these ones can be used as initial
guess for the optimization problem for other pro�le. In Sec. 4.2 on the uncertainty quan-
ti�cation, several pro�les at di�erent electric power Pfl will be generated and the �tting
process will be achieved in a very automatic way using each time the �tted parameters of
the closest pro�les. The only requirement is that input data must be close enough for the
�tting to converge toward a correct minimum1.

Finally, note that the jet properties presented in Fig. 2.15 were computed for the
�tted temperature pro�le. It was not explicitely speci�ed at that time to not confuse the

1Think of the least-square problem as the search of a local minimum of a high-dimension function in
the set of parameters. Many local minima exist and this is why initial guess must not be to far from an
acceptable solution.
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αR

α
I Vortical mode

Acoustic modes

Figure 3.5: Spectrum of the linearized operator of the nominal case with modal parameters
ω = 0.7 and q = 0.

reader with the �tting process. Results are exactly the same using directly the pro�le from
CooLFluiD as both analytical and numerical pro�les are closed to each other.

3.5 Numerical Results from Vesta

It this section, the results obtained from Vesta for the nominal case are presented. A brief
discussion of the main features of the spectrum and the eigengfunctions of unstable mode
are given. In particular, a vortical mode and several acoustic modes can be identi�ed in
the spectrum. Then the in�uence of the frequency related of the instabilites is discussed
on the vortical mode. This example will be useful for the de�nition of the quantities of
interests that will be used in the next chapter.

3.5.1 Spectrum of the linearized operator

The spectrum of the nominal case computed with Vesta is presented in Fig. 3.5. First
we notice that, according to Eq. 3.3, the part of the spectrum for which αI is greater than
zero constitutes the stable part while the part for which αR is lower than zero constitues
the unstable part. Stable part is not of interest in this study. Modes for which αR < 0 are
modes that propagate upstream the jet, i.e. toward the nozzle and do not interest us as
well.

There are two main branches that can be identi�ed in the spectrum. The �rst branch,
located near αR = 0 is part of the continuous spectrum2. These are modes that propagate
at very high phase speed. Most of them have their eigenfunction dynamic that takes place
outside the jet and is not interesting in this case. These radiating modes however appear
to be much more e�cient in noise generation and could be of interest considering this kind
of problems [22]. Others mode in the unsable continuous part have a highly oscillating
behaviour and are not likely to be excited. The second branch, located between αR = 1
and αR = 2 constitutes the stable continuous spectrum which of interest here.

We are interested mainly in the set of modes that constitutes the discrete part of the
spectrum, which are analysed below. It is possible to investigate separately the eigenfunc-
tions of the set of perturbations for each mode that is present in the spectrum. Looking
at the modes that are of interest, both vortical and acoustic mode instabilities are found

2Be careful to not confuse the discretization of the continuous spectrum with the discrete part of the
spectrum. The �rst is due to the discretization inherent to all numerical methods. Ideally, for a in�nite
number of points, the continuous branches can be recovered.
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for this pro�le. This is in agreement with the theory of the instability modes that can be
found in round jets. The eigenfunctions of modes that lies in the unstable discrete part
of the spectrum are presented in Fig. 3.6. Note that the radial direction is represented in
the domain [0, 2] only for graphical purpose, but we should keep in mind that the stability
analysis was made on a domain up to ten times the jet radius.
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Figure 3.6: Eigenfunctions of the perturbations for the vortical mode and the three �rst
acoustic modes for the nominal case with modal parameters ω = 0.7 and q = 0.

In Fig. 3.6a, a maximum is observed in the pressure and streamwise velocity distribu-
tions of the wave at a distance r = 1, which corresponds to the radius of the nozzle. This
is where there strong velocity gradients occur and the mode has the features of a vortical
mode described previously. For this mode, we haveMr1 < 1 con�rming the vortical nature
of the mode. It will be called the vortical mode. Eigenfunctions for the other discrete
modes close to the continuous spectrum are presented in Figs. 3.6b, 3.6c and 3.6d. For
convenience of discussion, we will refer to a particular mode by an integer pair (q,m).
Thus, mode (q,m) has an azimuthal wavenumber q (q = 0, 1, 2 . . . ) and a radial mode
number m (m = 0, 1, 2 . . . ) characterizing the number of anti-nodes (maximum oscillation
points3) in the pressure distribution of the wave in the radial direction [34]. The mode
(0, 1) is not observed in this case and the mode (0, 0) can be used unambiguously to denote
the vortical mode. The number of anti-nodes is well de�ned in the pressure distribution of
the wave so that each acoustic modes can be assign a unique pair (q,m). For axisymmetric
modes (q 6= 0), the �rst anti-nodes is located at the center of the jet. Note that for helical
waves (not investigated in this work), the pressure wave is zero at the centerline (this is a

3Minimum of oscillation point are called quasi-nodes, as they are not necessarily equal to zero
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direct consequence of the boundary conditions for q ≥ 1). However, these modes are not
really acoustic modes as their are found to have their relative Mach numberM r

cl < 1, which
would corresponds to a vortical mode. However, their pressure distrubance eigenfunction
have all the characteristics of acoustic modes, and they will be referred to (pseudo-)acoustic
modes. The denomination ��rst acoustic mode�, �second acoustic mode�, etc, refers to the
apparition of the mode in the spectrum and not on the radial number. Note that for each
mode represented in Fig. 3.6, the eigenfunction of the azimuthal velocity disturbance is
null.

It is generally assumed in linear stability theory that the mode that will be observed
is the mode that is the most ampli�ed amongst all others. Acoustic modes are therefore
better candidates for determining which ones are predominant.

3.5.2 Growth rate and phase speed as a function of frequency

The representation of the spectrum in Fig. 3.5 is only for one particular dimensionless
angular frequency ω and one azimuthal wavenumber q. For a complete �ow stability
analysis, the spectrum should be computed for every value of the couple of variables (ω,
q). This methodology is of course very expensive from a computational point of view and
is not very e�cient as all the complex values of α are not of interest. For this purpose,
an other branch of Vesta was also developed for following a particular mode when one or
several input parameters are modi�ed. This solver is called the local solver, in contrast with
the previous global solver used for the computation of the whole spectrum at once. The
local solver uses the value of the mode investigated coming from a preliminary resolution
of the whole spectrum as initial guess for converging toward the new value of the mode
when input parameters are varied. The variation in the input(s) parameter(s) must not be
signi�cation in order to ensure the convergence to the correct mode.

The case of helical mode, i.e. with q 6= 0 is not investigated in this work. However,
the dimensionless angular frequency ω is allowed to vary. The local solver of Vesta is
therefore used in order to follow the vortical mode when ω is modi�ed. The range of
frequency that will be sweep each time is ω ∈ [0, 4], as for frequencies greater than 4, the
vortical mode tends to be stable. Numerical results for the growth rate and phase speed
obtained as function of frequency for the nominal case are shown in Fig. 3.7. The growth
rate in Fig. 3.7a (−αI is reresented) �rst increases with frequency. It has a destabilizing
e�ect on the mode until it reaches a maximum. After the maximum, the growth rate
starts decreasing and becomes more and more stable. The phase speed, represented in Fig.
3.7b is incredibly high at low frequencies. On the spectrum, the mode would be moving
towards the the continuous branch near αR = 0. When frequency increases, the mode
moves away from the continuous line. This translates in very small oscillations in space
and the phase speed is very slow. Note that when phase speed is low, the relative mach
number would tend to increase and the mode could not be considered as a vortical mode
anymore considering Mack's criterion.

The peak in the growth rate at ω = 1.870 is very interesting concerning the instability
of the jet. This frequency is called the most ampli�ed frequency, as it is the frequency at
which the maximum value of the growth rate is reached. Practically, this would be the
oscillating frequency that would be observed in the Plasmatron if the vortical mode was the
most unstable mode amongst others. Considering the growth rate as function of frequency,
that is αI = αI(ω), the most ampli�ed adimensional frequency is de�ned mathematically
as

arg max
ω

αI(ω) := {ω | ∀ω′ : αI(ω
′) ≤ αI(ω)} (3.13)

The adimensional modal parameters α and ω can be rescaled using the characteristic scales
of the jet. For the jet, centerline velocity wcl and temperature Tcl are used and Rjet is the
length scale. The time scale is therefore τ = Rjet/wcl. Dimensional frequency f ([Hz]) and
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Figure 3.7: (a) Non-dimensional growth rate and (b) phase speed as a function of frequency
for the vortical mode for the nominal case.

wavelength λR ([m]) can be retrieved using the following rescaling

f =
ω

2πτ
=

ωwcl
2πRjet

(3.14)

λR =
2π

αR
(3.15)

The most ampli�ed frequency can be de�ned as well in dimensional form as

arg max
f

αI(f) := {f | ∀f ′ : αI(f
′) ≤ αI(f)} (3.16)

Using the transformation of Eq. 3.14, the most ampli�ed frequency is found to be 294.88
[Hz]. These quantities for the characterization of the instability of a particular mode of
the plasma jet will be used in Chapter 4 for the sensitivity analysis and the uncertainty
quanti�cation.

3.5.3 A note on earlier results and link with experiments in the Plas-

matron

Two cases were considered so far in previous studies on plasma jet instabilities, namely the
low-pressure and high-pressure case, presented in Tab. 3.4. These two cases were widely
investigated in the work of Garcia-Rubio for a calorically perfect jet and in the work of
Chiatto for the mixture in LTE [12][7].

ṁ [g/s] ptc [Pa] Pfl [kW] zjet [m] Fluid mixture

Low pressure case 16 20000 90 0.6 Air11
High pressure case 16 1500 90 0.6 Air11

Table 3.4: Parameters of the low pressure and high pressure cases.

These two cases have been investigated as their parameters were close to the experi-
mental conditions used by Cipullo in his test campaign [8]. On the one hand, it has been
possible to link the dimensional frequency of the �rst and second acoustic modes (see Tab.
3.5), fo the high-pressure case, to the experimental results of Cipullo. On the other hand,
for the low-pressure, no experimental veri�cation could be made.

For future reference, it seems useful to mention a slight correction that has been added
to the results from previous studies. It seems that in the work of Chiatto, the value of
the speci�c gas constant for air at sea-level was misinterpreted and a value of R0 = 512
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was assigned. It was recomputed here with the correct value R0 = 287 [J/(kg K)]. The
results are compared in Tab. 3.5. The two results are closed and the conclusion made in
the previous study remain valid. For the comparison of growth rate and phase speed with

Chiatto [7] Present study

Vortical mode 4.552 - 4.2954i 4.3932 - 4.2798i
1st acoustic mode 0.3016 - 5.0567i 0.3040 - 5.0235i
2nd acoustic mode 0.4149-8.2525i 0.4109 - 8.2233i

Table 3.5: Comparison of the values of vortical and acoustic modes obtained in previous
studies with the values from the present study for the high-pressure case at ω = 0.7 and
q = 0.

other input parameters, they have been investigated for vortical and acoustic modes at two
di�erent pressure and for di�erent azimuthal wavenumber by Garcìa Rubio for the cold
jet and by Chiatto for the jet in LTE [12][7]. For both low and high pressure cases(1500
and 20000 [Pa] resp.), acoustic modes remain the most unstable. By contrast with vortical
modes, which stabilizes for high frequencies, acoustic modes are still unstable for high
frequencies.

3.6 Summary of the Chapter

The linear stability analysis of a high temperature jet was addressed. A state-of-the-
art stability analysis of high temperature and high speed jets was brie�y discussed. The
stability of the plasma jet was then computed using the numerical code VESTA developed
at the VKI for the numerical study of linear stability. Some features that were observed
in previous studies on jet instabilities were retrieved and it was possible to observed two
types of mode, namely the vortical and acoustic modes. The vortical mode is seen as an
instability occurring in the shear layer due to a pressure imbalance. Acoustic modes is seen
as acoustic waves re�ecting back and forth inside the round jet.
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Chapter 4

Sensitivity Analysis and Uncertainty

Quanti�cation

In this chapter, the two main research questions of the project are addressed. The �rst
question that we would like to answer is how do the quantities of interest behave as we
are going from the cold jet (the calorically perfect gas) model to the hot jet (or chemi-
cally reacting mixture of perfect gas under the LTE assumption) model and from which
properties (thermodynamic and transport) originates the main contribution? The second
question is concerned with the study of the stability of the jet when an input is considered
uncertain. The input uncertainty studied in this work is the electric power transmitted to
the plasma, as it is shown that this quantity may have a strong in�uence on the velocity
and temperature pro�les. These two last parameters are dominant in the stability of the
plasma jet.

The whole process used for the complete stability analysis of the plasma jet is sketched
in Fig. 4.1. In Chapter 2, we described the �rst set of input variables that are the transport
and thermodynamic properties. The numerical simulation from the ICP CooLFluiD

solver was presented for the nominal case. In Chapter 3, the �tting procedure used for
obtaining the analytical velocity and temperature pro�les from the CFD simulations was
presented. The Vesta solver for the linear stability analysis was then described and the
results for the nominal case were presented. From this, we identi�ed two quantities of
interest, the growth rate αI of the mode and the most ampli�ed frequency arg maxω αI(ω)
de�ned as the frequency where the mode is the most unstable (i.e. with the highest growth
rate).

Pfl, ptc, ṁ arg maxω αI(ω)CooLFluiD
Fitting
w̄(r, z)
T̄ (r, z)

Input variables
Flow properties (Mutation)

Transport properties

Thermodyn. properties

µ(p, T ), k(p, T ), ...

h(p, T ), ...

VESTA Toolkit

Input variables
Quantities of Interest

αI(ω)

Computational model

ICP

Plasmatron

(CFD)

Figure 4.1: Computational model of the whole process for the stability analysis



The whole process, composed of the numerical simulations with the ICP CooLFluiD

solver, the �tting process and the stability analysis using the Vesta toolkit, will be called
the computational model. For the sensitivity analysis and the uncertainty quanti�cation,
this one will be considered as a black-box. The input variables are modi�ed and the
quantities of interest are observed, without any modi�cation of the code. Proceeding this
way, what happens �inside� the computational model is momentarily omitted.

In this chapter, the sensitivity of the two quantities of interest when the �ow proper-
ties are modi�ed is investigated. In Sec. 4.1, the notation used through this chapter is
introduced. A superscript notation is introduced for the distinction of the di�erent models
used for computing the stability, each having a di�erent set of input properties. In this
analysis, the thermodynamic and transport properties of the mean �ow are deliberately
modi�ed. The numerical results are then presented for the nominal case and the variation
of the two quantities of interest when the model for the �ow properties is changed are
analysed. The vortical mode is �rst analysed for a �xed angular frequency ω. Then the
sensitivity analysis is made when all the frequencies of the mode are investigated. Finally,
the most ampli�ed frequency is sought for each model and its variation is analysed.

In Sec. 4.2, a methodology for studying the stability of the plasma jet considering
an uncertain input is addressed. The electric power transmitted to the plasma �ow is
assumed to vary from one simulation to the other, as the coupling between the generator
of the Plasmatron and the plasma is not well de�ned. A stochastic collocation method
is implemented for the uncertainty quanti�cation and the results for the two quantities
of interest are analysed. Again, vortical mode is �rst investigated at a �xed frequency.
The same UQ analysis is then performed on all the frequency domain and �nally the most
ampli�ed frequency is sought. For the uncertainty quanti�cation analysis, new pro�les from
numerical simulations are needed as di�erent electric power are considered (recall that the
nominal case corresponded to Pfl = 85 [kW]). The UQ methodology is �rst developed
using a few numbers of already available CFD simulations and interpolation between these
pro�les is made in order to obtain solutions at intermediate electric powers. A convergence
analysis is then performed and the main features are presented using these approximate
pro�les. Secondly, new CFD are computed using the CooLFluiD solver. The number of
pro�les computed is based on the convergence analysis made on approximate pro�les and
for computational purpose. The solutions obtained for the accurate pro�les are thus more
accurate but a convergence analysis is made much more di�cult to perform. Therefore,
the two approaches will be presented. The second approach using the accurate CFD pro�le
will be used to estimate the validity of the �rst one.

Finally, the sensitivity analysis made in Sec. 4.1 is recomputed assuming now that the
input Pfl is uncertain, applying the methodology developed in Sec. 4.2 of this chapter.
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4.1 Sensitivity analysis in the Nominal Case

In this �rst section, the properties of a calorically perfect gas are applied to the high
temperature plasma jet and compared to the results for the jet under LTE hypothesis.
This methodology is used in order to get some insight into the in�uence of the transport
and thermodynamic properties of the �ow on the stability of the jet.

4.1.1 Notation and description of the model used

The nominal case presented in previous chapters was computed using the correct ther-
modynamic and transport properties coming from the Mutation library. These are the
properties for a Chemically Reacting mixture of perfect Gases, considering the air as an
11-species mixture under LTE. This accurate model will be called the CRG model

and it will be denoted by ĈRG. On the contrary, we can introduce a fully incorrect
model, for which all the thermodynamic and transport properties are described by the clas-
sical laws of thermodynamics and the Sutherland's laws described in Sec. 2.2. These are
the properties of a Calorically Perfect Gas, which would correctly describe the behaviour
of a cold jet (jet at low temperature). Using these properties for describing the plasma jet
(a very hot jet) is of course misrepresenting the correct behaviour of the instabilities. This

inaccurate model will be called the CPG model and will be denoted by ĈPG.
We will note that, although the CPG model is using the inaccurate properties for the �ow,
the value of the quantity of interest, as the growth rate or the most ampli�ed frequency,
will remain close to the correct value of the CRG model. This is because the stability
of the jet is mainly in�uenced by the mean streamwise velocity and temperature pro�les
that do not change from one model to an other, as they come from the CFD simulation of
CooLFluiD. The methodology applied here is used to determine the property of the �ow
that is most in�uencing the stability of the jet when we are passing from the calorically
perfect gas to the chemically reacting mixture of perfect gases under LTE assumption.

For this purpose, the CPG and the CRG model are used as references. Then, inter-
mediate models are computed when modifying one or another parameter and the stability
analysis is applied using Vesta. We will denote an intermediate model by the

property that has been modi�ed with a �hat� superscript for the computation of
the stability spectrum. The �hat� notation is introduced to avoid any confusion between
the model used and the physical property that is represented by the symbol itself without
the �hat� superscript.

To illustrate the notation introduced, consider a model for which all transport and
thermodynamic properties are computed with Mutation, except the dynamic viscosity.
This model is noted µ̂. All the derivatives are also modi�ed in consequence. The reader
may refer to the Vesta input parameters table 3.1 for a better understanding. In the
µ̂ model, we will assume that the whole �dynamic viscosity� line from the table will be
computed using the corresponding calorically perfect gas law. For the dynamic viscosity,
we saw that it was the Sutherland's law provided in Eq. 2.11. The derivatives of the
Sutherland law are computed analytically.

Once the ĈRG, ĈPG and intermediate models stability calculations are available, the

variation of the quantity of interests with the reference ĈRG model can be computed.
The two quantities of interest, as de�ned in the introduction, are the growth rate and the
most ampli�ed frequency (both in dimensionless form unless speci�ed). The growth rate,
considering the spatial theory, is the imaginary part of the wavenumber (see. Eq. 3.3)
with α = αR + iαI . Imaginary and real parts are considered separately and the following
distances can be de�ned

∆αϕ̂R(ω) = αĈRGR (ω)− αϕ̂R(ω) , (4.1)

∆αϕ̂I (ω) = αĈRGI (ω)− αϕ̂I (ω) , (4.2)
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where ϕ̂ denote a general model in which we modi�ed some properties compared to the

correct CRG model. For example, for the accurate ĈRG model at ω = 0.7, Vesta returns

(for the �rst vortical mode) αĈRG = 3.3452 − i3.5606 and for the inaccurate ĈPG model
αĈPG = 3.3172−i3.6684. The distances computed using Eqs. 4.1 and 4.2 are then ∆αR(ω =
0.7) = 0.028 and ∆αI(ω = 0.7) = 0.1078. From this consideration, notice �rst that the
di�erences between the two models are quite low due to the fact that the same velocity
and temperature pro�les are used, as already said. Secondly, it can be deduced from the
sign of ∆αI if either the model has a stabilizing or a destabilizing e�ect on the instability

considered. Here, we can say that, compared to the ĈRG model, the ĈPG model has a
destabilizing e�ect on the model1, which is in agreement with the previous work of Chiatto
[7]. The same distance can be de�ned for the most ampli�ed frequency

∆ arg max
ω

(αϕ̂I ) = arg max
ω

(αĈRGI (ω))− arg max
ω

(αϕ̂I (ω)) (4.3)

For the sake of clarity, a set notation for enumerating the models is adopted:

• {ϕ̂, . . . , ς̂} denotes a set of di�erent models,

• (ϕ̂, ς̂) = ϕ̂ ∪ ς̂ is the model obtained from the union of a couple of models,

• ∅ is the null ensemble.

We consider the following set of models for the analysis: χ̂ = {µ̂, k̂, λ̂, ĥ, ρ̂, ζ̂}. Amongst

them, there are also the two reference models, namely ĈRG and ĈPG. Note that ĈPG =

(µ̂, k̂, λ̂, ĥ, ρ̂, ζ̂) and that ĈRG = ∅, i.e. no properties have been modi�ed. It is also
possible to de�ne a subset of each model in χ̂ in which the zero order and the higher
derivatives of the parameter considered are modi�ed independently. For example, for ζ,
the following set of models can be de�ned: {ζ̂0, ζ̂P , ζ̂PP , ζ̂T , ζ̂TT , ζ̂PT }. Of course, we have
ζ̂ = (ζ̂0, ζ̂P , ζ̂PP , ζ̂T , ζ̂TT , ζ̂PT ) = ∪iζ̂i.

4.1.2 Results of the sensitivity analysis on the nominal case

The distance between two values of both the growth rate αI and αR for the �rst vortical
mode are computed for di�erent models. In this �rst analysis, the di�erences between
models are made for a �xed adimensional angular frequency ω = 0.7.

For any combination of the model in χ̂, the corresponding properties and their deriva-
tives are changed accordingly. Note that modifying a certain property can have an in�uence
on the adimensional numbers and other parameters that are needed for the computation
of the spectrum (Tab. 3.1). For example, the parameters F and G are related to the
derivatives of ζ, as shown in Appendix B.1 and they need to be changed accordingly when

the model ζ̂ is considered. Results for the six one-parameter models of χ̂ and the ĈPG

model, compared to the ĈRG model, are represented in Fig. 4.2.
The distance between two models is represented here in a convenient way by means of

a bar graph. Results are therefore quanti�ed by the height of the column and thus make

them more visual than in a simple table. The model that is compared to the ĈRG model
is speci�ed on the abscissa.

Several observations can be drawn from the simple bar graph from Fig. 4.2. First, we
note that the compressibility factor ζ is the one that modi�es the most the stability of the
jet when computed by means of the less accurate model. Only changing this parameter

leads to almost the same result as the non accurate ĈPG model. The models for µ̂ and ĥ
show that these two parameters have a very small in�uence on the stability of the vortical
mode at ω = 0.7. Finally, ρ̂ and λ̂ has no in�uence on the instability. As the value for

1Or, in a equivalent way, the introduction of the ĈRG model has a stabilizing e�ect on the mode

compared to the ĈPG model
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∆
α
[
-
]

∆αR
∆αI

Figure 4.2: In�uence of the model of transport and thermodynamic properties on the
growth rate of the vortical mode compared to the accurate CRG model at ω = 0.7 for the
nominal case.

ρ was well predicted either considering a calorically perfect gas or a chemically reacting
mixture of perfect gas, this results was expected (see Sec. 2.3.5).

As the thermal conductivity k and compressibility factor ζ are responsible of the two
major contributions to the instability, let us investigate more closely their in�uence. The
contribution of ζ̂ to the stability is made through the parameter ζ itself (i.e. without
changing its derivatives) and its �rst and second derivatives (higher derivatives are not
taken into account as they do not appear in the linearized stability equations). Let us
denote by ζ̂T and ζ̂P the two models when only the derivatives of ζ are changed separately,
without modifying any other parameters. We saw that the contribution of the derivatives of
ζ also in�uenced the two parameters F and G, and must therefore be changed accordingly.
The result obtain is shown in Fig. 4.3a.

The main contribution of ζ to the instability comes mainly from its �rst derivatives
with temperature ζT , while ζP does not seem to have any in�uence of the stability of the
mode.
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Figure 4.3: Relative in�uence of model for the compressibility factor and thermal con-
ductivity on the growth rate of the vortical mode related to the accurate CRG model at
ω = 0.7 for the nominal case.

This emphasizes once again the weak sensitivity of the �ow properties to pressure.
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From the previous results, it seems obvious that the gas state law plays a critical role in
the stability of the jet. In particular, molar composition of the gas has to be known with
good accuracy.

Finally, when modifying the law for both k and ζ, we see that they both contribute to
the instability of the jet (Fig. 4.3b). The model with inaccurate law for both k and ζ is
denoted by (k̂, ζ̂). It can be observed that by modifying only the two parameters k and ζ,
the value obtained with the CPG model can be almost retrieved. It suggests also that for
this particular case, an additive property of the contribution of the di�erent models to the
instability of the mode can be observed.

In order to limit the dimensionality of the sensitivity analysis, we will restrict ourselves
to the in�uence of frequency ω on the instability (next paragraph) and to the in�uence of
the electric power Pfl (next section).

4.1.3 Dependence on frequency

The previous analysis was made for an adimensional frequency ω = 0.7. We now extend
it to the frequency range ω ∈ [0, 4]. This range of values is chosen because for ω > 4,
the vortical mode tends to be stable. The local solver of Vesta is used and the starting
solution for each model is the value obtained at ω = 0.7. Starting from this solution, all
the adimensional frequencies are swept by the local solver. For each model, the same curve
as the one presented in Fig. 3.7a is computed and the distances between the adimensional
wavenumber αϕ̂(ω) for two di�erent models, de�ned in Eqs. 4.1 and 4.2, are calculated at
each frequency.

The representation of the solution in bar graphs is not feasible anymore and one �gure
for each model for the quantity ∆αϕ̂I (ω) as a function of ω is represented. Results for the

one-parameter models for ϕ̂ ∈ {ĈPG} ∪ χ̂ are represented in Fig. 4.4.

For the ĈPG model in Fig. 4.4a, it can be observed that the function admits one zero.

This means that at this frequency, the ĈPG and the ĈRG models give exactly the same
result. It can be thought of as if there were a resonant frequency for which an accurate
description of the �ow properties is not necessary for the description of the instability of
the mode.

While it was observed that k and ζ were the dominant parameters in the previous
analysis for ω = 0.7, it can be seen from the current analysis that this is not necessary
the case everywhere. In fact, ζ is the dominant parameter at low frequencies. When
instabilities for higher frequencies are considered, the in�uence of ζ decreases and µ (that
was barely present previously) becomes the main driving parameter in the instability.

∆αI(ω) for both µ̂ and the ĈPG are indeed very close to each other in the range [2, 3].
At frequencies higher than 2.5, ζ is not in�uencing anymore the instabilities and all the
behaviour is driven by the viscosity, except for some modulation by k and h at frequencies
greater than three.

The model ρ̂ and λ̂ are represented on Fig. 4.4d as they both gives zero. For λ̂ however,
a small variation between ω = 3 and ω = 4 can be observed (of order 10−3). This minimum
is common for each model, except from ζ̂.

Again, it is possible to investigate from which derivative of the parameter ζ the insta-
bility is mainly initiated. Only ζ is investigated as it is the dominant parameter at low
frequencies. The result is plotted in Fig. 4.5. As for ζ̂P , ∆αI is zero for all frequencies, we
can deduce that the in�uence of the �rst derivative with respect to pressure of ζ and thus
the parameter F can be neglected. For ζ̂P , ∆αI has the same shape as ζ̂ and therefore the
in�uence on the stability due to ζ comes mainly from its �rst derivative w.r.t. temperature
plus a contribution due to ζ itself and this relation seems linear with temperature. What is
more important with ζ is that it does not in�uence the stability anymore at high frequency.
At frequencies greater than two, the in�uence of ζ tends to zero, as well as its derivatives.
This is a very interesting result as it means that for these frequencies the composition of
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Figure 4.4: Distance between the growth rate of the vortical mode of the ĈRG model and
the di�erent models involving simpli�ed laws in temperature for the thermodynamic and
transport as a function of the adimensional angular frequency ω.

the mixture is not determinant in the instability of the mode.

Finally, an interesting property, already observed in the analysis at �xed frequency, can
be observed when summing the contributions to ∆αI stemming from the models µ̂, k̂, ĥ,
λ̂, ζ̂. Let us denote by

Sϕ̂(ω) =
∑
ς̂∈χ̂

∆ας̂I(ω) (4.4)

the sum of the variation on the growth rate induced by each one-parameter model from

ϕ̂. The result obtained is represented in Fig. 4.6. The ĈPG model is recovered almost
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Figure 4.5: Comparison of the in�uence on the instability of the mode by the model
considering a variation in the factor of compressibility ζ and its derivatives.
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Figure 4.6: Comparison of the sum of all the variation on the growth rate of the mode
induced by the di�erent models with the reference model for a calorically perfect gas.

everywhere when summing all the variations on the growth rate induced by each model.
A property of additivity in the contribution of each model to the instability of the mode
is recovered in this case.

4.1.4 In�uence of the model on the most ampli�ed frequency

The last quantity of interest investigated in this sensitivity analysis for the nominal case is
the frequency at which the growth factor attains its maximum. The distance between this

most ampli�ed frequency obtained for the reference ĈRG model with an the one obtained
for an arbitrary model is computed using the de�nition introduced in Eq. 4.3. The result
for the most (dimensionless) frequency is given in Fig. 4.7a. The bar graph for the variation
of the most ampli�ed dimensional frequency from Fig. 4.7b is exactly the same (ignoring
one multiplication factor) as all the characteristic quantities for the rescaling are the same
for each model (centerline velocity, temperature and jet radius do not change).

In this last case, µ has a stronger in�uence than k. This stronger in�uence of viscosity
is in agreement with the previous results from �gure 4.4, where the in�uence of µ was

greater near ω = 0.2. Indeed, the most ampli�ed frequency for the ĈPG model was found
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Figure 4.7: In�uence of the model of transport and thermodynamic properties on the most
ampli�ed frequency compared to the accurate CRG model.

to be equal to 1.870 and does not change drastically from one model to an other, as can be
seen in Fig. 4.7a. Therefore, the results for the most ampli�ed frequency could be guess
by looking at the results for each model close to ω = 1.87.

4.1.5 Discussion on the results

Fixed frequency

It appears from this �rst analysis that the instability of the vortical mode of the jet at
ω = 0.7 is mainly due to the thermal conductivity k and the compressibility factor ζ. The
sign of ∆α indicates if the modi�cation of the corresponding parameter is stabilizing or

destabilizing comparing to the reference ĈRG model.

The density of the gas has minimal in�uence on the stability but the composition of
the �ow has its in�uence through the compressibility factor ζ. A correct prediction of the
mixture composition seems therefore important at low frequencies.

In�uence with frequency and most ampli�ed frequency

For frequencies higher than ω = 2.5, the importance of the parameters is quite di�erent.
The compressibility factor has no in�uence on the instability of the mode at high frequency.
This means that, regarding the linear stability, the composition of the gas has no more
in�uence on its stability. Nevertheless, for frequencies in the range ω ∈ [2.5, 3] the main
in�uence comes from the dynamic viscosity.

Finally, the same interpretation can be drawn considering the most ampli�ed frequency
of the vortical mode. The most ampli�ed frequency is important in the analysis as it is the
one that will be actually observed in the Plasmatron if the vortical mode is the dominant
one. In this case, the value of ω is between 1.5 and 2. In this range of value, the in�uence
of ζ on the mode has already decreased (compared to the previous case at ω = 0.7) and
the in�uence of µ is stronger than the thermal conductivity.

A more physical explanation for the in�uence of µ can be described when considering the
microscopic behaviour of the �ow. Consider �rst the in�uence of µ with frequency.
The viscosity is associated to a transport of momentum of the particles and thus is linked to
inertia. At low frequencies, the phase speed of the instability wave is very high compared
to the speed of the �ow (Fig. 3.7b) and the associated wavelength is high compared
to the characteristic axial length. The instabilities does not have the time to in�uence
the mean �ow. On the contrary, for moderate frequencies, wavelength is comparable to
the axial characteristic length of the jet. Then, a pressure imbalance as observed in the
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eigenfunctions of the vortical mode can cause the particles to move. We consider now the

destabilizing e�ect of the viscosity at moderate frequencies (∆αI > 0⇒ αĈPGI >

αµ̂I). The model µ̂ considers a lower value of viscosity than the ĈPG model. Recall that
vortical mode is due to a pressure imbalance initiated in the shear layer. A higher viscosity
tend to keep the particles to each other and slow the mechanism of formation of vortical
mode. At lower value of the viscosity, the �ow will have a much faster response to a shear
stress. From this consideration, it seems obvious that the viscosity has an in�uence of the
instability of the vortical mode. This assumes therefore that the mechanism of formation
of the instability considered plays a signi�cant role. For the vortical mode, viscosity is
the dominant driving parameter. It would therefore probably not willing to be the case if
acoustics mode as they are modes that, as their name suppose, much more dependent on
the equilibrium speed of sound. This thermodynamic property is strongly coupled to the
enthalpy of the �ow and one can expect that this will in�uence the stability of acoustic
modes.

In order to verify this hypothesis, it has been possible to investigate the spectrum
of the di�erent �ow models by identifying the acoustic modes by hand. The results for
the second, third and fourth acoustic modes are given in Fig. 4.8 (for the values of the

reference αĈRG and notation of the acoustic modes, see Fig. 3.6). The vortical mode is
also represented for comparison. As expected, it can be observed that enthalpy is now
playing a signi�cant role in the instability of the mode, while is was barely noticeable for
vortical mode. A general decrease in ∆αI can be observed as the radial mode number is
increasing. An increasing in the radial mode number was shown to have more anti-nodes
in its pressure distribution. These modes could be seen as waves carrying less energy. The
relative in�uence of ζ is strong for each mode.Note that while a kind of additivity was
observed for the vortical mode, it is not the case here for the vortical mode. Models using
more than one parameter modi�ed, as in Fig. 4.3b could be investigated to see the e�ect
of join contribution.
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Figure 4.8: In�uence of the model of transport and thermodynamic properties on the
growth rate of the three �rst acoustic modes compared to their accurate CRG model at
ω = 0.7 for the nominal case.

The results of this sensitivity analysis may suggest therefore a methodology that could
be used to identify the mechanism that are responsible of the instability of a particular
type of mode. In the case of the vortical mode, we found that the viscosity was one of the
main driving parameter of the instability. At low frequencies, talking about the vortical
may not necessarily have sense as in this case, phase speed is incredibly high as so is the
relative Mach number to the centerline velocity, and the vortical mode is not a vortical
mode anymore by de�nition. Acoustic modes were related to the enthalpy of the �ow, but
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also to the viscosity.
These results should however be interpreted carefully as the analysis for the acoustic

modes is made only at a �xed frequency. For the vortical mode, a strong variation in
the growth rate of the instability was observed when the frequency was varied and it was
possible to emphasize the importance of the viscosity. Nothing can be said about the
in�uence of the frequency on the acoustic modes obtained here. What we can emphasize
however here is that enthalpy plays a signi�cant role, at least for ω = 0.7 for the acoustic
modes, that was not present in the vortical mode. Ideally, a sweep of all frequencies should
be made for each acoustic mode for a correct interpretation of the results. This however
can become computationally expensive.

This analysis has been made for a single electric power of the plasma �ow Pfl and a
single mass �ow rate ṁ. We have also presented the case for only one pressure in the
Plasmatron. For the stability analysis, we also had to select one particular position in
the jet and we had to restrict ourselves to a particular set of unstable modes. We should
keep also in mind that the in�uence of �ow parameters can also modify the value of the
adimensional numbers. For example, the viscosity modi�es the value of the Reynolds
number. Ideally, the in�uence of the Reynolds and the viscosity should be investigated
separately in order to see which one is the most responsible of the instability, as we did for
example for the derivatives of ζ.

This emphasizes the issue of the multi-parametric dimension of the stability analysis
of the jet. Moreover, some inputs can be considered as uncertain. The uncertainty of the
electric power transmitted to the plasma is the topic of the next section.
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4.2 Uncertainty Quanti�cation of the Electric Power

The previous analyses were made for the nominal (deterministic) case with di�erent model
parameters and it resulted in one prediction for the output quantities of interest for each
model. However, as already mentioned, the e�ciency of the Plasmatron is not well de�ned
and so far could not be measured inside the facility. In all the previous studies on the
plasma jet, a single e�ciency of the electric power equal to 50% was used.

In this second section, the e�ect of an uncertain electric power e�ciency on the quan-
tities of interest is investigated. The value of the electric power plays a signi�cant role on
the shape of the velocity pro�le and on the temperature of the jet and it can therefore
modify signi�cantly the stability of the jet. Characterizing the e�ect of the uncertainty
on the electric power becomes therefore an important step for correctly interpreting the
stability of the jet.

Many methods exist for the quanti�cation of uncertainty and a short overview of a
number of methods can be found in [3]. Although applied to computational mechanics,
these methods can be applied in this case as well. In this work, a probabilistic framework

is adopted and non-intrusive methods for quantifying uncertainty are used. Working with
probability will allow us to characterize uncertain inputs and outputs with probability
distribution functions, allowing an intuitive interpretation of the results. The input un-
certainty can be either propagated by deriving a new model and implementation for the
uncertainty problem, which can be solved at once. This is called intrusive UQ, because
existing deterministic codes need to be modi�ed. On the other hand, non-intrusive UQ
methods can re-use an existing deterministic solver as a black-box. Non-intrusive methods
will a�ord us to use the already existing developed codes (Vesta, CooLFluiD, Mu-

tation) without any modi�cation of their core and this will allow us to develop routine
around them and perform embarrassingly parallel simulations with little e�ort for speedup.

4.2.1 Methodology: characterization of the input uncertainty

The �rst step in the uncertainty quanti�cation is the characterization of the input un-
certainty. In this work, parametric approach is sought, that is the uncertain features of
the computational model can be associated with some or all of its parameters. In this
case, the electric power transmitted to the plasma Pfl is the only uncertain parameter. In
the probabilistic framework this uncertain input is modelled as a random variable X with
probability distribution PX . The random variable is a continuous variable with values in
R, but of course not all values will be encountered as it depends on the characteristics of
the Plasmatron and its performance. The probability distribution PX then attributes to
any meaningful subset B ∈ R the probability PX (B) of �nding the random variable X
in the subset B. In the case of continuous random variables, we can de�ne a probability

density function ρX (x) which is de�ned as

PX (B) =

∫
B
ρX (x)dx (4.5)

=

∫
B
dPX (dx). (4.6)

The following paragraphs are devoted to the characterization of the probability density
function for the random variable Pfl and the de�nition of its subsets of admissible values.

In section 2.1, we already mentioned brie�y that the electric power that is actually
transmitted to the plasma �ow, Pfl is not well-de�ned and can not be directly measured
inside the Plasmatron facility. Pfl is supposed to be only a fraction of the initial electric
power supply Pel and both can be related through an e�ciency parameter η

Pfl = ηPel. (4.7)
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We will now try to characterize the parameter η and gives bounds around its nominal
value.

The e�ciency, or the performance of the Plasmatron, depends on the coupling between
the generator and the plasma. Without going into details, which are out of the scope of
this work, the coupling may change from one set of operating conditions (Pel, ṁ, ptc) of
the Plasmatron to the other and thus change the overall e�ciency. This e�ciency has
been estimated to be of the order of 50% [5]. More recent experimental results of the
measurement of the e�ciency using a global energetic balance of the Plasmatron facility
showed a variability of the e�ciency near ±5% [9]. Therefore, as a �rst insight in the
uncertainty of the electric power, one could use an e�ciency of 50%± 5% and assign it an
equiprobable density function.

Finally, as Pfl is the power that has to be provided for the CFD simulations, one has
to specify the range of values that will be used in this work. The choice of the range of Pfl
is arbitrary and we choose here the range Pfl = [75, 95] [kW] with mean value equal to 85
[kW]. This could be related to a Pel = 170 [kW] imposed to the Plasmatron with a given
e�ciency of 50%± 5.88%. The probability density function of the random variable Pfl is
represented in Fig. 4.9.
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Figure 4.9: Input pdf

This choice of range of values has been motivated by the already available CFD simula-
tion at the VKI. In this case, the three CFD simulations at 75, 85 and 95 [kW] were already
available for ptc = 17143 [Pa]. The UQ methodology developed through the next sections
will be �rst tested only using these three simulations. Velocity and temperature pro�les at
intermediate powers will be obtained using linear interpolation between the existing sim-
ulations. This will be used to study the convergence of the stochastic model used. Then
new CFD simulations will be computed to obtain more accurate results. The number of
CFD simulations that will have to be computed will be based on the convergence analysis
of the non-accurate results.

Before going to the UQ methodology, we should mention brie�y the range of applica-
bility of the study on Pfl as the input uncertainty. Imagine now that the e�ciency is �xed
and is considered to be deterministic. If Pel is now the uncertain input, it comes from Eq.
4.7 that the same uncertainty quanti�cation on Pfl is still applicable. This means that the
analysis developed in this section could be extended as well to the study of the uncertainty
of the electric power injected to the facility. For example, the experimenter assigns an
electric power of 170 [kW] to the facility with an uncertainty on its value of 5 [kW] and
e�ciency �xed to 50% would give rise to an uncertainty on Pfl in the range [82.5, 87.45]
[kW].
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4.2. Uncertainty Quanti�cation of the Electric Power

4.2.2 Methodology: propagation of uncertainties

The second step for uncertainty quanti�cation is the propagation of the uncertainty through
the computational model. Knowing the pdf of the input we would like to know what is
the pdf of the quantity of interest (output). Once the output pdf is known, statistical
descriptors can be computed for a direct characterization of the quantity of interest, such
as the mean, the variance or the coe�cient of variation (cov). These are de�ned as follows:

mY =

∫
R
y dPY , (4.8)

σ2Y =

∫
R

(y −mY )2 dPY , (4.9)

cov =
σY
mY

, (4.10)

assuming these integrals are bounded. The last statistical quantity de�ned by Eq. 4.10 is
an indicator of the relative range of uncertainty on a given quantity. A large coe�cient
of variation implies a large uncertainty on the quantity of interest. This one can be com-
pared to the coe�cient of variation of the input to see if the model actually ampli�es the
uncertainty or on the contrary decreases the uncertainty.

Several methods exist for uncertainty propagation and the most popular is the Monte

Carlo method. Monte Carlo approach involves repeated simulations (also called realiza-
tions) with random sampling from the space of the random variable X according to the
given input pdf. Output pdf can then be estimated using a kernel density estimation pro-
cedure. Statistical descriptors from Eqs. 4.8 and 4.9 can be estimated by summing all the
results of the simulation and dividing by the number of samples

mY ≈ mν
Y =

1

ν

ν∑
l=1

y(l) , (4.11)

σ2Y ≈ σ
2,(ν)
Y =

1

ν

ν∑
l=1

(y(l) −mν
Y )2 , (4.12)

where ν represents the number of samples used in the Monte Carlo method. According to
the Law of Large Number (LLN) the mean will converge to the exact value as the number
of samples ν increases. By the Central Limit Theorem (CLT), the accuracy improves with
the square root of ν.

However, this method can becomes prohibitive when applied directly to the computa-
tional model as many simulations are needed for convergence and the computation cost
can becomes very high. Instead, an other class of method will be investigated and applied
in this work. These are called stochastic collocation methods.

4.2.3 Implementation: stochastic collocation methods

We think of the computational model as a surjective mapping s of any value of the input
into the quantity of interest, considered as random variables

Y = s(X ) , (4.13)

where X and Y are respectively the input and output random variables. This mapping is
often a complex model to solve, involving many PDEs as it in the case for the Vesta code
and a natural idea is to construct a much simpler mapping, or a surrogate model, that
approximates the actual complex model.

Once a surrogate model s is known, it can serve as a substitute for the computational
model for approximating the statistical descriptors of the quantity of interest. From the
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de�nition of the mean and variance Eqs. 4.8 and 4.9, these statistical descriptors can be
approximated, considering y = s(x), as

mY =

∫
R
y dPY =

∫
R
s(x) dPX =

∫
R
s(x)ρX(x)dx, (4.14)

σ2Y =

∫
R

(y −mY )2 dPY =

∫
R

(s(x)−mY )2ρX(x)dx. (4.15)

These two integrals can be approximated using quadrature rules, following the method
applied in [17].

On the other hand, statistical descriptors and output pdf can be again estimated using
Monte-Carlo sampling. The advantage now is that the Monte Carlo sampling is directly
propagated through the surrogate model and the gain in computational cost is signi�cant.

Many non-intrusive methods exist for building a surrogate model. Spectral projection

methods and interpolatory collocation methods are often encountered. In the case of non-
intrusive spectral projection methods (NISP), the model is sought as a projection on an
orthonormal basis of the initial model and for which expansion coe�cients are computed
numerically. Interpolatory collocation methods, or stochastic collocation (SC) rely on the
interpolation between a �nite number of points where the solution has been computed. In
the case of SC methods, the approximation will be exact at these collocation points. This
second methodology of stochastic collocation will be used in this work and basic knowledge
are presented through the next paragraphs.

Polynomial interpolation

The surrogate model is build by interpolating n+ 1 solutions of the computational model
at n+ 1 pre-de�ned points. The surrogate model is assume to have the expression

sn(x) =
n∑
i=0

s(xi)li(x), (4.16)

where {li}ni=0 are the Lagrange polynomials associated with the collocation points and
s(xi) are the values taken by the computational model at these collocation points. The
Lagrange polynomials are de�ned by the product

li(x) =

n+1∏
j=0,
j 6=i

x− xj
xi − xj

, for i = 0, . . . , n. (4.17)

More on polynomials interpolations can be found in [36].

Convergence of the surrogate model

A desirable property is that the precision with which the surrogate model approximates
the computational model can be improved by increasing the number of collocation points
in the interpolation, that is

lim
n→∞

∫
R
|s(x)− sn(x)|2 dPX = 0. (4.18)

Provided that suitable collocation points are used, the property in (4.18) holds under
mild conditions on the computational model s and on the probability distribution PX . The
convergence can be expected to be fast if the computational model is su�ciently smooth.
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Gauss quadratures

Statistical descriptors in Eqs. 4.14 and 4.15 are de�ned by integrals. As s(x) is a poly-
nomial, it could be integrated analytically. However, for Lagrange polynomials of high
degree, computation can be quite fastidious. Numerical integration by means of appropri-
ate quadrature rule is therefore sought [15].

A quadrature rule consists of replacing the integral by a weighted sum of the function

evaluated at n given nodes t
(n)
j∫
f(x)ρ(x)dx ≈

n∑
j=1

f(t
(n)
j )w

(n)
j , (4.19)

where wj are the weights of the quadrature rule. Zeros of orthogonal polynomials are
excellent candidates for numerical integration. Orthogonal polynomials with respect to
some probability density function on a given interval I are de�ned as∫

I
Qm(x)Qn(x)ρ(x)dx = γnδmn, (4.20)

where δmn is the Kronecker delta operator, γn a normalization constant and m, n the order
of the polynomials Q(x). Some useful properties of orthogonal polynomials and their zeros
are stated below. Their demonstration and more discussion on them can be found in [36].

Property 4.1 Let {Qn(x)}, n ∈ N, x ∈ I, be orthogonal polynomials satisfying or-
thogonality relation (4.20). Then, for any n ≥ 1, Qn has exactly n real distinct zeros in I.

Property 4.2 Formula (4.19) is exact; i.e., it becomes an equality, if f(x) is any poly-
nomial of degree less than or equal to 2n− 1.

It the case of a uniform density ρ(x), polynomials Qn(x) are the Legendre polynomials and
the corresponding quadrature rule is the Gauss-Legendre quadrature. For the standard
Gaussian density, the polynomials are the Hermite polynomials and the quadrature rule is
the Gauss-Hermite quadrature. From Property 4.2 we see that the mean (see Eq. 4.14)
can be estimated correctly if the the computational model is a polynomial of degree lower
than 2n− 1. The order of the computational model is however not know à priori. In this
work, as the probability density function is uniform, Gauss-Legendre quadrature are used
for the numerical integration with respect to the pdf. The nodes and the weights can be
found in pre-computed tables ([15]). Already built in functions can also be found2.

Interpolation nodes

Until now, no assumption has been made on the interpolation points xi used in Eq. 4.16
and they still need to be de�ned. The use of equidistant points is easy to implement but it
may not be suitable for convergence property. As it is known, polynomial interpolation at
uniformly distributed points can leads to oscillations near endpoints at high degrees (Runge
phenomenon). On the contrary, zeros of orthogonal polynomials are excellent candidates
for both interpolation and numerical integration (Property 4.1). Gauss-Legendre points
o�er better convergence properties than equispaced points and will generally be preferred.
An other very popular choice are the Chebyshev collocation points. These nodes are de�ned
as the maximum of the Chebychev polynomials, including the two boundary nodes. In
this work, both Gauss-Legendre and Chebyshev points are presented as they have di�erent
properties that might be interesting.

2http://people.sc.fsu.edu/~jburkardt/
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Figure 4.10: Comparison between Clenshaw-Curtis and Gauss-Legendre abscissa.

Gauss-Legendre interesting features have been discussed previously. They have the
advantage of integrating polynomials of degree lower than 2n − 1 with respect a uniform
measure. They however have the drawback of not being nested, that is, of having a node
distribution that depends on n.

For this purpose, Clenshaw-Curtis nodes are more appropriate. Although they do
not verify the interesting property 4.2 of Gauss-Legendre quadrature rule, they have the
advantage of being nested [20]. The number of nodes at a given level l are given by

nl = 2l + 1. (4.21)

This property is illustrated in Fig. 4.10 where both Clenshaw-Curtis nodes (Fig. 4.10a)
and Gauss-Legendre nodes (Fig. 4.10b) are compared. There are presented here on the
domain of values [75, 95], on which the input quantity Pfl is de�ned. For the Clenshaw-
Curtis abscissa, each level l > 1 is de�ned by the nodes that were present on the previous
level plus a new set of nodes. Therefore, if computations are present at a given level, they
can be reused for the next level. On the contrary, Gauss-Legendre nodes and the results
associated have to be recomputed for each level.

4.2.4 Numerical results: use of approximate pro�les

In this section, the numerical model with all the correct transport and thermodynamics

properties is used (i.e., the ĈPG model). The parameters of the nominal case are again
used except that we now vary the electric power. For each value of Pfl, a new mean velocity
and temperature pro�le is computed (as in Fig. 3.4). As these two pro�les are now allowed
to vary, a greater change in the instability of the vortical mode is expected.

The surrogate model is computed succinctly using an increasing number of collocation
points. Both models with Gauss-Legendre and Clenshaw-Curtis abscissa are compared.
Fig. 4.11 shows the results for the growth rate of the �rst vortical mode.

We can see that the interpolations using the two types of abscissa lead to similar results.
When using a low number of points, we see that −αI is close to a linear relation of Pel.
When the number of points is higher, small oscillations are caught by the interpolation.
The growth rate has therefore a global linear behaviour with a superposition of modes
of small perturbations. If the relation was strictly linear, the output PDF would be the
same as the input PDF. In this case, the output PDF can be expected to have oscillations
around a constant values. This can be also interpreted as the fact that when using a small
number of points, the surrogate model has not yet converged, as it will be con�rmed in
the next section by the convergence analysis.
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(a) Surrogate model with Gauss-Legendre collocation points ( x )
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Figure 4.11: Surrogate model for the growth rate αi of the �rst vortical unstable mode at
ω = 0.7 using polynomial interpolation at: (a) Gauss-Lengendre collocation points and (b)
Clenshaw-Curtis points, with 5 (left) and 17 (right) points.

Convergence analysis of the surrogate model

Before any uncertainty propagation, the convergence of the surrogate model has to be
ensured. The exact solution of the model s(x) is not know and Eq. 4.18 can not be applied
directly. Instead, the following sequence will be computed numerically:

S2
n =

∫
R
|sn(x)− sn−1(x)|2 dPX . (4.22)

We can show that S2
n tends to zero as n goes to in�nity. Noting that Eqs. 4.18 and

4.22 is in fact the square of the norm de�ned on L2, || · ||2, where L2 is the space of function
for which the square is Lebesgue integrable, we have

Sn = ||sn(x)− sn−1(x)||2
= ||sn(x)− s(x) + s(x)− sn−1(x)||2
≤ ||sn(x)− s(x)||2 + ||s(x)− sn−1(x)||2, (4.23)

where the inequality sign came from the triangular inequality. Taking the limit of n tending
to in�nity and using Eq. 4.18, it follows directly that

lim
n→∞

Sn = 0 (4.24)

⇔ lim
n→∞

S2
n = 0. (4.25)
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Although Eq. 4.22 is a good indicator for the convergence of the model, it does not
say anything about the error made by the approximation sn(x) on the exact solution s(x).
Numerical results of the sequence Sn are shown in Fig. 4.12. For both Gauss-Legendre and
Clenshaw-Curtis abscissa, the sequence seems to converge. The relative decrease between
two approximations seems to stabilize for n ≥ 10. Therefore, a su�ciently high number of
collocation points will have to be used for the uncertainty propagation.
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Figure 4.12: Convergence of the sequence Sn at ω = 0.7 using Gauss-Legendre and
Clenshaw-Curtis points on a linear scale (a) and on a semi-log (ln(Sn)) scale (b)

From this convergence analysis, we can say that the two interpolation nodes lead to
similar results at the same rate of convergence. Therefore, the Clenshaw-Curtis abscissa
will be used for the interpolation in the next sections because of their nested property at
each level l. As the surrogate models obtained with the two methods are quite close, the
computation of the statistical descriptions by means of the Gauss-Legendre quadrature
rule should give almost the same result.

Propagation of uncertainty at �xed frequency

Once the surrogate model is available, the propagation on the uncertain input through the
model can be carried out. The most intuitive method for the propagation is the Monte-
Carlo sampling. A set of i.i.d. samples is generated from the input density and the output is
computed using the surrogate model. A distribution of samples is obtained on the domain
of the output and the density can be estimated by using the kernel density estimation
method. The result for the �rst quantity of interest, the growth rate αI , is shown in Fig.
4.13.

Several observations can be made:

1) The surrogate model follows almost a linear relation. Therefore, the output pdf is
close to an equiprobable distribution function but with some oscillations, due to the
computational model.

2) Compared to the sensitivity analysis performed in Sec. 4.1 the variation of the
growth rate of the vortial mode due to the variation of electric power is much more
signi�cant.

In the case of a strictly increasing function (or decreasing)3, it is also possible to

3More generally, if the surrogate model is a bijective function.
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Figure 4.13: Propagation of the input uncertainty (a) through the surrogate model of the
�rst vortical mode (b) using 30 collocation points. (c): Output Ppdf. : Analytical
pdf's, : estimated pdf's. ω is �xed and equal to 0.7.

estimate the output pdf analytically.

ρX (x)dx = ρY(y)dy, (4.26)

ρY(y) = ρX (x)
dx

dy

= ρX (s−1(y))
d

dy
s−1(y)

= ρX (s−1(y))

(
d

dx
s(x)

)−1
(4.27)

= ρX (s−1(y))

(
d

dx
s(s−1(y))

)−1
, (4.28)

where we used x = s−1(y), assuming that the inverse exists, which is veri�ed for strictly in-
creasing (decreasing) functions and where Eq. 4.27 was obtained using the inverse function
theorem.

However, the inverse s−1(y) in Eq. 4.28 may not be easily expressed. For the in-
terpolating lagrange polynomial, it becomes impossible to obtain it by direct analytical
methods. Therefore, the output pdf is obtained pseudo-analytically.

The pseudo-analytical output pdf can be used to validate the convergence of the Monte-
Carlo sampling for the estimation of the pdf. The two curves in Fig. 4.13c almost recovered
exactly, except near the strong variation in the output pdf. Thus, the number of samples
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used in the Monte Carlo method (here, 105 samples were used) is su�cient to ensure the
convergence of the solution.

We can also check the convergence of the Monte-Carlo method using the Law of Large
Numbers for the estimate the mean mY using Eq. 4.11 as the number of samples increases.
The following �gure represents the estimation of the mean as a function of the number of
samples ν. After 105 samples, the variations in the estimate of the mean becomes very
small, indicating that the estimate has converged. The shaded area represents the 95%
interval of con�dence for the mean as the number of samples increase It is the range of
value where the central limit theorem indicates with 95% con�dence that the mean values
will lie.
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Figure 4.14: Convergence of the mean as the number of samples in the Monte-Carlo method
increases.

It is therefore possible to compute the statistical descriptors using either the Monte-
Carlo sampling and calculate Eqs. 4.11 and 4.12, or by direct numerical integration of the
surrogate model with respect to the input pdf. The numerical values obtained are presented
in Tab. 4.1. The result obtained for the mean by the Monte-Carlo estimation corresponds
to the value obtained after ν = 105 using the same sampling as in the previous �gure.
The two estimations are in good agreement. For the comparison, the input coe�cient of

Monte-Carlo GL quadrature

mY 3.6175 3.6174

σY 0.3418 0.3415

covY 0.0945 0.0944

Table 4.1: Comparison of the statistical descriptors estimated by the Monte-Carlo method
and by numerical integration using Gauss-Legendre quadrature rule.

variation covX = 0.068, which means that the uncertainty, after the propagation through
the computational model, is greater on the output QoI than on the input electric power.
The output mean mY of the QoI (which is here the growth rate of the vortical mode) is
very close to the value that was obtained for the nominal case at Pfl = 85 [kW] (for which
−αI = 3.5606). The output standard deviation σY indicates the distribution of the value
of the QoI around the mean. This value has to be compared to the result of sensitivity
analysis made in Sec. 4.1 for which a maximum value of ∆αI = 0.09 was obtained using
the ζ̂ model, at ω = 0.7 (see Fig. 4.2). Therefore, the variation on the growth rate due
to the uncertainty on the input electric power has a greater in�uence compared to the
variation when one or several �ow properties of the model are not predicted accurately.
This suggests that for a correct prediction of the growth rate of the �rst vortical mode,
the uncertainty on the electric power must be reduced.

The estimation of statistical descriptors by means of direct numerical integration will
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be preferred in the following sections. We emphasized here the two ways of computing
them and showed that the results obtained using the two methods were closed.

Coe�cient of variation as a function of frequency

The previous analysis was made for a single value of the frequency ω. However, the
uncertainty on the growth rate due to the input electric power might not be the same for
each value of ω. Therefore, the procedure applied previously for a single value of ω is now
made for ω ∈ [0, 4]. At this point, it is useful to think about VESTA as a function of
the two variables Pfl and ω which returns a value in the αI space. Thinking this way,
αI(Pfl, ω) can be represented by a 2D surface, as represented in Fig. 4.15a.

For each value of Pfl de�ned by the CC abscissa, the local solver of VESTA is used
to sweep all the frequencies, starting from the solution at ω = 0.7. Once the values of
αI are obtained for each frequency and each electric power, the surrogate model can be
computed. The Lagrange interpolating polynomial is built at each frequency and the
statistical quantities are directly calculated by numerical integration. The coe�cient of
variation can be computed for each value of ω in order to give a global overview of the
sensitivity to the output uncertainty.
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Figure 4.15: (a) Surface plot of the growth rate as a function of the two variables Pfl and
ω and (b) coe�cient of variation as a function of ω.

The result obtained for the coe�cient of variation is shown in Fig. 4.15b. This method-
ology of computing the coe�cient of variation can be seen as a reduction of the dimen-
sionality of the problem. The information on the uncertainty of the electric power is now
contained in a single variable that depends only on ω. Of course, by doing this we loose
the information provided by the whole output pdf but we can have and general idea on
the evolution of the output pdf by only looking at the coe�cient of variation. From Fig.
4.15b, we see that covY (ω) is reaching a minimum value at ω = 1.893 where covY (1.893) =.
This means that the growth rate of the instability wave with frequency ω = 1.893 can be
quite well predicted, no matter the uncertainty of the input electric power. For high fre-
quency instability waves, the growth rate is very sensible to the input uncertainty and the
prediction on the value of αI will be quite bad in this range.

Results for the most ampli�ed frequency

The surrogate model for the most ampli�ed frequency arg maxω(αI) is addresses here.
Considering once again Fig. 4.15, the most ampli�ed frequency is not the same at each
value of the electic power. Therefore, at each value of Pfl de�ned at the CC abscissa, the
argument of the maximum growth rate is computed (Fig. 4.16). The values obtained for ω
are then interpolated using the lagrange interpolating polynomial for the surrogate model.
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The convergence of this surrogate model with increasing abscissa must also be proved.
These results are not represented here as they lead to the same conclusions. The surrogate
model for the most ampli�ed frequency ω and the output pdf using Monte-Carlo sampling
are represented in Fig. 4.17. Note that for the output pdf in Fig. 4.17b, it is again possible
to compute the analytical pdf and compare it with the result of the Monte-Carlo sampling.
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Figure 4.16: Isolines and most ampli�ed frequency line for the growth rate. The growth
rate is in dimensionless form. The isolines are represented by continuous lines and the
most ampli�ed frequency line is represented by a discontinuous line.
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Figure 4.17: Propagation of the input uncertainty for the most ampli�ed frequency (a)
through the surrogate model with 30 collocation points at CC abscissa. (b): Output PDF.

: Analytical pdf, : estimated pdf.

In this case, the surrogate model is a strictly decreasing function and it seems to follow
a linear relation with two slopes. The output pdf has thus two regions of equiprobable
density. Note that the range of value in which −αI is de�ned is much smaller than in the
analysis at ω = 0.7. This is because the most ampli�ed frequency for each value of Pfl lies
in the range where the coe�cient of variation was found to be smaller.

4.2.5 Numerical results: use of accurate CFD pro�les

In this section, new CFD pro�les are computed for improving accuracy and validating
the results previously obtained with the approximated pro�les. These new computations
are presented in Appendix C. The previous analysis used interpolation between existing
models and thus some additional errors were introduced. This was however useful to
investigate the convergence of the model and its main features. Clenshaw-Curtis abscissa,
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distributed on the domain of the input uncertainty for the level l, are again used for the
computation of the CFD pro�les. The nested level chosen here is l = 4, and 17 new CFD
pro�les are computed. This value for l is motivated by the satisfying convergence of the
previous model reached for this number of points. On the other hand, l = 5 would require
a great number of simulations, which is computationally expensive. However, nothing can
be said for now on the convergence of the model when accurate pro�le are used, but we
hope that the results will remain closed to the previous ones. The possibility of studying
the convergence on the nested levels of the Clenshaw-Curtis abscissa is one of the main
motivation of using them. Moreover, going to the next level l = 5 would required only a
few numbers of simulations, which would not be the case with the Gauss-Legendre nodes.

Convergence analysis

Convergence analysis can be made here again but only on the nested levels. The CC
abscissa and the corresponding simulations have been computed for n = 17 nodes and
the analysis can not be made on the successive iterations. Thanks to the property of
the CC abscissa of being nested, n = 17 corresponds to the fourth level (see Fig. 4.10a)
and lower levels are composed by exactly the same nodes. Therefore, convergence can be
veri�ed using the fourth �rst levels of the CC nodes. The sequence computed for analysing
convergence is exactly the same as in Eq. 4.22, except that the di�erence computed is now
between two adjacent levels. This sequence is denote Sl and the convergence plot for the
four �rst levels is given in Fig. 4.18.
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Figure 4.18: Convergence of the sequence Sl at ω = 0.7 using accurate pro�les obtained
from numerical simulations at 17 Clenshaw-Curtis nodes fo the electric power.

The surrogate models obtained at l = 1 and l = 4 and ω = 0.7 are represented in
Fig. 4.19. Results look quite the same as before. The relation of the growth rate with the
electric power is still close to a linear relation. In this case, oscillations are barely present
in the model and the output pdf will be close to an equiprobable distribution like the input
pdf. Note that now, at Pfl = 85 [kW], the value −αI = 3.5606 is exactly recovered as
now correct CFD pro�les and the same �tting process are used. We can therefore compare
directly the result obtained here with the ones from Sec. 4.1.

Coe�cient of variation as a function of frequency

The input uncertainty is propagated through the surrogate models computed at each fre-
quency and statistical descriptors can be obtained for the growth rate as a function of
ω. The mean and the variance of the output pdf are directly computed by numerical in-
tegration for each value of ω. For the comparison with the previous case, the statistical
descriptors at ω = 0.7 are shown in Tab 4.2 below. The corresponding surrogate model
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Figure 4.19: Surrogate model for the growth rate at ω = 0.7 using accurate pro�les from
numerical simulations for di�erent number of Clenshaw-Curtis abscissa

and output pdf is shown in Figs. 4.23a and 4.23f. Although the means are not exactly the
same, standard deviations and coe�cients of variation are of the same order.

Approximate CFD pro�les Accurate CFD pro�les

mY 3.617 3.563

σY 0.3415 0.3637

covY 0.094 0.102

Table 4.2: Comparison of the statistical descriptors estimated by numerical integration
for the surrogate models built on approximated CFD pro�les and surrogate models using
accurate CFD pro�les.

The result obtained for the coe�cient of variation at each frequency is plotted in Fig.
4.20. The shape of the function is very similar to what was obtained previously. There is
di�erent sensibility of the output to the electric power in function of the frequency. We
can observe approximatively three di�erent regimes: a low frequency range located before
ω = 1.5, an intermediate frequency range (ω ∈ [1.52.5]) where covY (w) reaches a minimum
value, and a high frequency range for ω > 2.5 where the coe�cient of variation increases
drastically.
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Figure 4.20: Coe�cient of variation as a function of ω for the surogate model with 17
Clenshaw-Curtis nodes and accurate pro�les.

The question from where the di�erences in the coe�cient of variation come is now
addressed In Fig. 4.21 are represented the surrogate models for three di�erent values of ω,
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characteristic for the di�erent regime de�ned above.

It can be observed that their behaviour can be very di�erent depending on the fre-
quency. Here the same scale is used in order to better emphasize their di�erent range of
values and explain the di�erences in the coe�cient of variation. From this �gure, it seems
obvious that the variation in the cov is due to the range on value taken by de growth rate,
and thus the standard deviation of the output pdf.

Indeed, for ω = 1.9, where the minimum of covY (ω) is located, the range of values
for −αI is very restricted. The surrogate model at ω = 3.5 gives a range of values αI ∈
[−0.31,−4.43], which is quite large compared to the other curves. At these frequencies
however the mode tends to stabilize and might not be of interest. At low frequencies, the
coe�cient of variation remains in the same range, with a maximum near ω = 0.7. At
these frequencies, the surrogate model is close to a linear relation and the output pdf is
equiprobably distributed on a restricted range. For ω = 0.7, we found αI ∈ [2.93, 4.18].
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Figure 4.21: Comparison of the surrogate models obtained using accurate CFD pro�les at
di�erent values of ω.

The shape and the output pdf of these three surrogate models can also be investigated.
There are represented in Fig. 4.23 and as expected from the previous results, they are not
the same. While at low frequencies the equiprobability density function is retrieved, it is
not the case at higher frequencies.

Most ampli�ed frequency

The numerical study of the stability of the plasma jet allows us to gain insight into the
sensibility of the jet at the di�erent frequencies of the instability. The coe�cient of variation
indicates that the sensibility of the growth rate can be di�erent depending on the frequency.
At high frequencies, the uncertainty on the input electric power induces a large uncertainty
on the output growth rate while for low and moderate frequencies, the range of uncertainty
was quite restricted.

Now the question of which uncertainty can be assigned to the frequency corresponding
to the maximum growth rate when the electric power is uncertain is addressed. According
to LST, the dominant instaiblity wave in the Plasmatron is the one with frequency that is
the most ampli�ed. Remind that this analysis is made only for the vortical mode, which
is probably not the predominant mode.

As in the previous case where approximated pro�les were used, the surrogate model
is built by interpolating the frequency corresponding to the maximum growth rate at the
CC abscissa. The surrogate model thus obtained and the propagation of the uncertainty
through this model using Monte-Carlo sampling are represented in Fig. 4.22. The sta-
tistical descriptors obtained in this case are given in Tab. 4.3 and they are compared to
the previous ones obtained using approximated pro�les. Note that the QoI denoted by Y
in the table is the quantity arg maxω(−αI). From these results, it can be seen that the
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previous results obtained with approximated pro�les gives almost the same results.

Approximate CFD pro�les Accurate CFD pro�les

mY 1.889 1.893

σY 0.2358 0.23

covY 0.12482 0.121

Table 4.3: Comparison of the statistical descriptors estimated by numerical integration for
the surrogate models built of the most ampli�ed frequency on approximated CFD pro�les
and surrogate models using accurate CFD pro�les.
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Figure 4.22: Propagation of the input uncertainty for the most ampli�ed adimensional
frequency ω (a) through the surrogate model with 17 CC collocation points using accurate
CFD pro�les. (b): Outputpdf. : Analytical PDFs, : estimated pdf.
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(d) Output pdf (ω = 1.9060)
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Figure 4.23: Propagation of the input uncertainty through the surrogate model (a) for the
growth rate at di�erent frequency ω. (b): Output pdf. : Estimated pdf's.
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Link with dimensional frequency

The previous analyses were all made in terms of the adimensional angular frequency ω.
However, the results in terms of dimensional frequency f ([Hz]) would be much more
instructive. Recall that the relation that relates f to ω is f = ωwcl/(2πRjet). In Sec. 4.1,
the rescaling for the frequency was quite straightforward as any of these parameters were
modi�ed. However, in this case, the centerline velocity wcl is also dependent on the electric
power and the results in terms of f might be di�erent.

A link between the adimensional frequency ω and the dimensional frequency f for the
UQ analysis on the growth rate has not been made in this work. As the scaling is not the
same for each values of Pfl, the function −αI(ω) at the di�erent values of Pfl after the
dimensionalisation may not be de�ned on the same set of points (as we are dealing with
numerical solutions). Thus, the interpolation for building the surrogate model is made
more di�cult. Moreover, the domain of frequencies where the new function −αI(Pfl, f) is
de�ned changes from one curve to the other. This issue is represented in Figs. 4.24a and
4.24b for three di�erent values of Pfl. A solution would be to de�ne an analytical pro�le
for the growth rate before the dimensionalisation. Interpolating data might be an other
solution.

This has not been made in this work and it should be investigated as well in order
to obtain a correct interpretation of the previous analyses in terms of the dimensional
frequency. Nevertheless, by looking more closely at Fig. 4.24a it can be reasonably assumed
that for low frequencies, the coe�cient of variation, and thus the uncertainty on the growth
rate will be lower than at high frequencies. Near f = 300 [Hz], the values seem to be more
�packed� and consequently the coe�cient of variation will be minimum in this range of
frequencies, which corresponds to the range of the maximum growth rate.
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Figure 4.24: Growth rate in function of (a) the dimensional frequency and (b) the angular
dimensionless frequency for di�erent electric power values.

However, it has been possible to investigate the surrogate model for the most ampli�ed
dimensional frequency, as in this case the values at di�erent frequencies are interpolated
and are always de�ned (numerically speaking). Indeed, the most ampli�ed dimensional
frequency can be directly computed by �nding the value of the most ampli�ed ω and
rescaling it. Then, the interpolation is made between these frequencies at the values of
Pfl given by the CC abscissa. The result for the surrogate model and the output pdf is
represented in Fig. 4.25. Note that in this case, the surrogate model is completely di�erent.
It is not possible to compute the analytical pdf and only Monte-Carlo sampling is possible
to have an idea on the shape of the output pdf. The oscillations and the zero derivatives
in the surrogate model induced strong variations in the output pdf, meaning that talking
in terms of mean value and standard deviation might not be relevant.

This last analysis with the dimensional frequency allows a link with the numerical
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Figure 4.25: Propagation of the input uncertainty for the most ampli�ed dimensional
frequency (a) through the surrogate model with 17 CC collocation points using accurate
CFD pro�les. (b): Output pdf. : Estimated pdf.

simulations to be established. A user who wants to simulate numerically the instability
of the jet will be faced with the problem of choosing a value for the e�ciency of the
Plasmatron. The results obtained previously indicate that, assuming that the vortical mode
is the dominant instability4, the user will predict that the most amplify frequency of the
jet will lie within a frequency range [288.81, 299.77] with mean 294.19 [Hz]. Thus, when he
will reproduce experimentally the numerical results obtained previously, he can expect that
the frequency of the observed instability will be in the range obtained numerically. Thus,
the uncertainty quanti�cation study made in this section gives a range of values where the
experimental results can be expected to lie and assigns to it a probability distribution. This
can be of practical interest if we want only to have an approximate range of possible values
of the instability frequency (as well as the associate wavelength) without any experimental
realization.

Of course in the Plasmatron, the coupling between the generator and the plasma does
not vary, if the operating conditions are kept constant, and the user will ideally obtain
the same measurement of the instability each time. The uncertainty studied here is only
on the numerical investigation of the stability of the plasma jet. However, if in the near
future, the e�ciency could be reduced or known exactly, these results must be updated
accordingly. This illustrates the di�erence between epistemic uncertainty, which is due to
a lack of knowledge, with the aleatory uncertainty, which consider the uncertain input as
having an aleatory behaviour.

However, as already stated, this analysis can be linked to an uncertainty on the mea-
surements of the electric power of the generator Pfl. Only in this case the experimentalist
will observe this kind of variation from one experiment to the other and the uncertainty
can be considered as aleatory, as the user will observe di�erent results with the same set
of input conditions.

4Although this is not likely to be the case as the acoustic modes are more unstable

76



Chapter 4. Sensitivity Analysis and Uncertainty Quanti�cation

4.3 Sensitivity Analysis with Input Uncertainty

We consider again the di�erent models described in Sec. 4.1 and now we assume that the
input Pfl is uncertain. The aim of this section is to investigate the variation of the �rst
vortical mode when �ow properties are modi�ed and when the electric power is not exactly
known. We are applying here the methodology developed in the previous section to the
di�erent models introduced at the beginning of the chapter for the sensitivity analysis.

We can compute for each set of parameters a surrogate model. This surrogate model
can be considered here to be a function of three parameters: Pfl, ω and ϕ̂. The last variable
ϕ̂ can be composed of any set of parameters as described in Sec. 4.1. For simplicity, we

investigate here only ϕ̂ = {χ̂, ĈPG, ĈRG}. Of course, the surrogate model is a continuous
function of Pfl, ω in [75, 95] × [0, 4] and a discrete function of ϕ̂. It will be denoted here
sϕ̂(x, ω) where x stands for the electric power for simplicity of notation.

4.3.1 Growth rate and dependence on frequency

In order to follow the same steps as in Sec. 4.1, we �rst consider the di�erences in the
growth rate at each frequencies for the di�erent model parameters compared to the accurate

ĈRG model.
In the previous sensitivity analysis in Sec. 4.1, at a given frequency, we gauged the

di�erence between two models in terms of the di�erence between the values of the growth
factor predicted by these two models at the nominal power. By contrast, in the present
sensitivity analysis under uncertainty, in order to take into account the uncertainty in the
power, at a given frequency, we must gauge the di�erence between two models in terms of
the di�erence between the values of the growth factor predicted by these two models over
a range of values of the power. Thus, at a given frequency, we consider the two models as
functions that transform each value of the power into corresponding values for the growth
factor, and we gauge the di�erence between these two models by the L2 norm between
these functions. The following integration is considered here:

I ϕ̂(ω) =

∫
||sĈRG(x, ω)− sϕ̂(x, ω)||2ρ(x)dx. (4.29)

Once again, as ρ(x) is the equiprobable density function, we can use the Gauss-Legendre
quadrature rule for the numerical integration. The integral is therefore

I ϕ̂(ω) ≈
nGL∑
i=1

||sĈRG(xi, ω)− sϕ̂(xi, ω)||2wnGL
j , (4.30)

where nGL denotes the order of integration of the quadrature rule and wnGL
j the weight j

of order nGL. The results for the numerical integration for the di�erent �ow models are
given in Fig. 4.26.

As we are considering a norm here, it is not possible to say wheter the parameter has
a stabilizing or a destabilizing in�uence. This �gure has to be compared with the previous
one obtained in Fig. 4.4

4.3.2 Most ampli�ed frequency

One Surrogate model can be de�ned for the most ampli�ed frequency of each model. The
same integral as before is computed, except that now we are integrating the surrogate
model for the most ampli�ed frequency. The results obtained, for the dimensional and
adimensional frequency, are shown in Fig. 4.27. It can be noticed once again that the
in�uence of the �ow properties is globally the same as in the �rst deterministic sensitivity
analysis. The surrogate model for the

The surrogate models for the most ampli�ed frequency f for the three models ĈPG,

ĈRG, and ζ̂ are represented in Fig. 4.28. The quantity that was computed in Fig. 4.27b
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was in fact the norm 2 of the di�erence between one model and the ĈRG. Looking at
the surrogate models, it can be seen that, although the modi�cation of the parameters
in�uences the range of frequency, the global behaviour of the dependence of the most
ampli�ed frequency with the electric power is unchanged is unchanged.
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0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

I
ϕ̂
(ω

)
[
-
]

ω [ - ]

(b) ϕ̂ = µ̂

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

I
ϕ̂
(ω

)
[
-
]

ω [ - ]

(c) ϕ̂ = k̂

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25
I
ϕ̂
(ω

)
[
-
]

ω [ - ]

(d) ϕ̂ = λ̂

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

I
ϕ̂
(ω

)
[
-
]

ω [ - ]

(e) ϕ̂ = ĥ
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Figure 4.26: Distance between the growth rate of the vortical mode of the CRG model and
the di�erent models involving simpli�ed laws in temperature for the transport and ther-
modynamic properties in function of the adimensional angular frequency ω with uncertain
input electric power.
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Figure 4.27: In�uence of the model of transport and thermodynamic properties on the
most ampli�ed frequency compared to the accurate CRG model.
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Figure 4.28: Comparison of the surrogate models obtained using accurate CFD pro�les at
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4.4 Summary of the Chapter

The previous analysis indicates that that all parameters of the model do not have the
same in�uence on the instability of the vortical mode when the LTE hypothesis is intro-
duced. Thermal conductivity k, dynamic viscosity µ and compressibility factor ζ are the
parameters that most a�ect the instability. Total enthalpy of the gas h has only a weak
in�uence on the vortical mode. But it appears that for acoustics mode, h and ζ are play-
ing an important role Other parameters as the second viscosity coe�cient λ or density ρ
does not have any impact. The sensitivity analysis with the introduction of the uncertain
electric power provides the same results concerning the relative importance of the di�erent
parameters.

A methodology for the uncertainty quanti�cation for the stability of the plasma jet
was proposed. A non-intrusive method was investigated here as many tools already de-
veloped and validated at VKI (CooLFluiD, Mutation, VESTA) come into play. The
uncertainty on the plasma electric power was propagated through a surrogate model built
on the interpolation of the solution at Clenshaw-Curtis abscissa. Gauss-Legendre points
have also been discussed. This methodology remains general and could be applied to other
scalar input quantities and other probability density function could also be investigated.
In particular, uncertainty on the measurement of the electric power of the generator can
be studied as well.

The variations of the growth rate and the most ampli�ed frequency between the ref-
erence (correct) model and the simpli�ed models are however much more dependent of
the electric power. The consequence of this is that when running a CFD simulation, the
experimenter has a greater interest in determining more precisely the e�ciency η of the
Plasmatron, corresponding to its particular case, in order to reduce the range of uncer-
tainty on the electric power transmitted to the �ow. This stronger dependence on the
electric power was expected as it is in�uencing directly the mean pro�le computed with
CooLFluiD. When considering di�erent models, the mean pro�le remains unchanged.

One should be careful with these considerations. This study does not suggest that the
�ow properties does not have to be determined accurately. As stated in the beginning, the
mean �ow have to be computed using the rigorous �ow properties. Without this, CFD
results would be completely inaccurate or wrong.
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Chapter 5

Conclusion

5.1 Contribution of this Thesis

Sensitivity analysis in the nominal case

A methodology for sensitivity analysis was proposed. It was observed that the driving
parameter for low frequency jet instabilities was the compressibility factor. This parameter
contains all the chemistry of the high temperature jet, a term that was not present when
a calorically perfect gas was assumed for the plasma jet. It was also observed that the
viscosity µ was one of the driving parameter in the instability of the vortical mode at
moderate frequencies. However, at these frequencies the compressibility factor was tending
to zero and was not in�uencing the stability anymore.

The analysis was made also for the three �rst acoustic modes. The enthalpy h was
showed to be the main driving parameter in this case, together with the compressibility
factor ζ. This analysis was made however for a �xed frequency of the instability and
nothing could be said about the in�uence of the frequency. The in�uence of the enthalpy
was also showed to decrease when considering acoustic modes with higher radial number.
In these cases, the two models (CPG and CRG) tends to the same results and there is no
more parameter in�uencing the stability.

These results suggested that the main driving parameter of the instability was in some
manner linked to the mechanism of formation of the particular mode. Vortical modes are
linked to an instability in the shear layer, and therefore they should be strongly coupled
to the viscosity. Acoustic mode are linked to waves re�ecting back and forth inside the
jet and therefore may be related to the enthalpy (which determines the equilibrium speed
of sound). Several explanations for the di�erent mode of instabilities in high-temperature
jets exist, but there is no universal one at that time. This sensitivity analysis may be a
starting point in understanding their behaviour by numerical investigation.

Uncertainty quanti�cation

A methodology for the uncertainty quanti�cation when the electric power is uncertain was
developed. The results showed that the growth rate and the most ampli�ed frequency were
strongly dependent on the electric power. While the uncertainty on the most ampli�ed
frequency is high when expressed in adimensional form, the uncertainty is reduced when
it is expressed in terms of dimensional unit. Thus, when numerical investigation of the
instability of the vortical mode of the jet is computed, an uncertainty of 10 [Hz] is made
on the most ampli�ed frequency. This result is limited of course to an input electric power
in the range range [75, 85] [kW] with equiprobable density. The methodology could also be
extended as well to other types of modes.

It appeared also that the dependence on the electric power was not the same at each
frequencies. In particular, the uncertainty on the growth rate of the vortical mode is
minimum for low and moderate adimensional frequencies (ω < 2.5).



5.2. Future Recommendations

Sensitivity analysis with input uncertainty

The sensitivity analysis, together with the quanti�cation of uncertainty on the input electric
power using stochastic collocations, was �nally investigated. It appeared once again that
the main driving parameters in�uencing the growth rate αI was the viscosity µ and the
factor of compressibility ζ. The thermal conductivity k has an in�uence only for high
frequencies ω. The results for the growth can not be interpreted in terms of dimensional
frequency.

The same results as in the �rst sensitivity analysis are obtained for the most ampli�ed
frequency f . Parameters µ, k and ζ are the main driving parameter. A stronger variation
is however observed when viscosity is modi�ed and ζ has the biggest in�uence. From
these considerations, it seems that the input electric power does not modi�es the relative
importance of the parameter driving the instabilities of the jet, at least for the vortical
mode. Moreover, when �ow properties are changed, the global dependence on the input
electric power was still the same, except for a change in the range of values. This suggested
that the electric power and the �ow properties in�uence the instability of the vortical mode
of the plasma jet in an independent manner.

Note that the results of the sensitivity analysis are made only regarding the stability
analysis. Flow properties were not modi�ed for computing the numerical simulations, as
it would lead to completely wrong results.

5.2 Future Recommendations

• Extension of the UQ analysis to several inputs. The study was made on a
single uncertain input, but it can also be extended to multiple uncertain inputs.
For example, one can consider that the pressure in the Plasmatron is know in a
certain range due to measurement errors. The stochastic collocation model thus
obtained would be a polynomial of two dimensions and the relative importance of the
uncertainty of the di�erent inputs can be quanti�ed. Stochastic collocation method
can however be di�cult to generalize to higher dimensions (curse of dimensionality)
and other methods based on sparse grid construction may be considered [17].

• UQ analysis of the Mutation properties. In a future framework of uncertainty
quanti�cation study, errors on the Mutation properties could also be investigated.
In this case, the input would be an uncertain function of temperature and/or pressure
a bounds should be put on the properties. A similar methodology of stochastic col-
location could be for example developed. However, the previous sensitivity analysis
showed that the variation of properties produced only small changes in the growth
rate. Therefore, it can be easily predicted that the small bounds on the Mutation

properties will produce only a barely noticeable variation in the instability. How-
ever, considering now the correct thermodynamic and transport properties, it could
be possible to consider the whole computational model, i.e. with the CFD model
CooLFluiD, that was not considered in this work, for propagating the uncertainty.
Accounting for this, a more realistic sensitivity analysis on the thermodynamic and
transport and properties could be made and the in�uence of the input properties
could be quanti�ed in a more realistic way. However, the high-dimensionality of the
problem may be limiting for the using of simple stochastic collocation methods and
high dimensional non-intrusive UQ methods should be investigated.

• Generalization to other type of modes. In the uncertainty quanti�cation part,
we limited ourselves to the analysis of the vortical mode. This is of course not
necessarily general and it could be extended as well to other types of instability
that can be found in the spectrum of the linearized operator and in particular to
acoustic modes. In the view of generalizing this analysis to other types of mode, it
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Chapter 5. Conclusion

should be useful to develop a methodology for identifying the di�erent modes in the
spectrum. For example, acoustic modes are close to the continuous spectrum, which
makes their identi�cation by a simple guess on their wavenumber value much more
di�cult. The di�erent acoustic modes could be identi�ed by the number of quasi-
nodes and anti-nodes present in their pressure eigenfunction which is well de�ned.
Mack's criterion, which is useful for di�erentiating vortical modes from the acoustic
ones, was also not veri�ed for low frequency acoustic modes studied in this work and
this should be investigated as well. The in�uence of the adimensional frequency on
acoustic modes has not been yet extensively investigated. By doing this, we could
get a better comprehension of these kind of instabilities.
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Appendix A

Integral Calculus in Kinetic Theory

A.1 Useful Integrals

•
∫∞
0 exp(−ax2)dx = 1

2

√
π
a

•
∫∞
0 x exp(−ax2)dx = 1

2a

•
∫∞
0 x2 exp(−ax2)dx = 1

4a

√
π
a

•
∫∞
0 x3 exp(−ax2)dx = 1

2a2

A.2 Mean peculiar velocity

Maxwellian distribution velocity function is recall here for convenience

fMi = ni

(
mi

2πkBT

)3/2

exp

(
−mi(ci − u)2

2kBT

)
(A.1)

Let us denote C2
i = C2

i,1+C2
i,2+C2

i,3, i ∈ S, where the peculiar velocity reads as Ci = ci−u
which represents the velocity of a particle of species i in the hydrodynamic reference frame.
Mean peculiar velocity is given by

C̄i =
1

ni

∫
Cif

M
i dci

=

(
mi

2πkBT

)3/2 ∫
Ci exp

(
−miC

2
i

2kBT

)
dCi, (A.2)

where we used the notation for the integral∫
( · ) dCi =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

( · ) dCi,1dCi,2dCi,3. (A.3)

Having Ci =
√
C2
i,1 + C2

i,2 + C2
i,3, it will be more useful to express the integral in spherical

coordinates. With the spherical coordinate system (C, θ, ϕ), the integral bounds are now
expressed as ∫

( · ) dCi =

∫ ∞
0

∫ π

0

∫ 2π

0
( · ) C2

i sin θdCidθdϕ (A.4)

Rewriting Eq. (A.2) using Eq. (A.4), we have

C̄i =

(
mi

2πkBT

)3/2 ∫ π

0
sin θdθ

∫ 2π

0
dϕ

∫ ∞
0

C3
i exp

(
−miC

2
i

2kBT

)
dCi (A.5)



A.2. Mean peculiar velocity

Taking advantage of the fourth useful integral from Sec. A.1, it follows directly that

C̄i = 4π

(
mi

2πkBT

)3/2 1

2

(
2 kbT

mi

)2

(A.6)

=

(
8kBT

πmi

)1/2

(A.7)

The mean of the magnitude of the species peculiar velocity can be related to the thermal
agitation of the particles in the gas.

92



Appendix B

Linear Stability Equations

B.1 Linearized Gas State Equation

The total number of unknown in the linear stability problem is �ve, namely, [u′, v′, w′, p′, T ′],
while Navier-Stokes system yields four equations. Therefore, an additional equation is
needed in order to close the system and the gas state equation is naturally included. The
equation of state for the gas mixture in adimensional form reads

Hp = ρTζ, (B.1)

where p, ρ, T , ζ are the instantaneous �ow variables and H = Ec cp/R0. Proceding to the
linearization by introducting the small perturbations into the �ow, we have

p = p̄+ p′, (B.2a)

ρ = ρ̄+ ρ′, (B.2b)

T = T̄ + T ′, (B.2c)

ζ = ζ̄ + ζ ′, (B.2d)

where the above bar indicates the mean �ow variables. Inserting these decompositions
in Eq. (B.1), removing high order terms in small perturbations and noting that mean
variables also verify the gas state law, we have

Hp′ = ρ̄T̄ ζ ′ + ρ̄ζ̄T ′ + T̄ ζ̄ρ′. (B.3)

ζ can be assumed to be a function of the two thermodynamic variables p = p̄ + p′ and
T = T̄ + T ′. Developing ζ in a Taylor series around p̄ and T̄ , we have

ζ(p̄+ p′, T̄ + T ′) = ζ(p̄, T̄ ) +
∂ζ(p̄, T̄ )

∂p̄
+
∂ζ(p̄, T̄ )

∂p̄
+O((p′)2, (T ′)2), (B.4)

where ζ(p̄, T̄ ) is equivalent to ζ̄. It follows that ζ ′ = ζ − ζ̄ and thus

ζ ′ =
∂ζ̄

∂p̄
p′ +

∂ζ̄

∂T̄
T ′. (B.5)

This last equation is valid in the application of LST as terms of higher degree in p′ and T ′

were already neglected. Subsituting Eq. (B.5) in Eq. (B.3) leads to

Hp′ = ρ̄T̄

(
∂ζ̄

∂p̄
p′ +

∂ζ̄

∂T̄
T ′
)

+ ρ̄ζ̄T ′ + T̄ ζ̄ρ′. (B.6)

In order to have an expression for the density perturbation in terms of pressure and tem-
perature perturbation, we can write equivalently

ρ′ =

(
H

T̄ ζ̄
− ρ̄

ζ̄

∂ζ̄

∂p̄

)
p′ −

(
ρ̄

T̄
+
ρ̄

ζ̄

∂ζ̄

∂T̄

)
T ′. (B.7)



B.1. Linearized Gas State Equation

Substituting H = (ρ̄T̄ ζ̄)/p̄ and rearranging terms,

ρ′ =

(
ρ̄

p̄

(
1− p̄

ζ̄

∂ζ̄

∂p̄

))
p′ −

(
ρ̄

T̄

(
1 +

T̄

ζ̄

∂ζ̄

∂T̄

))
T ′. (B.8)

Parameters F and G appear naturally in the linearized gas state equation as

F = 1− p̄

ζ̄

∂ζ̄

∂p̄

= 1− ∂ ln ζ̄

∂ ln p̄

∣∣∣∣
T

, (B.9)

G = 1 +
T̄

ζ̄

∂ζ̄

∂T̄

= 1 +
∂ ln ζ̄

∂ ln T̄

∣∣∣∣
p

. (B.10)

Finally, density perturbation can be written as

ρ′ = F
ρ̄

p̄
p′ −G ρ̄

T̄
T ′, (B.11)

or equivalently, after inserting the modal decomposition

ρ̃ = F
ρ̄

p̄
p̃−G ρ̄

T̄
T̃ . (B.12)
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Appendix C

Numerical results of the ICP

CooLFluiD simulations and their

dependency on electric power

C.1 Mean Pro�les

In Sec. 4.2.5, new CFD pro�les are needed for better accuracy of the results of the uncer-
tainty quanti�cation. The new pro�les are computed for the values of the electric power
at the 17 Clenshaw-Curtis abscissa de�ned on the domain Pfl ∈ [75, 95] [kW]. The ICP
CooLFluiD solver is used for each numerical simulations.

We �rst look at the dependence of the centerline velocity and centerline temperature
values on Pfl in Figs. C.1a and C.1b. It can be noticed that the temperature increase
signi�cantly with the electric power. At low electric power values, Tcl is near 7100 [K].
This value for the temperature corresponds to a low degree of ionization in the gas. By
comparison, for Pfl = 95 [kW], Tcl = 8248 [kW], which corresponds to a greater degree of
ionization of the gas. We can also note the linear relation between the mean streamwise
centerline velocity with the electric power.
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Figure C.1: Dependence of the mean streamwise centerline velocity and mean centerline
temperature on the electric power Pfl.

Mean adimensional streamwise velocity and temperature pro�les are represented in
Figs. C.2a and C.3b. It can be noticed that the values of the electric power at endpoints
are quite closed to each other. It was the �rst time that such closed conditions were used
and there were no guarantee that the algorithm would converge towards distinguishable
solutions. Results proved that the ICP solver was accurate enough to allow small ∆Pfl



C.1. Mean Pro�les
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Figure C.2: Mean streamwise velocity pro�les obtained from the ICP CooLFluiD solver
at the 17 CC abscissa de�ned on Pfl ∈ [75, 85] [kW]

between two pro�les. In Figs. C.2a and C.3a, a zoom on the part where the adimensional
pro�les are the most dependent on Pfl is provided. As it can be observed, an increase in
the electric power reduces the amplitude of the velocity in the bending zone (Fig. C.2b).
Thus, a low value for the electric power will probably increase the instability of the �ow
due to the shape of the velocity pro�le.
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Figure C.3: Mean temperature pro�les obtained from the ICP CooLFluiD solver at the
17 CC abscissa de�ned on Pfl ∈ [75, 85] [kW].

97


	Introduction
	Motivation
	Ground-based facilities
	Instabilities Phenomena Experienced in Ground-Based Facilities
	Numerical Study of Plasma Jet Instabilities
	Objectives and Overview of the Work

	Transport and Thermodynamic Properties of Plasma Flow
	The Plasmatron Facility
	The plasma torch
	The facility
	Electric system
	Thermal plasma

	Kinetic Theory of Gases
	Simple kinetic model for the transport properties
	Boltzmann equation
	Maxwell-Boltzmann velocity distribution function
	Maxwell transfer equations
	Chapman-Enskog perturbative method

	Local Thermodynamic Equilibrium Properties
	Mixture composition
	Thermodynamic properties
	Gas state equation
	Transport properties
	Comparison of the properties of a calorically perfect gas with the properties of a mixture of perfect gases in LTE

	Properties of the Plasma Jet in Local Thermodynamic Equilibrium
	General description of free jet flows
	Numerical model for the plasma jet
	Thermodynamic and transport properties of the jet in local thermodynamic equilibrium

	Summary of the Chapter

	Hydrodynamic Instabilities and Linear Stability Theory
	Hydrodynamic Instabilities
	Interest of stability analysis

	Linear stability theory
	Parallel flow hypothesis
	Modal decomposition
	Temporal and spatial analysis

	Jet instabilities
	Vesta Toolkit
	Input parameters
	Generation of analytic profiles

	Numerical Results from Vesta
	Spectrum of the linearized operator
	Growth rate and phase speed as a function of frequency
	A note on earlier results and link with experiments in the Plasmatron

	Summary of the Chapter

	Sensitivity Analysis and Uncertainty Quantification
	Sensitivity analysis in the Nominal Case
	Notation and description of the model used
	Results of the sensitivity analysis on the nominal case
	Dependence on frequency
	Influence of the model on the most amplified frequency
	Discussion on the results

	Uncertainty Quantification of the Electric Power
	Methodology: characterization of the input uncertainty
	Methodology: propagation of uncertainties
	Implementation: stochastic collocation methods
	Numerical results: use of approximate profiles
	Numerical results: use of accurate CFD profiles

	Sensitivity Analysis with Input Uncertainty
	Growth rate and dependence on frequency
	Most amplified frequency

	Summary of the Chapter

	Conclusion
	Contribution of this Thesis
	Future Recommendations

	References
	Integral Calculus in Kinetic Theory
	Useful Integrals
	Mean peculiar velocity

	Linear Stability Equations
	Linearized Gas State Equation

	Numerical results of the ICP CooLFluiD simulations and their dependency on electric power
	Mean Profiles


