WHERE DID ARCTIC-ALPINE MOSSES SURVIVE IN A FROZEN EUROPE?

Insights from a multispecies coalescent analysis

Alice Ledent, Aurélie Désamoré, Benjamin Laenen, Jairo Patiño, Stuart F. McDaniel, Patrick Mardulyn and Alain Vanderpoorten
Introduction

Impact of global warming on species distribution?
→ Study of past climate changes (Petit, R.J. et al., 2005)
Introduction

Impact of global warming on species distribution?
 → Study of past climate changes (Petit, R.J. et al., 2005)

What does explain the actual species distribution?
 ▫ Last Glacial Maximum (LGM: 26,000 – 19,000 years BP) = the most virulent

Fundamental biogeographic hypothesis in Europe
 ▪ Impact of LGM on species distribution
 ▪ Southern refugia hypothesis
 ▪ Temperate species
 ▫ Woody plants (Petit, R.J. Science, 2003)
Introduction

Impact of global warming on species distribution?
→ Study of past climate changes (Petit, R.J. et al., 2005)

What does explain the actual species distribution?
 ▫ Last Glacial Maximum (LGM: 26,000 – 19,000 years BP) = the most virulent

Fundamental biogeographic hypothesis in Europe
▪ Impact of LGM on species distribution
▪ Southern *refugia* hypothesis
▪ Temperate species
 ▫ Small mammals (Hewitt, G.M. *Nature*, 2000)
Introduction

- Arctic-Alpine distribution area

- Regions mainly covered by ice during the Pleistocene glacial periods

- Disjunct distribution
 - Arctic/Boreal = Fennoscandia
 - Alpine = Alps, Carpathians, Rhodopes, ...

- Poorly studied but highly important

→ Where did they survive during the glacial periods, especially the LGM?
Introduction

- Arctic-Alpine distribution area

- Regions mainly covered by ice during the Pleistocene glacial periods
 - Disjunct distribution
 - Arctic/Boreal = Fennoscandia
 - Alpine = Alps, Carpathians, Rhodopes, ...
 - Poorly studied but highly important

→ Where did they survive during the glacial periods, especially the LGM?
Introduction

■ Arctic-Alpine distribution area

■ Regions mainly covered by ice during the Pleistocene glacial periods

■ Disjunct distribution
 - North = Fennoscandia
 - South = Alps, Carpathians, Rhodopes,…

■ Poorly studied but highly important

→ Where did they survive during the glacial periods, especially the LGM?
Introduction

Major biogeographic hypotheses

- **Tabula rasa hypothesis** (Birks 2008, Skrede 2006)
 - No survival within the ice sheet
 - Recolonization from *refugia* outside the ice sheet
 - **Nunatak hypothesis** (Schönswetter 2005, Westergaard 2011)
 - *In-situ* survival in micro-*refugia*
 - Within the ice sheet
 - **Alpine nunatak hypothesis** (Schönswetter 2003)
 - Micro-*refugia* only in southern Alpine regions
 - Recolonization of Fennoscandia from those *refugia*
 - **Out-of-Europe hypothesis** (Schönswetter 2006, Skrede 2006)
 - Recolonization from out-of-Europe populations
Major biogeographic hypotheses

- **Tabula rasa hypothesis** (Birks 2008, Skrede 2006)
 - No survival within the ice sheet
 - Recolonization from *refugia* outside the ice sheet

- **Nunatak hypothesis** (Schönswetter 2005, Westergaard 2011)
 - *In-situ* survival in micro-*refugia*
 - Within the ice sheet

- **Alpine nunatak hypothesis** (Schönswetter 2003)
 - Micro-*refugia* only in southern Alpine regions
 - Recolonization of Fennoscandia from those *refugia*

- **Out-of-Europe hypothesis** (Schönswetter 2006, Skrede 2006)
 - Recolonization from out-of-Europe populations
Introduction

Major biogeographic hypotheses

- **Tabula rasa hypothesis** (Birks 2008, Skrede 2006)
 - No survival within the ice sheet
 - Recolonization from *refugia* outside the ice sheet

- **Nunatak hypothesis** (Schönswetter 2005, Westergaard 2011)
 - *In-situ* survival in micro-*refugia*
 - Within the ice sheet

- **Alpine nunatak hypothesis** (Schönswetter 2003)
 - *Micro-refugia* only in southern Alpine regions
 - Recolonization of Fennoscandia from those *refugia*

- **Out-of-Europe hypothesis** (Schönswetter 2006, Skrede 2006)
 - Recolonization from out-of-Europe populations
Introduction

What about bryophytes?

- Dominant elements in Arctic-Alpine vegetation
 (Roads, E. 2014)

- High cold tolerance (Furness, S.B. and Grime, J.P. 1982)

- Ability to survive in ice and regenerate (Lafarge, C. 2013, Roads, E. 2014)
 → Good candidate for the Nunatak hypothesis

- High dispersal capacities
- Ability to cross oceans (Stenøien, H.K. 2010)
 → Good candidate for the out-of-Europe hypothesis
Introduction

What about bryophytes?

- Dominant elements in Arctic-Alpine vegetation (Roads, E. 2014)

- High cold tolerance (Furness, S.B. and Grime, J.P. 1982)
- Ability to survive in ice and regenerate → Good candidate for the Nunatak hypothesis

- High dispersal capacities
- Ability to cross oceans (Stenøien, H.K. 2010) → Good candidate for the out-of-Europe hypothesis
Material and methods

Sampling and data analysis

- 3 species
 - *Amphidium lapponicum*
 - *Timmia austriaca*
 - *Timmia bavarica*

- Sampled across 5 populations
 - Fennoscandia
 - Iced Alps
 - Non iced Alps
 - Lowland
 - Out (not represented here)

- 3-4 chloroplastic and nuclear loci/sp.
Material and methods

I. Sampling and data analysis

- 3 species
 - *Amphidium lapponicum*
 - *Timmia austriaca*
 - *Timmia bavarica*

- Sampled across 5 populations
 - Fennoscandia
 - Iced Alps
 - Non iced Alps
 - Lowland
 - Out (not represented here)

- 3-4 chloroplastic and nuclear loci/sp.
Material and methods

Sampling and data analysis

- **3 species**
 - *Amphidium lapponicum*
 - *Timmia austriaca*
 - *Timmia bavarica*

- **Sampled across 5 populations**
 - Fennoscandia (■)
 - Iced Alps (■)
 - Non iced Alps (■)
 - Lowland (■)
 - Out (not represented here)

- **3-4 chloroplastic and nuclear loci/sp.**
Material and methods

I Sampling and data analysis

II Approximate Bayesian Computation analysis (ABC)

3 steps
Material and methods

1. Simulation of alleles genealogies
 - Coalescence technique
 - Under the constraint of different demographic scenarios
 - Through definition of prior range of values of demographic parameters
 - Migration rates
 - Effective population size

Scenario 1

Scenario 2

Scenario 3

Scenario n

X 10^6 X 10^6 X 10^6 X 10^6
Material and methods

1. Simulation of alleles genealogies
 - Coalescence technique
 - Under the constraint of different demographic scenarios
 - Through definition of prior range of values of demographic parameters
 - Migration rates
 - Effective population size

Species Distribution Models (SDMs)

<table>
<thead>
<tr>
<th>Dependent data</th>
<th>Independent data</th>
<th>Species Distribution model (SDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22/05/17
Material and methods

1. Simulation of alleles genealogies
 - Coalescence technique
 - Under the constraint of different demographic scenarios
 - Through definition of *prior* range of values of demographic parameters
 - Migration rates
 - Effective population size

\[\text{Dependent data} + \text{Independent data} = \text{Species Distribution model (SDM)} \]
2. Matrices of sequences simulation

- Simulation of nucleotide matrices along each of the demographic genealogies using substitution models

\[
\begin{align*}
I_1 &= \text{CAGATCCCAA} \ldots \text{TATGAGCCAT} \\
I_2 &= \text{ACGACGAAAG} \ldots \text{CATGAGACAG} \\
\vdots & \quad \vdots \quad \vdots \\
I_n &= \text{CCAAACGATC} \ldots \text{ATGTGCGTGC}
\end{align*}
\]

locus 1 \ldots locus z

Matrices of simulated sequences

Models of sequence evolution

\(X \times 10^6 \)
3. Selection of the best-fit scenario

- Summary statistics: describe both observed and simulated datasets with descriptive statistics

- Euclidian distance: compute distance between each simulation and the observed dataset and rank simulations

- *Posterior* probability: determine, among the 1,000 first simulations, the proportion of simulations produced by each scenario

- Best-fit scenario: select the scenario with the highest *posterior* probability
3. Selection of the best-fit scenario

- Summary statistics: describe both observed and simulated datasets with descriptive statistics

- Euclidian distance: compute distance between each simulation and the observed dataset and rank simulations

- Posterior probability: determine, among the 1,000 first simulations, the proportion of simulations produced by each scenario

- Best-fit scenario: select the scenario with the highest posterior probability
3. Selection of the best-fit scenario

- **Summary statistics:** describe both observed and simulated datasets with descriptive statistics
- **Euclidian distance:** compute distance between each simulation and the observed dataset and rank simulations
- ***Posterior* probability:** determine, among the 1,000 first simulations, the proportion of simulations produced by each scenario
- **Best-fit scenario:** select the scenario with the highest *posterior* probability

Distance: δ

- $\delta = 0$
- sim. x \rightarrow sc. 1
- sim. y \rightarrow sc. 2
- sim. z \rightarrow sc. 1
- sim. w \rightarrow sc. 1

1,000 first simulations

- 900 sim. for the **sc. 1** = 90%
- 100 sim. for the **sc. 2** = 10%

Sc. 1 = 90%

⇒ Best-fit scenario
Effective population size
- Empty
- Colonization in progress
- Full

Migrations =

Periods
- LGM
- Onset
- Present
Demographic scenarios

Tabula rasa scenario

LGM

- No survival within the ice sheet
- Lowland areas suitable

Onset
- Recolonization from Lowland areas (outside the ice sheet)

Present
- Lowland area no longer suitable
 - Too hot and dry
 - Too much competition

=Out =F =IceA =No_IceA =Lowland
Demographic scenarios

Tabula rasa scenario

Onset

LGM
- No survival within the ice sheet
- Lowland areas suitable

Onset
- Recolonization from Lowland areas (outside the ice sheet)

Present
- Lowland area no longer suitable
 - Too hot and dry
 - Too much competition

IceA =No_IceA
=Out
=F
=Lowland
Tabula rasa scenario

Present

LGM
- No survival within the ice sheet
- Lowland areas suitable

Onset
- Recolonization from Lowland areas (outside the ice sheet)

Present
- Lowland area no longer suitable
 - Too hot and dry
 - Too much competition

Symbols
- Out
- F
- IceA
- No_IceA
- Lowland
Demographic scenarios

Nunatak scenario

LGM

- Lowland area not suitable
 - Too dry
- *In-situ* survival in micro-refugia within the ice sheet

Onset
- Populations expansion from those refugia
Demographic scenarios

Nunatak scenario

Onset

LGM
- Lowland area not suitable
 - Too dry
- In-situ survival in micro-refugia within the ice sheet

Onset
- Populations expansion from those refugia

=Out =F =IceA =No_IceA =Lowland
Demographic scenarios

Nunatak scenario

Present

LGM
- Lowland area not suitable
 - Too dry
- *In-situ* survival in micro-*refugia* within the ice sheet

Onset
- Populations expansion from those *refugia*
Demographic scenarios

Alpine *Nunatak* scenario

LGM

LGM
- Lowland area not suitable
 - Too dry
- Micro-*refugia* in southern Alpine regions only

Onset
- Recolonization of Fennoscandia from those *refugia*
- Populations expansion

=Out =F =IceA =No_IceA =Lowland
Demographic scenarios

Alpine Nunatak scenario

Onset

LGM
- Lowland area not suitable
 - Too dry
- Micro-refugia in southern Alpine regions only

Onset
- Recolonization of Fennoscandia from those refugia
- Populations expansion

=Out =F =IceA =No_IceA =Lowland
Demographic scenarios

Out-of-Europe scenario

LGM

- No survival within the ice sheet
- Lowland area not suitable either
 - Too dry

Onset
- Recolonization of Arctic-Alpine regions from out-of-Europe populations

Legend:
- Out
- F
- IceA
- No_IceA
- Lowland
Demographic scenarios

Out-of-Europe scenario

Onset

LGM
- No survival within the ice sheet
- Lowland area not suitable either
 - Too dry

Onset
- Recolonization of Arctic-Alpine regions from out-of-Europe populations
Demographic scenarios

Composite scenario a

Onset

LGM
- Lowland areas suitable
- In-situ survival in micro-refugia within the ice sheet

Onset
- Migration rates from both Lowland and Out-of-Europe areas to Arctic-Alpine regions
- Migration rates from Alpine regions to Fennoscandia

Present
- Lowland area no longer suitable
 - Too hot
 - Too much competition
Demographic scenarios

Composite scenario b

Onset

LGM
- Lowland area not suitable
 - Too dry
- In-situ survival in micro-refugia within the ice sheet

Onset
- Migration rates from Out-of-Europe areas to Arctic-Alpine regions
- Migration rates from Alpine regions to Fennoscandia

Legend:
- Out
- F
- IceA
- No_IceA
- Lowland
Demographic scenarios

Null hypothesis (H0): Test for phylogeographic signal

Present

- Whatever happened before, post-glacial migration rates within Europe erase any historical signal
Results and discussion

Posterior probability of each scenario

- *Timmia bavarica*

 Best-Fit scenario : H0

 ⇒ Null hypothesis!

 ⇒ No phylogeographic signal in the data!

 Tabula rasa : 0%
Results and discussion

Posterior probability of each scenario

- *Timmia bavarica*

Best-Fit scenario: H0

⇒ Null hypothesis!

⇒ No phylogeographic signal in the data!
Results and discussion

Posterior probability of each scenario

- **Amphidium lapponicum**

Best-Fit scenario: HO

⇒ Null hypothesis!

⇒ No phylogeographic signal in the data!

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>100%</td>
</tr>
<tr>
<td>Comp.a</td>
<td>0%</td>
</tr>
<tr>
<td>Comp.b</td>
<td>0%</td>
</tr>
<tr>
<td>Nunatak</td>
<td>0%</td>
</tr>
<tr>
<td>Alp. nuna.</td>
<td>0%</td>
</tr>
<tr>
<td>Tabula rasa</td>
<td>0%</td>
</tr>
</tbody>
</table>

22/05/17
Results and discussion

Posterior probability of each scenario

- *Amphidium lapponicum*

Best-Fit scenario : H0

⇒ Null hypothesis!
⇒ No phylogeographic signal in the data!

HO 100%

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp.b</td>
<td>0%</td>
</tr>
<tr>
<td>Out</td>
<td>0%</td>
</tr>
<tr>
<td>Nunatak</td>
<td>0%</td>
</tr>
<tr>
<td>Comp.a</td>
<td>0%</td>
</tr>
<tr>
<td>Alp. nuna.</td>
<td>0%</td>
</tr>
<tr>
<td>Tabula rasa</td>
<td>0%</td>
</tr>
</tbody>
</table>
Results and discussion

Posterior probability of each scenario

- *Timmia austriaca*
- PRELIMINARY RESULTS

Best-Fit scenario: H0

⇒ Null hypothesis!

⇒ No phylogeographic signal in the data!
Results and discussion

Posterior probability of each scenario
- *Timmia austriaca*
- PRELIMINARY RESULTS

Best-Fit scenario: H0
⇒ Null hypothesis!
⇒ No phylogeographic signal in the data!

22/05/17
Results and discussion

H0 is the best-fit scenario!
- Unexpected result
- Actual migration rates within Europe erase any trace of historical signal

⇒ Highlights the high dispersal capacities of bryophytes

Consequence
- Impossible to retrace the biogeographic history of the Arctic-Alpine mosses in Europe...
Results and discussion

H0 is the best-fit scenario!
- Unexpected result
- Actual migration rates within Europe erase any trace of historical signal

⇒ Highlights the high dispersal capacities of bryophytes

Consequence
- Impossible to retrace the biogeographic history of Arctic-Alpine mosses in Europe...
Conclusion and perspectives

Arctic-Alpine populations highly endangered
- In the context of climate change
- Especially Alpine populations
 - Small already
 - By 2080, 48.5% of the Alpine plant species will be lost against 28.5% for the Arctic ones

BUT : Great news!
- Alpine populations should easily find refuge in Arctic populations
 - Thanks to migrations and high dispersal capacities of Bryophytes!

Thuiller, W. 2005
Conclusion and perspectives

Arctic-Alpine populations highly endangered
 - In the context of climate change
 - Especially Alpine populations
 - Small already
 - By 2080, 48.5% of the Alpine plant species will be lost against 28.5% for the Arctic ones

BUT: Great news!
 - Alpine moss populations should easily find refuge in Arctic populations
 - Thanks to migrations and high dispersal capacities of Bryophytes!

Thuiller, W. 2005
THANK YOU FOR YOUR ATTENTION!

Questions?