Stearoyl-CoA Desaturase-1 drives cancer malignancy via lipid desaturation and peroxidation after anti-angiogenic treatment withdrawal

Geraldine Luis1,2, Adrien Godfroid2, Jonathan Cimino1, Shin Nishiumi2, Agnes Noel2, Masaru Yoshida3 and Nor Eddine Sounni2.
1 Laboratory of Tumor and Development Biology, GIAG-Cancer, University of Liège, Belgium; 2 Division of Gastroenterology, Department of Internal medicine, Kobe University, Japan

Introduction

Targeting the metabolic pathways in cancer is actually the most contemporary topic of drug discovery. The unique metabolic requirement of cancer cells to sustain proliferation and survival pave the way for innovative therapeutic intervention. In this regard, we have contributed to the emergence of new facet of cancer adaptation and evasion to anti-angiogenic therapy. We previously show that tumor adaptation to angiogenesis inhibitors relies on a metabolic reprogramming towards de novo lipogenesis after treatment cessation that was associated with tumor aggressiveness. The concept of targeting lipid metabolism to improve efficacy of targeted therapy has been validated by sequential targeting VEGF pathway and FASN in cancers. Whereas FASN is recognized as an important target in the development of anticancer drug for many types of human cancers, its complete inhibition has showed poor pharmacokinetics with heavy side effects, highlighting the need for the identification of new therapeutic targets that inhibit lipid metabolism.

Results

Lipidomics analyses

A lipidomic approaches (LC-MS (A) and MS (B)) were applied on tumor extracts or sections after treatment cessation. Data show an increase in mono- and polyunsaturated fatty acids (AA) in RTKIs treated tumors. RTKIs treatments induces a complete change in lipid species (B) within tumors.

Inhibition of SCD1 reduces tumor growth

Inhibition of SCD1 by shRNA or by small SCD1 inhibitors in LLC and MDA-MB231 cancer cells showed a marked reduction in spheroid migration in vitro (A). In vivo, primary tumor growth and re-growth after re-oxygenation was delayed (B and C).

Conclusion

SCD1 expression seems to be important for cancer cells to sustain the oxidative stress occurring after RTKIs treatment withdrawal and re-oxygenation. SCD1 inhibition reduces the level of neo synthesized of saturated lipids and MUFAs. Thus, interaction of MUFAs with ROS enhances lipid peroxidation end products (MDA), which correlates with increased tumor aggressiveness after tumor re-oxygenation. Interestingly, inhibition of SCD1 by shRNA or by pharmacological inhibitors or administration of antioxidant resulted in increased efficacy of RTKI post treatment.