
Feedback 
from a Julia 
user
Research and teaching activities in operational research



What have I been using Julia for?

▪ Several research projects: 

▪ Implementing stochastic/robust optimisation models

▪ Solving water-resource problems

▪ Optimising production and workers’ shifts

▪ Improving combinatorial bandits

▪ Teaching: 

▪ Discrete optimisation (twice)

2

ReservoirManagement.jl

IndustrialProcess

Flexibilisation.jl

CombinatorialBandits.jl

OptimisationTeachingKit

https://github.com/dourouc05/ReservoirManagement.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
https://github.com/dourouc05/CombinatorialBandits.jl
https://github.com/dourouc05/OptimisationTeachingKit


Research with 
Julia and JuMP



Discovering Julia and JuMP

▪ I started with Julia 0.3, in September 2014

▪ Several implementations of stochastic and 
robust optimisation models

▪ Including Benders’ decomposition

▪ Rapid development

▪ Albeit low experience on my side

4



ReservoirManagement.jl

▪ Goal of the project: determine how to 
manage water reservoirs (dams)

▪ Very similar constraints between two dams

▪ Hence very similar optimisation models, 
use just a few parameters

▪ Allow the user to declare the parameters

5



ReservoirManagement.jl

▪ Example usage: 

Vesdre = NaturalRiver(name="Vesdre", scenarios=…, 
environmental_flow=0.5m^3/s…)

purpose = DeterministicPurposes(drinkingWater=0.5m^3/s) 

out = ConstantDamOutputs(bottomOutlets=100m^3/s) 

VesdreReservoir = Reservoir(name="Vesdre",
capacity=(2_500_000.m^3, 25_000_000.m^3),
purposes=purpose, outputs=out, rivers_in=[Vesdre])

6



ReservoirManagement.jl

▪ Long term maintenance? 

▪ Development started in Julia 0.3

▪ A prototype that evolved into a library

▪ Migration to 0.4 done in a few days

▪ Migration to 0.5 cancelled for multiple reasons

▪ Not sufficient test coverage

▪ Unexplained errors in the existing code

▪ #18725 broke my usual workflow

7

https://github.com/JuliaLang/julia/issues/18725


IndustrialProcessFlexibilisation.jl

▪ Goal of the project: exploit electricity flexibility 
in industrial sites

▪ Consume electricity when it is really cheap

▪ Have workers on site when they are required

▪ Plants can be very different one from the other

▪ Different machines, routes within the plant, etc.

▪ More complex to represent in data structures

8



IndustrialProcessFlexibilisation.jl

▪ How to build a model based on such a 
representation? 

▪ Usually: objects with methods

▪ Not possible in Julia: no “object model”

▪ Rather: multiple dispatch

▪ Constructor: builds the required optimisation variables

▪ postConstraints: adds constraints for each object

▪ Exploits multiple dispatch to adapt to object type

 Users can provide their own objects! 

10



Teaching with 
Julia and JuMP



Why use Julia and JuMP? 

▪ Context: a discrete optimisation course

▪ Mostly: work with MIP models, a bit heuristics

▪ Previous iterations of the course: 

▪ AMPL for the exercise sessions

▪ Nice syntax for modelling, hard to do anything else

▪ Java with the CPLEX API for the project

▪ Nonintuitive API

13



Why use Julia and JuMP? 

Since 2015: Julia and JuMP everywhere

▪ More consistent: one language to rule 
them all

▪ Easier installation

▪ GMPL implemented enough of AMPL
No official binary for Windows (WinGLPK)

▪ How to get a CPLEX license for students? 
(Now, much simplified with OnTheHub)

14



Why use Julia and JuMP? 

▪ With JuMP: 

▪ Completely free (and open source)

▪ Cbc is always easy to install, on all platforms

▪ What about the competition? 

▪ CVX, YALMIP: based on MATLAB, not free

▪ Pyomo: installing any solver is much harder

15



How did students react? 

First year: Julia 0.3 (September 2015)

▪ Many installation problems (half of the 
students)

▪ Not so helpful error messages

▪ 11 groups out of 15 used Julia for the project

▪ 3 groups: exclusively Julia

▪ 2 groups of non-computer science/engineer 
students

16



How did students react? 

Second year: Julia 0.4 (September 2016)

▪ Very few installation problems

▪ Overall more complex projects

▪ Several groups used callbacks, none the previous year

▪ 20 groups out of 20 used Julia for the project
▪ Up from 75% the previous year

▪ 16 exclusively Julia (80%)

▪ Up from 20% the previous year

▪ One third of non-computer science/engineer students

17



Conclusion



Conclusion

Julia has evolved quite a bit since 2014

▪ More mature: 

▪ Better error messages

▪ More polished environment (including IDEs)

▪ Still not 100% ready for prime time: 

▪ Where is the debugger? 

▪ But already useable for a wide audience

19



Questions?

Remarks? 


