Feedback
from a Julia
user

Research and teaching activities in operational researc



What have | been using Julia for?

= Several research projects:
* Implementing stochastic/robust optimisation models

= Solving water-resource problems ReservoirManagement. |l
i : ) : IndustrialProcess
* Optimising production and workers’ shifts FlesibilisatiBa
= Improving combinatorial bandits CombinatorialBandits. |l
= Teaching:

= Discrete optimisation (twice) OptimisationTeachingKit



https://github.com/dourouc05/ReservoirManagement.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl
https://github.com/dourouc05/CombinatorialBandits.jl
https://github.com/dourouc05/OptimisationTeachingKit

Research with
Julla and JuMP




Discovering Julia and JuMP

= | started with Julia 0.3, in September 2014

= Several implementations of stochastic and
robust optimisation models

* Including Benders’ decomposition

* Rapid development
= Albeit low experience on my side




ReservoirManagement.|l

= Goal of the project: determine how to
manage water reservoirs (dams)

= Very similar constraints between two dams

= Hence very similar optimisation models,
use just a few parameters

= Allow the user to declare the parameters




ReservoirManagement.|l

* Example usage:

Vesdre = NaturalRiver(hame="Vesdre", scenarios=...,
environmental flow=0.5m"3/s...)

purpose = DeterministicPurposes(drinkingWater=0.5m"3/s)
out = ConstantDamOutputs(bottomOutlets=100m”"3/s)

VesdreReservoir = Reservoir(hame="Vesdre",
capacity=(2 500 000.m"3, 25 000 000.m"3),
purposes=purpose, outputs=out, rivers_in=[Vesdre])




ReservoirManagement.|l

* Long term maintenance?

* Development started in Julia 0.3
= A prototype that evolved into a library

= Migration to 0.4 done in a few days

= Migration to 0.5 cancelled for multiple reasons
= Not sufficient test coverage
= Unexplained errors in the existing code
= #18725 broke my usual workflow



https://github.com/JuliaLang/julia/issues/18725

IndustrialProcessFlexibilisation.|l

= Goal of the project: exploit electricity flexibility
In iIndustrial sites

= Consume electricity when it is really cheap
= Have workers on site when they are required

» Plants can be very different one from the other
= Different machines, routes within the plant, etc.
= More complex to represent in data structures




IndustrialProcessFlexibilisation.l

= How to build a model based on such a
representation?

= Usually: objects with methods
* Not possible in Julia: no “object model”

» Rather: multiple dispatch
= Constructor: builds the required optimisation variables

= postConstraints: adds constraints for each object
= Exploits multiple dispatch to adapt to object type

» Users can provide their own objects!

10



Teaching with
Julia and JuMP




Why use Julia and JuMP?

= Context: a discrete optimisation course
= Mostly: work with MIP models, a bit heuristics

= Previous Iiterations of the course:

= AMPL for the exercise sessions
= Nice syntax for modelling, hard to do anything else

= Java with the CPLEX API for the project
= Nonintuitive API

13



Why use Julia and JuMP?

Since 2015: Julia and JuMP everywhere

= More consistent: one language to rule
them all

= Easier installation

* GMPL implemented enough of AMPL
No official binary for Windows (WIinGLPK)

= How to get a CPLEX license for students?
(Now, much simplified with OnTheHub)

14



Why use Julia and JuMP?

= With JuMP:

= Completely free (and open source)
= Chc is always easy to install, on all platforms

= What about the competition?
= CVX, YALMIP: based on MATLAB, not free
= Pyomo: installing any solver is much harder

15



How did students react?

First year: Julia 0.3 (September 2015)

= Many installation problems (half of the
students)

= Not so helpful error messages

= 11 groups out of 15 used Julia for the project

= 3 groups: exclusively Julia

= 2 groups of non-computer science/engineer
students

16



How did students react?

Second year: Julia 0.4 (September 2016)
= Very few installation problems

= Overall more complex projects
= Several groups used callbacks, none the previous year

= 20 groups out of 20 used Julia for the project
= Up from 75% the previous year

= 16 exclusively Julia (80%)
= Up from 20% the previous year

= One third of non-computer science/engineer students

17



Conclusion




Conclusion

Julia has evolved quite a bit since 2014

= More mature:
= Better error messages
= More polished environment (including IDES)

= Still not 100% ready for prime time:
= Where is the debugger?
= But already useable for a wide audience

19



Questions?
Remarks?




