Retour d’expérience sur Julia pour la recherche et I’enseignement
en recherche opérationnelle

Thibaut Cuvelier!

! Orange Labs Networks

thibaut.cuvelier@orange.com

Mots-clés : recherche opérationnelle, optimisation mathématique, Julia, JUMP, enseignement.

Introduction

Julia est un langage de programmation récent avec une communauté tres développée, notamment en
recherche opérationnelle et en optimisation mathématique en particulier. Néanmoins, il dispose déja
d’un grand nombre d’avantages trés pratiques, dans un contexte tant de recherche que d’enseignement.
Cette présentation offre un retour d’expérience sur plusieurs années d’utilisation de Julia.

Deux mots sur Julia

Julia fait partie des derniers-nés dans les langages de programmation, avec sa premiére version
publique en 2012 [1]. Malgré tout, il présente déja une communauté forte : plus de 500 personnes
participent a son développement et 1200 bibliothéques sont disponibles dans son gestionnaire de
paquets. Il doit ce succes a un savant mélange entre une syntaxe simple (librement inspirée de MATLAB
pour faciliter la prise en main) et une performance trés proche des langages compilés (C, Fortran...).

Coté optimisation mathématique, la bibliotheque JUMP [2] s’est montrée trés t6t comme une
incontournable couche de modélisation, avec une performance équivalente ou supérieure 8 AMPL. Elle
s’est imposée par sa syntaxe trés naturelle, proche de I’écriture mathématique des programmes
d’optimisation. Par une couche d’abstraction, une vingtaine de solveurs est directement accessible.

Julia dans la recherche

J’ai utilisé Julia dans trois projets de recherche différents. Le premier portait sur la programmation
stochastique et robuste. A 1’époque, Julia 0.3 venait de sortir et le développement n’était pas aisé ; le
résultat était une série de scripts peu réutilisables. Malgré tout, la facilité d’utilisation de JuMP a permis
d’obtenir des résultats probants en un temps raisonnable (nettement plus qu’avec Java, par exemple).

Ensuite, un deuxiéme projet traitait de la gestion de barrages hydrauliques'. Les différences entre
deux barrages sont assez faibles : la majorité des contraintes est identique. Le code est nettement plus
ordonné, avec des structures de données pour stocker les paramétres. Du coté utilisateur, cette
organisation permet un code déclaratif pour les parametres. Néanmoins, mes migrations entre versions
de Julia n’ont pas été aisées : le passage de la 0.3 a la 0.4 s’est fait en quelques jours (pour a peine un
millier de lignes de code), celui vers la 0.5 a été abandonné.

Finalement, le dernier projet concernait la flexibilisation de [I’utilisation de I’électricité’.
Contrairement aux barrages, les processus modélisés font état d’une grande variété, ce qui nécessite



d’autres techniques pour la description des paramétres. Les patrons de conception se sont révelés étre
d’excellents alliés, pour laisser le libre choix a I'utilisateur du type de contrainte a ajouter pour chaque
processus. Le systéeme des types de Julia et plus particulierement les multiméthodes (multiple dispatch)
aident fortement a la réalisation d’un systéme aussi flexible. Ce projet a débuté avec la version 0.4 de
Julia et la migration vers la 0.6 s’est faite en quelques heures.

Julia dans I’enseignement

Depuis septembre 2015, Julia et JuMP sont utilisés pour le cours d’optimisation discréte a I’université
de Liege. Précédemment, les étudiants étaient incités a directement utiliser I’API Java de CPLEX, ce
qui leur causait d’importantes difficultés pour la génération de leurs mode¢les, mais avec I’avantage de
I’intégration dans un langage de programmation complet. Certaines s€ances d’exercices utilisaient
AMPL pour la modélisation, sans toutefois utiliser ses scripts. Julia a permis d’unifier ces deux
environnements, en proposant une syntaxe plus plaisante pour 1’écriture du code générant les modéles,
tout en étant un véritable langage de programmation avec une série de bibliothéques.

La premiere année utilisait la version 0.3 de Julia, la seule disponible en septembre 2015. Les
conditions n’étaient pas idéales, puisqu’il n’y avait pas d’environnement de développement complet.
Les problémes d’installation étaient relativement nombreux. Les messages d’erreur n’étaient pas
toujours a la hauteur des attentes (Iégitimes !) des étudiants. Néanmoins, quand le choix leur a été laissé,
11 groupes sur 15 ont utilisé Julia ; parmi eux, 3 ont exclusivement utilisé ce langage, les 8 autres 1’ont
complété avec Java. Le profil de ces 3 groupes est quelque peu atypique pour le cours, vu qu’ils n’ont
pas tous suivi de cursus en informatique. Les 8 groupes qui ont utilisé Julia uniqguement pour la
modélisation mathématique étaient formés exclusivement d’étudiants informaticiens. Il en ressort que
Julia, méme dans ses versions moins abouties, est apprécié par les étudiants qui n’ont pas d’habitude de
programmation.

La deuxieme année, la version est passée a la 0.4. Celle-ci a marqué un tournant dans la maturité du
langage et de son environnement, ce qui s’est ressenti dans les statistiques. Ainsi, I’entiéreté des
20 groupes a utilisé Julia, dont seuls 4 en conjonction avec un autre langage (3 pour Java, 1 pour Python).
Le public était encore plus vari¢ qu’en 2015, avec une proportion moindre d’étudiants informaticiens.
Les problémes d’installation ont été trés rares. Les étudiants ont expérimenté des fonctionnalités plus
diverses de JuUMP, notamment les fonctions de rappel indépendantes du solveur.

Conclusions et perspectives

Globalement, I’expérience Julia est trés positive, surtout avec la maturation actuelle de
I’environnement et de I’implémentation du langage : malgré des débuts chaotiques (comme pour tout
nouveau langage), Julia est désormais trés utilisable et recommandable pour un public technique. On
peut cependant espérer quelques améliorations d’ici & la version finale, notamment un débogueur.

Références

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah. Julia: A Fresh Approach to
Numerical Computing. SIAM Review, 59: 65-98, 2017.

[2] 1ain Dunning, Joey Huchette and Miles Lubin. JuMP: A Modeling Language for Mathematical
Optimization. SIAM Review, 59: 295-320, 2017.

f.Le code est disponible en ligne : https://github.com/dourouc05/ReservoirManagement.jl.
" Le code est disponible en ligne : https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl.



https://github.com/dourouc05/ReservoirManagement.jl
https://github.com/dourouc05/IndustrialProcessFlexibilisation.jl

