

2017 IEEE International Geoscience and Remote Sensing Symposium

July 23–28, 2017 - Fort Worth, Texas, USA

Optimum Split-Band Parameters for Phase-Offset Retrieval

L. Libert, D. Derauw, and C. Barbier

Centre Spatial de Liège, Université de Liège, Belgium

Phase-Offset Issue

Unwrapped Phase

Virunga (DRC) – TerraSAR-X 22/06/2008 and 03/07/2008

Phase-Offset Issue

Split-Band Interferometry (SBInSAR)

- Also known as MCA
- Exploits the spectral information of wideband SAR images
- Absolute phase computation for frequency-persistent scatterers (PS_f)

Let us consider an interferometric pair of coregistered images with :

- bandwidth B
- central carrier frequency ν_0

The images are spectrally decomposed into N subbands of :

- partial bandwidth B_N
- central frequencies v_i

The phase in ith partial interferogram is given by :

$$\Delta \phi_i = \frac{4\pi}{c} (r_s - r_m - e_c) \nu_0 + \frac{4\pi}{c} e_c \nu_i$$

- master and slave range r_m , r_s
- error of coregistration e_c

Which set of parameters is optimum to determine phase-offsets ?

Frequency-persistent scatterers (PS_f) are targets with a stable response across the spectral domain, i.e. targets on which Split-Band Interferometry can be performed to obtain **absolute phase measurements**.

How to detect PS_f?

Standard deviation of the slope σ_s :

Chi-square linear fitting:

Error propagation : $\sigma_{\Delta \varphi} = \nu_0 \, \sigma_s$

One-cycle accuracy:
$$\sigma_s < rac{2\pi}{
u_0}$$

$$\sigma_{s} = \frac{N-1}{B-B_{N}} \sqrt{\frac{\sum_{i=1}^{N} \frac{1}{\sigma_{\phi_{i}}^{2}}}{\sum_{i=1}^{N} \frac{1}{\sigma_{\phi_{i}}^{2}} \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{\phi_{i}}^{2}} - \left(\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{\phi_{i}}^{2}}\right)^{2}}}$$

+ correlation terms

Other criteria:

- multifrequency phase error
- phase variance stability
- spectral coherence
- ...

L. Libert et al., « Split-Band Interferometry-Assisted Phase Unwrapping for the Phase Ambiguities Correction », Remote Sensing (submitted)

subband index $x_i = -\frac{N-1}{2}, ..., \frac{N-1}{2}$ partial phase variance $\sigma_{\phi_i}^2$ The proposed approach is based on the joint use of InSAR and SBInSAR :

- InSAR unwrapped phase $\Delta \phi$
- Split-band phase $\Delta \varphi$
- Phase-offset in cycles *n*

Validation based on relative phase-offsets of artificially disconnected regions

Test site : Nyamuragira volcano

Nyamuragira volcano (Democratic Republic of Congo)

TerraSAR-X Stripmap images 22/06/2008 – 03/07/2008

Master Amplitude Image

Approach for the phase-offset retrieval

Manual disconnection of a continuously unwrapped area into 4 regions.

Disconnected Unwrapped Phase Zone Map

Optimum set of parameters ?

Phase-Offset Retrieval

Expected relative offsets :

$n_1 - n_2$	$n_1 - n_3$	$n_1 - n_4$	$n_2 - n_3$	$n_2 - n_4$	$n_3 - n_4$
-1	2	-1	3	0	-3

- SBInSAR-assisted phase unwrapping is **valid** providing that a correct set a parameters is chosen.
- Nonoverlapping subbands with a weighted linear regression is the only combination that provides the expected values of phase ambiguities. Other combinations of parameters lead generally to an error of +-1 cycle.
- Weighted linear regression shows more dispersion, but is more efficient to determine the phase-offset.
- In agreement with the theoretical calculation, we showed that:
 - Small partial bandwidth should be preferred.
 - The larger the number of subbands, the better.
 - **Trade-off** has to be found between accuracy and loss of resolution

Thank you for your attention

Back Up Slides

SBInSAR Rationale

Phase-Offset Validation : Procedure

