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Abstract
Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to

blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter

seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resis-

tance genes and other quantitative trait loci (QTLs) for agronomic performance can be of

great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight

finger millet genotypes in natural field conditions revealed that leaf blast caused severe set-

back on agronomic performance for susceptible genotypes, most significant traits being

plant height and root length. Plant height was reduced under disease severity while root

length was increased. Among the genotypes, IE4795 showed superior response in terms of

both disease resistance and better agronomic performance. A total of seven unambiguous

QTLs were found to be associated with various agronomic traits including leaf blast resis-

tance by association mapping analysis. The markers, UGEP101 and UGEP95, were

strongly associated with blast resistance. UGEP98 was associated with tiller number and

UGEP9 was associated with root length and seed yield. Cross species validation of markers

revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass

species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum
hallii and switchgrass. Several candidate genes were found proximal to orthologous

sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytoki-

nin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed

yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of

PLOS ONE | DOI:10.1371/journal.pone.0159264 July 14, 2016 1 / 23

a11111

OPEN ACCESS

Citation: Ramakrishnan M, Antony Ceasar S,
Duraipandiyan V, Vinod KK, Kalpana K, Al-Dhabi NA,
et al. (2016) Tracing QTLs for Leaf Blast Resistance
and Agronomic Performance of Finger Millet
(Eleusine coracana (L.) Gaertn.) Genotypes through
Association Mapping and in silico Comparative
Genomics Analyses. PLoS ONE 11(7): e0159264.
doi:10.1371/journal.pone.0159264

Editor: Swarup Kumar Parida, National Institute of
Plant Genome Research (NIPGR), INDIA

Received: January 16, 2016

Accepted: June 29, 2016

Published: July 14, 2016

Copyright: © 2016 Ramakrishnan et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by 1) Grant
number: BT/PR15011/AGR/02/772/2010. http://www.
dbtindia.nic.in/ (Department of Biotechnology) MR, SI,
SAC, and 2) Grant number: RGP-VPP-213. http://
ksu.edu.sa/en/ (Deanship of Scientific Research at
King Saud University, Kingdom of Saudi Arabia). VD,
NAA. The funders had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159264&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.dbtindia.nic.in/
http://www.dbtindia.nic.in/
http://ksu.edu.sa/en/
http://ksu.edu.sa/en/


these QTLs and their putatively associated candidate genes are reported for first time in fin-

ger millet. On validation, these novel QTLs may be utilized in future for marker assisted

breeding for the development of fungal resistant and high yielding varieties of finger millet.

Introduction
Finger millet (Eleusine coracana (L.) Gaertn.) is one of the small millets grown in different
parts of the world including India. When compared to staple cereals such as wheat, rice and
corn, finger millet has superior nutritional qualities [1]; it is one of the major constituents of
cereal food supplements and health drinks. Known as ragi in India, this cereal occupies about
2.7 million hectares of cultivation worldwide especially in developing countries (Africa and
Asia) with an annual production of 2.6 million tons with a contribution of about 10% of global
millet production; 94% of the global finger millet production occurs in Africa and Asia [2].
This crop is highly vulnerable to leaf blast disease caused by Pyricularia grisea (teleomorph:
Magnaporthe grisea) [3], and probably the only and most destructive disease occurring annu-
ally during rainy and winter seasons [2]. The disease occurs at all stages of plant growth more
so as leaf, neck and finger blasts. Leaf blast is the initial one and most damaging. When the
crop is severely affected by leaf blast, agronomic traits such as number of productive tillers,
length of fingers, number of fingers and both yield and quality are severely affected [4]. It is
estimated that average yield loss due to blast diseases is around 28–36% each year in Asia [5]
and in certain areas yield losses can go as high as 80–100% [6].

Utilization of molecular marker based breeding approaches has been helpful for developing
blast resistance and improving useful agronomic traits in rice and foxtail millet [7–9]. Many of
these traits, including blast resistance, are under quantitative genetic control [10]. Genetic
mapping of functional quantitative trait loci (QTLs) using molecular markers facilitates marker
assisted breeding for crop improvement for the traits of interest [11–13]. Among different
methods used in QTL mapping, association mapping (AM), also known as linkage disequilib-
rium (LD) mapping, offers more advantages for the dissection of complex genetic traits in
plants [14, 15]. AM has much higher mapping resolution due to the use of natural, genetically
diverse populations by targeting evolutionary recombinations that fragment chromosomes to
very short but numerous haplotype blocks, over which marker-trait associations are identified
[16, 17].

The AM approach has been applied widely as a tool for the identification of markers associ-
ated with useful agronomic traits in diverse plant species, including Arabidopsis [18, 19],
maize [20], wheat [21], barley [22, 23], tomato [24], sorghum [25], rice [26, 27] and foxtail mil-
let [8]. Except for few reports, such as identification of QTLs for agronomic traits including
plant height, number of tillers, number of productive tillers, leaf length, seed yield [28, 29], pro-
tein and tryptophan contents in seeds [30] and leaf, neck and finger blast resistance [31], AM
studies on finger millet have received less attention so far.

In view of the above, the present study was conducted using 128 finger millet genotypes
sourced from various parts of the world to assess the phenotypic responses for leaf blast and its
effect on useful agronomic traits. AM was performed to find useful QTLs, and the identified
QTL information was used for in silico comparative genomics analysis with genomes of mono-
cot model plants such as rice, foxtail millet, sorghum, maize, wheat, Brachypodium and switch-
grass for the identification of candidate genes associated with QTLs. This study may lay the
foundation for selection of genotypes and markers for finger millet breeding programmes to
develop new varieties with improved agronomic traits in future.
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Materials and Methods

Plant material and geographical region of the study
A test germplasm collection consisting of 128 finger millet genotypes originating from major
diversity centers both in India and abroad, was assembled with the help of International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India, Uni-
versity of Agricultural Sciences (UAS), Bangalore, India and Tamil Nadu Agricultural Univer-
sity (TNAU), Coimbatore, India. The details of the member genotypes and their origins were
reported in our previous study [32]. These genotypes were assessed for their responses to leaf
blast and other agronomic traits at Regional Research Station of TNAU located at Paiyur,
Krishnagiri District, Tamil Nadu, which is one of the main areas of finger millet cultivation in
India. Located at an elevation of 460 meters above sea level and at coordinates 12°25' N and 78°
13' E, the chosen location has a long history of leaf blast prevalence during all seasons of finger
millet cultivation and can be considered as a hotspot for blast disease.

Experimental design
The experiment was laid out in fourteen blocks in an augmented design [33] having a block
size of 9.45 m x 3 m during the month of March 2014. Three leaf blast susceptible varieties,
RAU8, KM252 and HR374 and three leaf blast resistant varieties GPU28, CO14 and Paiyur2
were used as checks. In each block, nine test genotypes were grown along with all the checks.
Each test accession was grown in three rows of 3 m length and each row consisted of 30 plants,
while the checks were grown in two rows of 3 m length. The inter-row distance was 20 cm and
plant to plant distance within row was 10 cm. The test genotypes were planted in alternate
rows between check rows that were alternated with susceptible and resistant lines. In effect,
there were 24 replications for each check. The design layout is provided in Figure A in S1 File.
The plants were grown without blast disease management following the agronomic practices
together with the nutrient supply of 60 kg/ha N, 30 kg/ha of P2O5 and 30 kg/ha of K2O recom-
mended (http://agritech.tnau.ac.in/agriculture/millets_ragi.html) for finger millet cultivation.

Evaluation for leaf blast resistance
Under field conditions, leaf blast disease was induced naturally and the symptoms developed
on the leaves were monitored closely, measured and recorded after 45 days of sowing. A 0–5
score scale [34] was used for the assessment, for which ten randomly chosen plants per geno-
type were evaluated by scoring the affected leaves. The scores were, 0 –no symptoms on the
leaves; 1 –small brown specks< 0.5mm diameter, no necrotic (collapsed cell) spots; 2 –slightly
larger brown specks 2-3mm in diameter; 3 –round to elliptical lesions restricted up to 3mm in
diameter with necrotic grey centre; 4 –typical elliptical blast lesion, restricted up to 6mm long
with little coalescence of veins, yellow margin; and 5 –half or more of the leaf covered by coa-
lescence of large lesions more than 6mm, yellowing, leaves may be killed by coalescence of
large lesions. The score data were used for computing percent disease incidence (PDI) [35]
with the formula:

PDI ¼ Sum of numerical rating
Total number of leaves observed x Maximum score

� �
x 100

The resistance and susceptibility of finger millet genotypes were assessed as per the method
of Mackill and Bonnman [36], in which the plants were graded on a resistance scale of 0 to 5 as
follows: highly resistant with 0% PDI (scale 0), resistant with 1% PDI (scale 1), moderately
resistant with 1.1–5% PDI (scale 2), moderately susceptible with 5.1–25% PDI (scale 3),
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susceptible 25.1 to 50% PDI (scale 4) and highly susceptible with 50.1 to 100% PDI (scale 5).
No occurrence of neck and finger blast was observed, and hence no observations were made on
these symptoms.

Evaluation of other agronomic traits
After 90 days of growth, the observations were made on eight important agronomic traits such
as plant height, number of tillers, number of productive tillers, number of fingers, length of fin-
gers, length of leaf and length of root. Seed yield was recorded at maturity after harvest. For
each genotype, data were recorded from three random plants selected from each row and mean
value was calculated. For the measurement of root length, the plants were extricated from soil
after copious irrigation without damaging the root system and roots were washed with tap
water and length was measured. Data were subjected to standard statistical analysis. To identify
the direct relationship between leaf blast incidence and agronomic performance of the geno-
types, the Pearson correlation was computed and a forward stepwise regression model was fit-
ted to determine the most influential agronomic traits by leaf blast incidence, using PAST
version 3.09 software [37].

Cumulative ranking and grouping of genotypes based on phenotypic
performance
For each of the agronomic trait, except for plant height, the genotype with highest phenotypic
mean values was ranked first and all the remaining genotypes were ranked in descending
order. For plant height, ideal plant height of 80 cm [38] was centred for ranking and deviants
from the centred value were ranked both on ascending and descending order. For blast resis-
tance, the genotype having the lowest PDI score was ranked first. The cumulative ranking
(rank sum) of each of the genotype was computed by adding the ranks of that genotype for all
eight agronomic traits. For instance, the genotype IE4795 had given rank 1 for blast resistance,
rank 48.5 for plant height, rank 4.5 for tiller number, rank 8.5 for productive tiller number,
rank 16 for finger number, rank 5 for finger length, rank 10 for leaf length, rank 71 for root
length and rank 17 for seed yield. The rank sum was computed as 181.5. Similarly rank sums
were computed for rest of the genotypes.

To have a better stratification of resistance and agronomic performance of the genotypes,
an empirical classification of genotypes was done by grouping the resistance pattern as resis-
tance (R) and susceptible (S), by taking 5% PDI as the cut-off point. Those genotypes with less
than 5% PDI were classified as resistant and those exceeding 5% PDI were considered as sus-
ceptible. For the agronomic traits, the cumulative rank for agronomic traits alone was com-
puted for each genotype ignoring the PDI rank in the computation. From this ranking top 10%
of the total genotypes was selected as genotypes with good agronomic traits (GAT) and the rest
were considered as genotypes with poor agronomic traits (PAT). By this way, four distinct
groups of genotypes were obtained: R + GAT, R + PAT, S + GAT and S + PAT.

Genotyping of finger millet genotypes
The genomic DNA was isolated from the test and check germplasms using a previously
described protocol [39] with some modifications as reported earlier [40]. Genotyping was done
using 87 genomic SSR markers with 60–70% GC content (Table A in S2 File) following the
methods described previously [39] and 72 markers showed polymorphism. The population
structure of the test and check germplasms were determined using 72 polymorphic markers as
reported earlier [32].
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Population structure and kinship estimation
The population structure of the test and check germplasms was determined using the model-
based Bayesian statistics implemented in the software STRUCTURE v.2.3.4 [41]. The number
of subgroups (k) in the population was determined by running the programme by assuming k
values ranging from 1 to 10, with five independent runs for each k. To fit the model, burn-ins
were set to 100,000 for the Markov Chain Monte Carlo (MCMC) simulations [42] and data
were collected over 500,000 MCMC replications in each run. The k value was detected by
employing an ad hoc statistic ΔK based on the rate of change in the log probability of data
between successive k values using Structure Harvester [43]. Inferred subpopulation coefficients
(Q matrix) of individual genotype for the identified population structure were used as covariate
in AM analyses. The genetic relatedness of the finger millets accessions was computed as kin-
ship by weighing identical by state (IBS) of the common alleles among the genotypes [44]
using the software TASSEL v5.2 [45]. The method scored the genotypes as 2, 1 or 0 equal to the
count of one of the alleles at that locus. The missing genotypes were imputed by average geno-
type score. The relationship matrix was estimated from the score data. The method provided a
better estimate of additive genetic variance.

Association mapping
AM was performed using genotype data and mean phenotypic data including data on PDI and
other 8 agronomic traits. The marker-trait association analysis was conducted using TASSEL
v5.2 [45] employing both the general liner model (GLM) and mixed liner model (MLM) meth-
ods. The genotype data were formatted as numerical co-variates and used for analysis. In GLM
method, the Q matrix comprising of inferred sub-population coefficients of the individuals was
used as covariate in the model for suppressing the false discovery of marker trait association.
Multiple testing corrections were implemented by adjusting marker probability values for mul-
tiple test runs, by running 1000 permutations. The significant association for a marker and
trait was selected when the p value was below 0.005. To refine the results, in MLMmethod,
along with the phenotypic data, kinship matrix (K matrix) was used as random effect in the
model, in addition to the genotypic and Q matrix which were considered as fixed effects. The
significant threshold for the association was set at P<0.01 for MLMmethod. Most common
associations among the two approaches were taken as the valid marker-trait association.

In silico comparative genomics
In the absence of detailed genome sequence information of finger millet, cross species valida-
tions of QTLs were attempted to identify any sequence similarity with validated markers,
nucleotide using basic local alignment search tool (BLASTn). The original sequences of the
random genomic libraries developed through HindIII, SalI and PstI digest and hybridization
with probes from the finger millet accession PI 321125 used for designing the target markers
(kindly provided by Dr Ketrien Devos, University of Georgia, College of Agricultural Science,
USA) of identified QTLs associated with leaf blast resistance and agronomic traits [13] were
used for in silico comparative genomics analysis. The sequences for BLASTn search were
restricted to ten grass species available in Phytozome v11.0 (http://phytozome.jgi.doe.gov/pz/
portal.html), an online web enabled tool. The positions of the sequence similarity found on the
chromosome of the grass genomes were analyzed for the presence of any candidate gene near
(upstream and downstream) the QTL sequence. The functions of any closely associated candi-
date gene were further analyzed for their relatedness to leaf blast resistance and other useful
agronomic traits.
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Results

Leaf blast assay
All finger millet genotypes germinated uniformly in the field within 4–5 days of sowing. The
leaf blast incidence occurred in all the genotypes beginning from the seedling stage and became
severe as the growth advanced. However, no significant incidence of neck and finger blast was
observed in any of the genotype tested. Out of 128 genotypes tested, none of them was found to
be highly resistant (scale 0) to leaf blast (Table B in S2 File); however, the leaf blast incidence
varied significantly among the genotypes with PDI values ranging from 1.0% (IE4795) to
99.6% (HR374) with a mean of 33.0%. Besides IE4795, there were six genotypes such as CO14,
GPU28, IE7079, IE4734, IE6165 and GPU67 with<5.0% PDI. Among these, one test genotype
(IE4795) fell under resistant category (scale 1) and four genotypes, IE7079, IE4734, IE6165 and
GPU67, were found to be moderately resistant (scale 2). The moderately resistant genotype
IE6165 and IE7079 were sourced from Nepal and Kenya respectively. Rest of the genotypes
was considered susceptible to leaf blast. Leaf blast resistant checks CO14 and GPU28 showed
moderate resistance with PDI values of 3.2% and 4% respectively.

Another leaf blast resistant check Paiyur2 showed moderate susceptibility with a PDI value
of 11.2%. Of the rest, 46 genotypes were moderately susceptible (scale 3), 50 genotypes were
susceptible (scale 4) and 25 genotypes were highly susceptible (scale 5) (Fig 1). The Nigerian
genotype IE6537, Burundi genotype IE4709 and Senegal genotype IE5066 were found to be
susceptible to leaf blast. The leaf blast susceptible check, HR374 (PDI 99.6%) was the most sus-
ceptible genotype in the experiment, followed by check genotypes RAU8 (PDI 81.6%) and
KM252 (PDI 70.4%). Among the test genotypes, INDOF5 (PDI 76.8%), KM301 (PDI 73.6%),
Vijayawada (PDI 71.2%) and INDOF8 (PDI 69.6%) were highly susceptible.

Agronomic performance of genotypes
Despite severe leaf blast all the genotypes survived to maturity, and significant level of pheno-
typic variations was observed for all agronomic traits (Table 1). The plant height ranged from
34.3–110.3 cm with an average of 75.3 cm. The genotypes IE4646, CO14, MR6, IE2589 and
HR374 had the ideal plant height of 80.0, 80.3, 80.5, 80.5 and 80.6 cm respectively, while
GPU67 (34.3 cm) and HR911 (40.0 cm) were the shortest genotypes. There were 76 genotypes
that produced mean plant height of less than 80 cm. The number of tillers varied between 1
and 5 per plant with a mean of 2.3 tillers. The genotype IE3470 produced average of maximum
5 tillers per plant, whereas INDOF5, APSSK1, IE5870, L5 and THRVP produced one tiller per
plant. There were 1–4 productive tillers per plant among the 128 genotypes tested, of which the
genotypes IE3470 and IE2911 produced average of 4 productive tillers per plant. The genotypes
INDOF7, IE5091, TCHIN1 and IE5817 showed poor tillering response and produced unpro-
ductive tillers bringing down the average below 1 (Table B in S2 File).

The number of fingers per head varied from 1–9.3, averaging 5.1 fingers. The genotype
IE3104 produced superior response for number of fingers with an average of 9.3, whereas
IE5817 and IE2457 produced only one finger per head. Average finger length observed in the
population was 5.5 cm, which varied between 1.7 (IE5817) to 10.1 cm (HR374). Among the
test genotypes, leaf length varied between 16.3 and 46.3 cm, with an average leaf length of 30.0
cm. The genotype IE2957 produced the longest leaf (46.3 cm), while HR911 had the shortest
leaf.

The average root length of the genotypes was 17.1 cm that ranged from 11.0 cm to 25.3 cm.
The genotype SVK1 produced roots of 25.3 cm length followed by IE2572, IE2619 and IE2042
with roots measuring 24.4, 23.3 and 23.2 cm respectively. The genotypes GPU67 (11.0 cm),
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IE2710 (11.7 cm) and IE6082 (11.8 cm) showed inferior response for root length. There was
significant variation in seed yield among the genotypes ranging between 0.9 gm to 8.4 gm per

Fig 1. Leaf blast responses of 128 finger millet genotypes under field screening.No genotype was found highly resistant to leaf blast. Blast disease
scores, 0: Highly resistant, 0.1–1.0: Resistant, 1.1–5.0: Moderately resistant, 5.1–25.0: Moderately susceptible, 25.1–50.0: Susceptible and 50.1–100: Highly
susceptible.

doi:10.1371/journal.pone.0159264.g001
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plant. The average seed yield among the population was 2.6 gm. The genotype RAU8 produced
superior response with 8.4 gm of mean seed yield per plant. This was followed by GPU67
which produced 8.0 gm of mean seed yield per plant. The genotype IE2619 produced 0.9 gm of
mean seed per plant (Table 1).

Interrelations of agronomic traits and leaf blast incidence
Phenotypic relations between agronomic traits and leaf blast incidence (PDI) indicated that
number of tillers had a negative relation with PDI, while root length had a positive relation.
Plant height exhibited positive association with number of tillers, length of fingers and root
length. Similarly, number of tillers was correlated with number of productive tillers and leaf
length. Number of productive tillers indicated positive association with number of fingers and
finger length. Number of fingers had a positive correlation with finger length while it was nega-
tively correlated with leaf length. Length of fingers was the only trait that showed a significant
association with seed yield. Since there are many auto-correlated traits in the phenotype data,
to establish the significant factors that can be associated to disease incidence, a forward step-
wise multiple regression analysis was performed (Table 2). The analysis revealed that only two
traits such as plant height and root length were significantly associated with leaf blast inci-
dence, wherein plant height had a negative influence on PDI (-0.25) while the length of root
had a significant positive influence on PDI (1.78).

Cumulative ranking and classification
Based on the total rank for all traits, the genotype IE4795 was found to be a superior genotype
(Fig 2), combining best agronomic performance with leaf blast resistance. This was followed by
CO14 and GPU28 which were ranked second and third for overall performance. Both of these
genotypes were used as the blast resistant checks in this trial.

Table 1. Spectrum of phenotype variation and leaf blast response among 128 genotypes of finger millet.

Traits Mean Range CV % Standard Error

Plant height (cm) 75.32 34.3–110.3 22.90 1.52

Number of tillers / plant 2.25 1.0–5.0 31.90 0.06

Number of productive tillers / plant 1.73 0.3–4.0 42.27 0.06

Number of fingers / head 5.11 1.0–9.3 33.98 0.15

Length of fingers (cm) 5.54 1.7–10.1 32.66 0.16

Length of leaf (cm) 30.04 16.3–46.3 20.83 0.55

Length of root (cm) 17.12 11.0–25.3 15.18 0.23

Total seed yield (gm) 2.62 0.9–8.4 49.35 0.11

PDI (%) 33.01 1.0–99.6 60.10 1.75

PDI, Percent disease incidence; CV, coefficient of variation

doi:10.1371/journal.pone.0159264.t001

Table 2. Forward stepwisemultiple regression analysis between leaf blast incidence and agronomic traits.

Parameter Estimate Standard Error T- Statistic P-Value Adj. R2 (%)

CONSTANT 21.67 12.51 1.73 0.09 6.54

Plant height (cm) -0.25 0.10 -2.49 0.01

Length of root (cm) 1.78 0.67 2.64 0.01

Durbin-Watson statistic = 1.204 (P = 0.00)

doi:10.1371/journal.pone.0159264.t002
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The empirical classification brought out the spectrum of genotypes based on their overall
performance by giving equal emphasis to disease reaction and agronomic performance. Out of
128 genotypes, 7 genotypes were found to be better genotypes for leaf blast resistance, while 13
were found with good agronomic traits at 10% selection. There were four groups; the resistance
coupled with good agronomic traits (R+GAT) group had three genotypes (IE4795, CO14 and
GPU28); the resistance with poor agronomic traits (R+PAT) group had four genotypes
(IE7079, IE4734, IE6165 and GPU67); the susceptible with good agronomic traits (S+GAT)
group had ten genotypes (IE3470, IE2957, IE4709, IE2042, IE6059, SVK1, MR2, PES110,
INDOF9 and HR374) and the susceptible with poor agronomic traits (S+PAT) group had 111
genotypes (Fig 3).

Association mapping
AM revealed that 15 QTLs (markers) were associated with seven traits by GLMmethod and
seven QTLs were associated with five traits by MLMmethod. All the seven QTLs identified in
MLM were concordant to GLMmethod. By GLMmethod, three QTLs each were identified for
number of productive tillers and seed yield and two QTLs each for leaf blast resistance, number
of tillers, number of fingers and length of root, while one QTL was identified for plant height.
There were two QTLs identified for leaf blast resistance, associated with the markers UGEP101
and UGEP95 reporting 21.05 and 8.95% of phenotypic variation for PDI respectively. Both
these QTLs were discovered by MLMmethod too, with corresponding R2 values of 6.07 and
5.79% respectively.

By GLMmethod, number of tillers and number of productive tillers were associated with
two common markers UGEP98 and UGEP65, of which UGEP98 was also identified in MLM
method which explained 9.97% of phenotypic variation for number of tillers. As that of leaf
blast resistance, two QTLs (UGEP9 and UGEP57) identified for root length by GLMmethod
were also confirmed using MLMmethod, explaining a phenotypic variation of 8.12 and 6.28%
respectively. For seed yield, by MLMmethod only one QTL, UGEP9 (R2 = 7.57%) was found

Fig 2. Cumulative ranks for all the traits for 128 genotypes of finger millet. The data were collected after 45 and 90 days of sowing the seeds for leaf
blast and agronomic traits respectively. Superior and inferior genotypes are represented by green bars and red bars respectively.

doi:10.1371/journal.pone.0159264.g002
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to be associated among the three identified by GLMmethod. UGEP9 was also found to be asso-
ciated with root length. Only one marker UGEP50 was associated with plant height by GLM
method, which was not identified by MLMmethod (Table 3).

In silico comparative genomics
The flanking sequences of microsatellite regions associated with fourteen out of the fifteen
identified QTLs were observed to be orthologous to the genomic regions of the grass species
such as rice (Oryza sativa), foxtail millet (Setaria italica), maize (Zea mays), Brachypodium dis-
tachyon, B. stacei, Panicum hallii and switchgrass (Panicum virgatum). The algorithm parame-
ters such as score value, identity and E-value ranged from 39.2 to 461, 64.4 to 100% and 0.1 to
8.00E-128 respectively (S1 Table). The hits ranged between 1 and 427 in a species per QTL.
The markers UGEP101, UGEP50, UGEP65, UGEP98, UGEP104, UGEP9, UGEP57 and
UGEP19 were found proximally associated with 12 candidate genes reported in seven grass
species (Table 4). However, there were no direct hits on the candidate gene sequences per se.
The marker, UGEP57 obtained maximum number of hits of 895, followed by UGEP50,
UGEP75, UGEP95, UGEP65 and UGEP104 with total hits of 682, 387, 369, 356, and 347
respectively. Multiple hits on the same chromosome were also observed for the marker
UGEP50 that displayed maximum of 56 hits on chromosome 1 in maize. Significant hits were
not found for the markers, UGEP101, UGEP50, UGEP98 and UGEP65 in B. distachyon,
UGEP101 and UGEP98 in B. stacei, UGEP101 in P. hallii, UGEP95 in rice and UGEP65 in
maize.

Fig 3. Empirical classification of top 25 ranking finger millet genotypes based on cumulative rank sum of agronomic traits and disease
incidence percent; R+GAT, R+PAT, S+GAT and S+PAT. The remaining 103 genotypes belonged to the last category S+PAT.

doi:10.1371/journal.pone.0159264.g003
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The putative candidate genes identified included a 1,4-β-glucanase gene at 21.8 kb down-
stream proximity to the UGEP101 orthologue on the chromosome 3 in maize with an E-value
of 1.8E-5 (Fig 4). A cytochrome P450 CYP2 gene was located 74.1 kb downstream from the
UGEP50 orthologue at scaffold-3 in foxtail millet, with an E value of 1.9E-3 (Figure B in S1
File). Orthologous sequences for the marker UGEP65, were found proximal to a cytokinin
dehydrogenase (CKX) gene located 29.4 kb upstream (US) on the rice chromosome 1 (Fig 5).
Further, a pectin methylesterase inhibitor (PMEI) gene and calmodulin (CaM)-binding protein
gene were located 13.2 kb downstream from the UGEP57 orthologue on rice chromosome 4
(Figure C in S1 File) and 62.0 kb downstream from UGEP19 orthologue on rice chromosome
10 (Figure D in S1 File) respectively. The 3.5 kb downstream sequences from the orthologous
region for the marker UGEP98 on Panicum hallii genome contained an auxin response factor
(ARF) gene localised on the chromosome 6 (Figure E in S1 File). Orthologous sequences to the
marker UGEP104 identified on Brachypodium distachyon genome, was closer to an ethylene-
responsive transcription factor (ERF) located 58.5 kb away upstream on chromosome 1
(Figure F in S1 File) and a MADS transcription factor at 1.26 kb upstream on chromosome 5
(Figure G in S1 File) respectively. Sequences similar to the marker UGEP104, was identified on
the switchgrass (Panicum virgatum) genome 82.64 kb upstream of a MADS box protein on
chromosome 3a (Figure H in S1 File) and 26.66 kb upstream of a zinc finger (ZF)-C2H2_6 on
the foxtail millet genome scaffold_7 (Figure I in S1 File). Orthologues for UGEP9, were located
near a Ser/Thr protein kinase gene on the foxtail millet Scaffold-4 6.29 kb downstream
(Figure J in S1 File) and 51.92 kb downstream of a cytochrome P450 CYP2 gene on the chro-
mosome 5 of the Brachypodium stacei genome (Figure K in S1 File).

Discussion

Blast occurrence and genetic resistance
The natural field used in the present study was known to be a hotspot for leaf blast disease in
finger millet [58]. None of the genotypes was found to be highly resistant, in contrast to an ear-
lier report [59] of natural field screening of 190 genotypes where some genotypes were found

Table 3. The details of genomic SSRmarkers associated with leaf blast resistance and agronomic traits using GLM andMLMmethods in 128 geno-
types of finger millet.

Trait Locus GLM (p<0.005) MLM (p<0.01)

p- value R2 (%) p- value R2 (%)

Leaf blast resistance UGEP101 0.000 21.05 0.006 6.07

UGEP95 0.001 8.95 0.008 5.79

Plant height UGEP50 0.003 6.69 -

Number of tillers UGEP98 0.000 9.53 0.000 9.97

UGEP65 0.001 11.72 -

Number of productive tillers UGEP98 0.002 7.00 0.006 6.55

UGEP65 0.003 7.00 -

SSR01 0.004 6.51 -

Number of fingers UGEP104 0.003 6.85 -

UGEP75 0.004 6.31 -

Length of root UGEP9 0.001 8.12 0.002 8.12

UGEP57 0.005 6.28 0.006 6.28

Seed yield UGEP9 0.000 10.71 0.008 7.57

UGEP19 0.001 7.63 -

UGEP80 0.003 6.78 -

doi:10.1371/journal.pone.0159264.t003
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to be highly resistant. Artificial leaf blast screening in the greenhouse identifies significantly
higher number of highly resistant genotypes [31]. Screening under natural field condition
could be a better option than greenhouse screening, because genotypes with enduring

Table 4. The details of the putative candidate genes identified on other grass species genomes, proximal to the orthologous regions for the finger
millet QTLs by in silico comparative genomics analysis. The function of each gene is also indicated.

Marker Species Linkage
group

Number of
hits

E-Value
range

Locus name Distance from
the marker
(kb)

Candidate
Gene

Known functions with
references

UGEP101 Zea mays Chr 3 10 1.8E-5 GRMZM2G130864_T01 21.82 (DS) 1,4-β-
Glucanase

Fungal resistance [46]

UGEP50 Setaria italica Scaffold _3 9 1.9E-3 Seita.3G298400.1 74.11 (DS) Cytochrome
P450 CYP2

Plant growth [47]

UGEP65 Oryza sativa Chr 1 2 4.5E-3 LOC_Os01g10110.1 29.41 (US) CKX Tiller growth and yield
[48]

UGEP98 Panicum hallii Chr 6 8 7.0E-2 Pahal.F00786.1 3.49 (DS) ARF Tiller growth and
development [49]

UGEP104 Brachypodium
distachyon

Chr 1 5 1.0E-47 Bradi1g38238.1 58.45 (US) ERF Flower development
[50]

Chr5 5 2.8E-4 Bradi5g11270.1 1.26 (US) MADS TF Meristem determinacy
and development [51]

Panicum
virgatum

Chr 3a 44 2.2E-46 Pavir.Ca00579.1 82.64 (US) MADS
box protein

Inflorescence
development [52]

Setaria italica Scaffold_7 8 6.1E-2 Seita.7G132800.1 26.66 (US) ZF-C2H2_6 Trichome
development on the
inflorescence [53]

UGEP9 Setaria italica Scaffold_4 8 6.5E-2 Seita.4G278800.1 6.29 (DS) Ser/Thr Protein
kinase

Enhances early root
growth and
development [54]

B. stacei Chr 5 2 3.7E-2 Brast05G258700.1 51.92 (DS) Cytochrome
P450 CYP2

Primary root growth
and development [55]

UGEP57 Oryza sativa Chr 4 12 7.2E-41 LOC_Os04g49730.1 13.20 (DS) PMEI Primary root growth
and development [56]

UGEP19 Oryza sativa Chr10 8 7.4E-7 LOC_Os10g28420.1 62.00 (DS) CaM -binding
protein

Regulating Ca2+

signaling in plants [57]

US, upstream; DS, downstream; CKX, Cytokinin dehydrogenase; TF, transcription factor; ARF, Auxin response factor; ERF, Ethylene-responsive

transcription factor; PMEI, Pectin methylesterase inhibitor; ZF, Zinc finger; CaM, Calmodulin.

doi:10.1371/journal.pone.0159264.t004

Fig 4. Screen shot image of comparative genomics analysis with QTL UGEP101 in genome of maize.UGEP101 is associated with candidate gene 1,
4-Beta-Glucanase at 21.822 kb distances in maize chromosome 3; this gene is responsible for fungal resistance trait.

doi:10.1371/journal.pone.0159264.g004
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resistance may not be identified under artificial conditions. Among the resistant checks used in
the present study, CO14 and GPU28 showed moderate resistance to leaf blast, reinforcing the
fact that field level evaluation is a better scale of comparison for enduring blast resistance. Fur-
ther, this was supported by high susceptibility shown by all susceptible checks included. This
has confirmed that natural field used in this study was optimal for leaf blast screening. The
experimental design that alternated resistant and susceptible checks on either side of every test
genotype provided uniform disease load throughout the crop duration. Comparative screening
has helped to identify one genotype, IE4795, which showed resistance to leaf blast coupled with
best agronomic performance. Further, screening under natural field conditions was very help-
ful to find the level of resistance exhibited by different genotypes and to classify them into dif-
ferent categories based on resistance.

Pathotypes ofMagnaporthe oryzae are known to show distinct host adaptation, genetic
diversity and sexuality [60] and hence it is likely that they may show distinct adaptive variation
in North and South Indian conditions that are agro-climatically distinct. Earlier, Nagaraja et al.
[61] assessed field incidence of blast disease under different agro climatic conditions at Banga-
lore, Vizianagaram and Ranichauri and reported that low temperature, high relative humidity
(>80%) and high rainfall were conducive for blast development especially the neck and finger
blasts. Under the arid weather conditions with moderate high temperature at the present study
location, leaf blast incidence was found to supersede neck and finger blasts. Further, young
plants were more susceptible to leaf blast than mature plants, indicating the plasticity of the
blast pathotypes to adapt to changing environments and crop phenology. To assess the blast
reaction under South Indian conditions, 82 genotypes from ICRISAT collection were included
in our study, that were also tested earlier at Almora, Uttarakhand, North India, a known blast
hotspot for both finger millet and rice [31]. Besides, an additional 46 genotypes were also
included in this study that were unexplored with respect to their genetic diversity and leaf blast
resistance.

Spectrum of leaf blast reaction among the 128 genotypes revealed very low proportion of
resistance in the population (<1.0%), which was lower than that reported from an earlier study
[31], in which 12 were resistant genotypes among 190 genotypes. This led us to hypothesise the
possibility that blast pathogen at the hotspot location of Paiyur could be genetically adapted to
the region and distinct from the pathotype found in North Indian conditions. Reinforcing this

Fig 5. Screen shot image of comparative genomics analysis with QTL UGEP65 in genome of rice. UGEP65 is associated with candidate gene CKX at
29.412 kb distance in rice chromosome 1; this gene is responsible for tiller growth and seed yield trait.

doi:10.1371/journal.pone.0159264.g005
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theory, we found that leaf blast resistance spectrum of common genotypes shared between
both the studies showed largley contrasting reactions. Eleven resistant genotypes reported ear-
lier [31] were found susceptible or moderately susceptible/resistant under this study, while the
resistant genotype IE4795 identifiied in this study was reported moderately resistant at North
Indian conditions. A parellel situation was also encountered in the case of moderate resistance,
wherein the proportion of genotypes was significanly low in the studied population. None of
the four moderately resistant genotypes identified in this study was reported to show better
resistance under North Indian conditions. Significant variation in blast reactions among com-
mon genotypes tested under different agro-geographical regions were reported earlier in finger
millet [58] and rice [62].

Blast disease in finger millet is manifested as leaf, neck and finger blasts, of which interrela-
tionships among the different manifestations are not well established. Although leaf blast is
reported to affect seedlings, and less severe compared to other forms, no clear relation between
the leaf and head infections is reported [63]. However, when neck and finger blasts are estab-
lished, they could significantly affect agronomic traits [31, 59] than the leaf blast. We have not
found any incidence of neck and finger blasts in this study. Nevertheless, we have observed sig-
nificant adverse association of leaf blast with agronomic traits. Although finger and neck blasts
can create more adverse influence on agronomic traits over leaf blast, under favourable condi-
tions, leaf blast can also incite equally damaging influence on number of productive tillers,
number and length of fingers and grain yield [5, 61]. Hence when established alone, leaf blast
can become effectively destructive and cause reduction of plant height and root length in finger
millet genotypes. There are no previous reports available on the leaf blast screening in different
finger millet genotypes at Paiyur in South India. This study clearly indicates that agro-climatic
conditions play a major role in leaf blast incidence in finger millet and the spectrum of geno-
types showing varying levels of resistance to leaf blast can be utilized in identifying genetic
regions that govern resistance and utilize the resistance sources for marker assisted breeding
programmes in future.

Agronomic performance under leaf blast load
The agronomic performance of the genotypes was relatively poor under the present study
wherein the genotypes were widely infected with leaf blast and left unmanaged. As done in the
case of blast incidence assessment, the performance of genotypes that were common to previ-
ous studies provided us an opportunity to compare the agronomic performance of such geno-
types. In the present study, the genotype IE4646 produced optimum mean plant height of 80.0
cm [38] followed by the USA genotype IE2589 (80.5 cm). Both these genotypes were reported
to produce maximum plant height of 93.0 cm and 137.0 cm respectively across diverse agro-
ecological situations in India [31]. This could be attributed to their high susceptibility to leaf
blast in the present study, the probable reason for their poor performance. Corroborating this
theory, the resistant genotype IE4795 was found to produce plant height of 106 cm, similar to
the height of 105.2 cm reported earlier [31]. Similar observations were also recorded for other
agronomic traits, such as number of productive tillers that ranged between 0.3–4.0 in the cur-
rent study as against 1–18 under well managed conditions [29]. Reports on direct influence of
leaf blast susceptibility on agronomic performance of finger millet genotypes are scanty in liter-
ature. Cross species reports on the influence of blast disease on agronomic performance are
available especially in rice, wherein significant influence of blast in reducing the plant height
and number of productive tillers has been described [64]. McRae [65] who reported finger mil-
let blast disease for the first time in India, estimated losses to a tune of 50%; however, there are
later reports of loss up to 90% under severe infections [66].
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The multiple regression analysis of agronomic traits on leaf blast incidence revealed signifi-
cant relation of plant height and root length to PDI. While plant height reduced with severity
of infection, root length increased. Leaf blast occurs in susceptible plants from early stages
severely crippling the growth due to adverse influence on physiological health of the plants
including poor photosynthetic activity of the affected leaves resulting in reduced plant height.
Under leaf blast infection, significant reduction of net photosynthetic rate of the affected leaves
is reported in rice [66]. Further, the infection itself puts the plants into severe stress and nutri-
ent depletion. The increased elongation of the roots therefore can be attributed to the adaptive
mechanism of the plant to forage for more food and nutrients when aerial part undergoes
severe stress due to the disease. No previous reports are available for correlating leaf blast with
root length in finger millet. The genotype IE4795 stood first in consolidated rank and produced
superior response for disease resistance and other agronomic traits. Assessment of interrela-
tions of agronomic traits in the present study revealed that positive correlation was observed
for plant height, number of tillers, length of fingers and length of root. Upadhyaya et al. [67]
reported a positive correlation for plant height and length of fingers in 622 genotypes of finger
millet.

Based on empirical classification, only three genotypes (IE4795, CO14 and GPU28) can be
recommended for cultivation under leaf blast endemic areas of South India where agroclimate
similar to Paiyur exist. These genotypes were grouped under R + GAT category that combined
resistance with good agronomic traits. IE4795 is a finger millet accession from Zimbabwe
belonging to ICRISAT minicore collection [67]. This genotype was reported to be resistant to
neck and finger blast at Almora in North India [68]. IE4795 was reported to be admixture
genotype of Indian and African populations for finger millet having more than 50% of alleles
from Indian population [28]. CO14 is a high yielding finger millet variety of South India, devel-
oped from the pedigree Malawi 1305/ CO 13 with an average yield of 2774 kg/ha. These geno-
types were reported to be moderately resistant to neck and finger blast [69]. GPU28 is a highly
blast resistant variety developed from the pedigree Indaf 5/ IE 1012 with an average yield of
3500–4000 kg/ha from Karnataka, India (http://www.nuscommunity.org/resources/our-
publications/publication/recommended-package-of-agro-production-technology-for-finger-
millet/).

Ten genotypes were identified under S+ GAT category having good agronomic traits despite
of being susceptible to the disease. These genotypes need to be improved for leaf blast resis-
tance. They can be used as the recurrent parents in a marker assisted finger millet improvement
program. Also they can be used as donor lines for best agronomic trait. However, there were
four genotypes under R + PAT category that combined resistance but with poor agronomic
traits; these genotypes could be used as donor lines for leaf blast resistance. One hundred and
eleven genotypes were grouped into S+ PAT category, which neither had resistance nor agro-
nomic superiority; these genotypes require improvement in disease resistance, which may
improve their agronomic performance. Further, under leaf blast endemic situations such varie-
ties may require intensive disease management to realise better yield. Some of these genotypes
can also be used as susceptible checks in blast resistance breeding in finger millet.

Detection of QTLs
The marker-trait association with blast resistance and other agronomic traits clearly demon-
strated that use of SSR markers was successful in deciphering QTLs for these traits in the pres-
ent study. SSR markers are the next best alternative for mapping especially in self-pollinated
crops like finger millet wherein evolutionary haplotype blocks may be larger when compared
to cross-pollinated species [70, 71]. Further, SSRs are multi-allelic and therefore may offer
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better testing opportunity for the association between complex phenotypic traits and candidate
locus, because single-loci SNP analyses may present a loss of information due to the bi-allelic
nature [72]. Seven out of fifteen QTLs concordant in both GLM and MLMmethods of associa-
tion mapping are considered robust and unambiguous in the present study. MLMmethod
includes an additional co-variate of kinship so that false discovery of association is greatly regu-
lated than in GLMmethod, because there is an effective control for population structure and
relatedness within genome-wide association studies [15].

Successful use of SSR markers in association analyses for agronomic traits and disease resis-
tance have been demonstrated earlier in finger millet [28, 31, 68] and in rice [73]. We have
identified two novel QTLs linked to markers UGEP101, and UGEP95 associated for leaf blast
incidence among the genotypes that can be related directly to resistance. Both these markers
have so far not been assigned to any linkage group [74]. Earlier studies have [31] identified
three QTLs associated with markers such as FMBLEST35, FMBLEST15 and RM23842 for leaf
blast resistance using genic SSR markers. However, relationship if any, among these markers,
could not be ascertained in the absence of a linkage map involving these markers.

Three agronomic traits, tiller number (both total and productive), root length and seed yield
were found associated with markers UGEP98, UGEP9 and UGEP57. None of these markers
had been assigned to finger millet linkage groups so far [13, 74]. UGEP98 was not so far
reported to be associated with tiller number in finger millet. The earlier reported marker
UGEP81 associated with basal tiller number [28] was not found to be associated with tiller
number in the present investigation. The marker-trait associations identified in this study have
not been reported earlier and are considered novel as far as the current knowledge goes. Most
of these markers were synthesized from random genomic libraries of the finger millet accession
PI 321125 [13]. In the absence of linkage information, we are unable to determine the proxim-
ity of the identified markers to previously reported markers.

Identification of putative candidate genes linked to QTLs
The evolutionary cascade of grass genomes showcases several conserved genetic regions,
genome wide spread over 10000 grass species [75]. Taking advantage of this, we have followed
QTLs to candidate gene tracking using comparative genomics approach, in which identified
QTLs were associated with important candidate genes, using marker sequences. This method
was used as an alternate attempt in the absence of genome information for finger millet. The
basis of the search was to find any cross genome syntenous regions targeting specific traits that
may also contain similar SSR sequences proximal to the candidate genes. The SSR sequences
from the amplified fragments were not used because the sequences themselves may not be
appropriate for realising significant hits because of the ubiquitous nature of tandem repeats as
well as due to the fragment length variation within and between genomes; hence we have used
the original flanking sequences of the microsatellite regions associated with QTLs for BLASTn
search. Although this has helped to identify some candidate genes associated with these mark-
ers, we resort not to claim their authenticity pending validation. This approach differed from
previously reported approach [30, 31, 76], in which markers were designed from candidate
gene sequences from related genera such as rice and associated with the trait of interest.
Recently, foxtail millet genome has been sequenced among the small millets [77, 78, 79], which
may help in identifying trait related candidate genes for finger millet in the future.

Out of the twelve putative candidate genes identified from grass genomes proximal to the
orthologous regions to the eight finger millet QTL linked markers, the gene 1,4-β-glucanase
was significant as it was found adjoining to the leaf blast resistance orthologue in maize
genome. 1, 4-β-glucanase gene has been identified to play a major role in fungal resistance in
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major cereal species including rice [46] and wheat [80]. QTL linked marker for plant height
UGEP50 was orthologous to foxtail millet sequences found adjacent to a cytochrome P450
CYP2 gene. Cytochrome P450 CYP2 superfamily is known to be essential for internode elonga-
tion, plant growth [47, 81] and primary root growth [55]. Similarly, UGEP65, the marker
linked to the number of tillers was found to be putatively associated to the cytokinin dehydro-
genase/oxidase (CKX) gene in rice, the down regulation of which has been identified as impor-
tant for tiller number and grain yield [48]. Positional cloning of the QTL Gn1a that is
associated to the spikelet number in rice was identified to encode OsCKX2, which controls the
rice grain yield by regulating cytokinin accumulation through reduced expression of Gn1a in
the inflorescence meristems resulting in increased spikelet number [82]. The auxin response
factor (ARF) gene essential for tiller growth and development identified in the Panicum hallii
genome [49] was aanother UGEP65 associated putative candidate gene in the present study.

The finger development in finger millet is a flowering process that is under the influence of
several flowering related genes that are found to be associated to the orthologous sequences of
the finger development QTL linked marker UGEP104 across genomes of Brachypodium distach-
yon, switchgrass and foxtail millet. The genes such as ethylene response factor (ERF), minichro-
mosomemaintenance protein 1 (MCM1)-Agamous-Deficiens-serum response factor (SRF)
transcription factor (MADS-TF), MADS box protein, zinc finger—Cys2His2 (ZF-C2H2) are reg-
ulatory genes essential for flower development [50], meristem determinacy [51], inflorescence
development [52] and trichome development on the inflorescence [53] respectively. Therefore,
putative association of more than one candidate genes to a locus makes it difficult to recommend
a specific functionality to such locus. Further, the primary root growth and development were
found suggestively linked to candidate genes Ser/Thr protein kinase [54], cytochrome P450
CYP2 [55] and pectin methylesterase inhibitor (PMEI) [56] by their association to the ortholo-
gous sequences to the markers UGEP9 and UGEP57 linked to root length in finger millet.

The seed yield related marker UGEP9 in finger millet was found proximal to a CaM binding
protein gene on the rice orthologue on chromosome 10. CaM binding proteins are reported to
be important for regulating Ca2+ signaling in plants [57]. A Ca2+ regulating protein, a seed
dominant CaM was reported to be essential for calcium accumulation in finger millet grains
[83]. Finger millet is the richest source of grain calcium among the millets [84], and the role of
calcium in determining seed yield [85] is very crucial.

We have identified several cross genome orthologues to the identified markers linked to var-
ious traits in finger millet, that were proximal to several candidate genes that are known to reg-
ulate the respective traits in other grass species. However, there are no previous reports on the
role of these candidate genes in finger millet. Therefore, these genes require independent vali-
dation for their role in finger millet genome.

Conclusion
Finger millet accessions in this study showed significant variation in resistance to leaf blast dis-
ease that had greatly altered their agronomic performance. However, we could identify few
potential cultivars that combine resistance and agronomic performance which can be used
directly for cultivation as well as donors for useful genes in finger millet improvement.
Although the lack of whole genome information remains as a major impediment in designing
molecular marker based crop breeding in finger millet today, microsatellite marker based
genome scans as performed in this study can provide great leads in this direction. Recent
advances in whole genome information in foxtail millet spearheaded by the next generation
sequencing (NGS) technology [79] also can accelerate identification of candidate genes in fin-
ger millet. In view of this, the sequencing of finger millet genome/transcriptome can result in
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development of high-throughput markers which would advance finger millet genomics in the
same way as it happened to foxtail millet. Further investigations on the identified varieties can
help in locating novel genomic regions associated with agronomic performance and disease resis-
tance; also the use of identified QTLs can lead us to develop new efficient cultivars for the future.
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population structure of 128 finger millet genotypes.
(PDF)

S1 Table. The details of the algorithm parameters such as score value, identity and E-value
for each QTL as analyzed in 10 model crops by in silico comparative genomics. File contains
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separate sheet for each QTL.
(XLSX)
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