Notebooks, reproducibility and other topics in ocean sciences
The material (slides, exercises) are made available through GitHub at

https://github.com/gher-ulg/COST-EUMETSAT-Training
Who knows/uses ...?

GitHub
Who knows/uses ...?

GitHub
orcID
Who knows/uses ...?

GitHub
orcid
jupyter
Who knows/uses ...?

GitHub
orcid
jupyter
zenodo
Who knows/uses ...?

GitHub
orcID
jupyter
zenodo
julia
REPRODUCIBLE RESEARCH

I HATE IT.
Problem: how to guarantee reproducibility of results?
How to go from data to results?

- Read the publication?
- Read the manual?
- Get and re-use code referenced in publication?
How to go from data to results?

- Read the publication?
How to go from data to results?

- Read the publication?
- Read the manual?
How to go from data to results?

- Read the publication?
- Read the manual?
- Get and re-use code referenced in publication?

8 Code and data availability

The version of FESOM2.0 used to carry out simulations reported here can be accessed from https://swrepo1.awi.de/svn/awi-fvom/ after registration. The updated versions will be available through the same link in future. For convenience, the configuration used, together with the meshes, is archived at doi:10.5281/zenodo.161319. Mesh partitioning in FESOM is based on a METIS Version 5.1.0 package developed at the Department of Computer Science & Engineering at the University of Minnesota (http://glaros.dtc.umn.edu/gkhome/views/metis). METIS and pARMS (Li et al., 2003) present separate libraries which are freely available subject to their licenses. FESOM1.4 is available at https://swrepo1.awi.de/projects/fesom/ (requires registration). The Polar Science Center Hydrographic Climatology (Steele et al., 2001) used to initialize runs of CORE-II atmospheric forcing data (Large and Yeager, 2009) is freely available online. The simulation results can be obtained from the authors on request.
Notebooks: interactive computational environments

Notebooks combine:

1. code fragments that can be executed,
2. text for the description of the application and
3. figures illustrating the data or the results.

```
In [2]:
import numpy as np
import matplotlib.pyplot as plt

Data
Let's create a simple function.

In [6]:
x = np.arange(0, 6, 0.1)
y = np.cos(x) + 1.5 * np.sin(2 * x)

Make a simple plot

In [7]:
plt.plot(x, y)
plt.show()
```

![Graph of a function using matplotlib](image)
Notebooks combine:

1. code fragments that can be executed,
2. text for the description of the application and
3. figures illustrating the data or the results.

"Digital Playground"

"Data Story Telling"

"Computational Narratives"
Interactive notebooks: Sharing the code

The free IPython notebook makes data analysis easier to record, understand and reproduce.

Helen Shen

05 November 2014

http://www.nature.com/news/
interactive-notebooks-sharing-the-code-1.16261
Interactive environments: what exists today?
R Markdown

from RStudio

Your data tells a story. Tell it with R Markdown.
Turn your analyses into high quality documents, reports, presentations and dashboards.

Your data tells a story. Tell it with R Markdown.
Turn your analyses into high quality documents, reports, presentations and dashboards.

http://rmarkdown.rstudio.com/

👍 Possible to export in journal or presentation formats

https://github.com/rstudio/rticles

👍 LaTeX templates for different journals
Apache Zeppelin

Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more.

TECHNOLOGIES

Apache Spark

SQL

Python
Languages can be mixed in the same notebook. Users can write their own interpreter (language backend).
The Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.

Language of choice
Share notebooks
Interactive widgets
Big data integration
More than 40 language kernels available

Can be used as a multi-user server (jupyterhub)

http://jupyter.org/
The Perfect Tool for Iterative Exploration
The Perfect Tool for Iterative Exploration

http://beakernotebook.com/

👍 Usage of different languages in different cells, within the same notebook

👍 Installation and multi-language
Collaborative Calculation in the Cloud

Run CoCalc

or sign in with your account
https://cocalc.com/ "Collaborative Calculation in the Cloud"

👍 Support of many languages
👍 Users to upload their files on the platform
Exercise 1

subsetting using nco
Goal: extract a regional subset from field
Tool: nco
NetCDF subsetting

Notebook file: NetCDF-regridding/netCDF-subsetting.ipynb

Language: bash (not usual)

1. Run the notebook cell-by-cell
2. Create a new notebook
3. Modify the bounding box and perform subsetting
4. Repeat the operations on one of your files
5. Export the notebook as a pdf file
Exercise 2

regridding using nco
Goal: re-interpolate
Tool: nco + ESMF
NetCDF regridding

Notebook file: NetCDF-regridding/netCDF-regrid.ipynb
Language: bash

1. Run the notebook cell-by-cell
2. Create a new grid file with a different resolution
3. Perform again the regridding
4. Try the regridding on one of your file

ℹ️ use create-netCDF-grid.ipynb if you don’t know how to create such a file
Another step towards reproducibility
How to identify scientists/researchers?

Source: Academicons
How to identify scientists/researchers?

Let’s work with ORCID

Source: Academicons
How to identify datasets and publications?

Digital object identifier
Ocean Observation \rightarrow Generate Dataset
Ocean Observation

Generate Dataset

Analysis

Software tool

Results

Publication

Source code, notebook

Upload

Login

DOIs
Ocean Observation

Generate Dataset

Analysis

Software tool

Results

Publication

Source code, notebook

Zenodo

Login

Upload

ID

Login
Ocean Observation

Generate Dataset

Analysis

Software tool

Results

Publication

Source code, notebook

Login

Upload

DOI

DOI

DOI

Zenodo
Zeno-what???
Zenodo – http://zenodo.org/

A platform to upload papers, datasets, software codes... and to get permanent identifiers
After *Zenodotus*

1st superintendent of the Library of Alexandria and 1st critical editor of Homer

Recent uploads

Genome assemblies for "Versatile genome assembly evaluation with QUAST-LG"

Alica Mikheenko; Andrey Pribelski; Vladimir Saveliev; Dmitriy Antipov; Alexey Gurevich

De novo genome assemblies of Yeast_PB (S. cerevisiae, genome size: 12.1 Mb): Canu, FALCON, Flye, MaSuRCA (from Illumina pair-ends and PacBio SMRT) Yeast_NP (S. cerevisiae, genome size: 12.1 Mb): Canu, Flye, MaSuRCA (from Illumina pair-ends and Oxford Nanopores) Worm_PB (C. elegans, genome...)

Uploaded on January 31, 2018

2 more version(s) exist for this record

ambitcli-3.0.2

Jeliazkova, Nina; Kochev, Nikolay; Jeliazkov, Vedrin

A command line Java application used for processing chemical files, structure standardization, import into AMBIT database and processing AMBIT database entries. More information at http://ambit.sourceforge.net/download_ambitcli.html! Chemical structure standardization option available since...

Uploaded on January 11, 2018

1 more version(s) exist for this record

A global network of biomedical relationships derived from text

Percha, Bethany; Altman, Russ B.
Linked accounts

Tired of entering password for Zenodo every time you sign in? Set up single sign-on with one or more of the services below:

- GitHub
 - Software collaboration platform, with one-click software preservation in Zenodo.
- ORCID
 - Connecting Research and Researchers.

Disconnect

Disconnect

Get started

1. Flip the switch
Select the repository you want to preserve, and toggle the switch below to turn on automatic preservation of your software.

2. Create a release
Go to GitHub and create a release. Zenodo will automatically download a zip-ball of each new release and register a DOI.

3. Get the badge
After your first release, a DOI badge that you can include in GitHub README will appear next to your repository below.

Enabled Repositories

- ctroupin/CMEMS_INSTAC_Training
 DOI: 10.5281/zenodo.161834

- ctroupin/PythonCourseCadiz2016
 DOI: 10.5281/zenodo.48926
gher-ulg/DIVA: v4.7.1

Sylvain Watelet; Charles Troupin; Jean-Marie Beckers; Alexander Barth; Mohamed Ouberdous

New features

- Major feature: bottom analysis is now possible. The distance is counted from the bottom ocean, derived from the interpolation of the topography topo_fine.grd. This topography can be different (and finer) than topo.grd used for the creation of contours.
- Major feature: conversion of EMODnet bathymetry to Diva-readable format with the tool emobath2ghertopo.
- Major feature: Variable correlation length depending on the gradient of the depth. Advection field adapted to this relative length field. Suited for bottom analyses. Updated programs: diva3Ddat, divarlvargraddepth, rhvgraddepth_f90, divadoall, divaUVtopo, UVtopogen.f, divadocommit.
 - Acknowledgements field in 3D and 4D netCDFs.
 - New compilation option DIVA_HUGE_MEMORY. Enabled by default in divacompile_options, it allows the use of a finer mesh, and/or a larger domain. Particularly useful with variables characterized by low correlation lengths.

Bug fixes

- divacutNCDF: correction on climatology bounds + dealing with very big obsid vector
- divacompile_options: new tests on nc-config, due to recent change in its behaviour
- dv3Dreadnc.F: warning if dimensions are incoherent between GridInfo.dat and the netcdf file
- divadoall, divadoNCDF, divadoNCYR: corrected handling of 3DNCinfo and 3DNCList files so that recreating a new 4D NC file is much easier
- divadoxml: removed because deprecated (use divadoxml-gui instead)

Other

Update of the user guide
A recent (and real) example: MedSea Atlas

Mediterranean Sea Hydrographic Atlas: towards optimal data analysis by including time-dependent statistical parameters

Athanasia Iona¹,², Athanasios Theodorou², Sylvain Watelet³, Charles Troupin³, and Jean-Marie Beckers³

¹Hellenic Centre for Marine Research, Institute of Oceanography, Hellenic National Oceanographic Data Centre, 46,7 km Athens Souvio, Mavro Lithari P.O. BOX 712 19013 Anavissos, Attica, Greece
²University of Thessaly, Department of Ichthyology & Aquatic Environment, Laboratory of Oceanography, Pytoko Street, 38 445, Nea Ionia Magnesia, Greece
³University of Liège, Geofluiddynamics and Environment Research, Quartier Agora, Allée du 6-Août, 17, Sart Tilman, 4000 Liège 1, Belgium

Received: 30 Jan 2018 – Accepted for review: 31 Jan 2018 – Discussion started: 02 Feb 2018

Abstract. The goal of the present work is to provide the scientific community with a high-resolution Atlas of temperature and salinity for the Mediterranean Sea based on the most recent datasets available and contribute to the studies of the long-term variability in the region. Data from the Pan-European Marine Data Infrastructure SeaDataNet were used, the most complete and, to our best knowledge, of best quality dataset for the Mediterranean Sea as of today. The dataset is based on in situ measurements acquired between 1900–2015. The Atlas consists of horizontal gridded fields produced by the Data Interpolating Variational Analysis, where unevenly spatial distributed measurements were interpolated onto a 1/8° x 1/8° regular grid on 31 depth levels. Seven different types of climatological fields were prepared with different temporal integration of observations. Monthly, seasonal and annual climatological fields have been calculated for all the available years, seasonal to annual climatologies for overlapping decades and specific periods. The seasonal and decadal time frames have been chosen in accordance with the regional variability and in coherence with atmospheric indices. The decadal and specific periods analysis was not extended to monthly resolution due to the lack of data, especially for the salinity. The Data Interpolating Variational Analysis software has been used in the Mediterranean Region for the SeaDataNet and its predecessor Medar/Medatlas Climatologies. In the present study, a more advanced optimization of the analysis parameters was performed in order to produce more detailed results. The Mediterranean Region past and present states have been extensively studied and documented in a series of publications. The purpose of this Atlas is to contribute to these climatological studies and get a better understanding of the variability on time scales from month to
A recent (and real) example: MedSea Atlas

The publication? "Mediterranean Sea Hydrographic Atlas..."

doi 10.5194/essd-2018-9
A recent (and real) example: MedSea Atlas

The publication? “Mediterranean Sea Hydrographic Atlas…”
doi 10.5194/essd-2018-9

The author? Sissy Iona (Hellenic Center for Marine Research)
id 0000-0001-6878-4671
A recent (and real) example: MedSea Atlas

The publication? "Mediterranean Sea Hydrographic Atlas..."
doi 10.5194/essd-2018-9

The author? Sissy Iona (Hellenic Center for Marine Research)
id 0000-0001-6878-4671

The data? MedSea – T and S observation collection V2
doi 10.12770/8c3bd19b-9687-429c-a232-48b10478581c
A recent (and real) example: MedSea Atlas

The publication? "Mediterranean Sea Hydrographic Atlas..."
 doi 10.5194/essd-2018-9

The author? Sissy Iona (Hellenic Center for Marine Research)
 id 0000-0001-6878-4671

The data? MedSea – T and S observation collection V2
 doi 10.12770/8c3bd19b-9687-429c-a232-48b10478581c

The products? MedSea – T and S Annual Climatology
 doi 10.5281/zenodo.1146976 via zenodo
A recent (and real) example: MedSea Atlas

The publication? "Mediterranean Sea Hydrographic Atlas..."
 doi 10.5194/essd-2018-9

The author? Sissy Iona (Hellenic Center for Marine Research)
 ORCID 0000-0001-6878-4671

The data? MedSea – T and S observation collection V2
 doi 10.12770/8c3bd19b-9687-429c-a232-48b10478581c

The products? MedSea – T and S Annual Climatology
 doi 10.5281/zenodo.1146976 via zenodo

The method/tool? DIVA Version 4.6.11
 doi 10.5281/zenodo.400970 via zenodo
1. Create an account in ORCID (https://orcid.org/) - 2 minutes
2. Create an account in Zenodo (http://zenodo.org/) - 2 minutes
3. Publish your code along with your paper - 15 minutes
4. Make your data public - 1 minute
1. Create an account in ORCID
 (https://orcid.org/)
 2 minutes
Suggestions

1. Create an account in ORCID (
https://orcid.org/)
 ✋ 2 minutes

2. Create an account in Zenodo
 (http://zenodo.org/)
 ✋ 2 minutes
Conclusions

Suggestions

1. Create an account in ORCID
(https://orcid.org/)
 🔄 2 minutes

2. Create an account in Zenodo
(http://zenodo.org/)
 🔄 2 minutes

3. Publish your code along with your paper
 🔄 15 minutes
Conclusions

Suggestions

1. Create an account in ORCID (https://orcid.org/) ⏱️ 2 minutes
2. Create an account in Zenodo (http://zenodo.org/) ⏱️ 2 minutes
3. Publish your code along with your paper ⏱️ 15 minutes
4. Make your data public ⏱️ ∞ minutes
Anything missing?
Working with in situ observations
"Without sufficient observations, useful prediction will likely never be possible"
"Models will evolve and improve, but, without data, will be untestable, and observations not taken today are lost forever."

C. Wunsch et al. (2010) PNAS
"Without data assimilation, any attempt to produce reliable forecasts is almost certain to end in failure."

https://www.metoffice.gov.uk/learning/making-a-forecast/first-steps
How to access the data?

Copernicus Marine Environment Monitoring Service (CMEMS) catalog: http://marine.copernicus.eu
How to access the data?

1. Create user
2. Login into the system
3. Select the data set of interest from the catalog
4. Download from FTP
Exercise 3: find sea water temperature near Hamburg using in situ data
In situ temperature

Data: folder INSITU_BAL_NRT_OBSERVATIONS_013_032
 index_latest.txt: list of files with bounding box, time coverage etc
 latest directory: netCDF files

Tool: notebook CMEMS_INSTAC/read_CMEMS_indexfile.ipynb

Tasks:
1. Read the index file
2. Represent the data points on a figure (map)
3. Find the closest data point
4. Read the temperature at the point
Creating a presentation from your notebook

How to access the data?

In Situ Thematic Assembly Center:
http://www.marineinsitu.eu/dashboard/