RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high
temperatures

Recommendations

The text presented hereafter are drafts for general consideration. Comments should be sent to the TC Chairman: Prof. Dr. Ulrich Schneider, Institut für Baustofflehre und Bauphysik Technische Universität Wien, Karlplatz 13, A-1030 Wien, Austria. Fax: +43 1 58801 206 99; e-mail: uschneider@bibris.tuwien.ac.at, by 31 August 2000.

TC MEMBERSHIP: Chairman: Schneider, U., Austria; Secretary: Schweisinger, P., Germany; Members: Debicki, G., France; Diederichs, U., Germany; Fransson, J.-M., Belgium; Furumura, F., Japan; Jumppanen, U. M., Finland; Khoury, G. A., U.K.; Millard, A., France; Morris, W. A., U.K.

Part 8: Steady-state creep and creep recovery for service
and accident conditions

1. SCOPE

This recommendation is valid for structural applications of concrete under service and accident conditions.

This document presents test parameters (material and environmental) and test procedures for determining the steady state creep and creep recovery, in the direction of the central axis, of a reference length of cylindrical concrete specimens under constant temperatures in the range of 20 °C < T < 750 °C under a constant uniaxial compressive external applied load after heating or reaching the required temperature [1]. In special cases higher temperatures may be used.

For the case when a steady state creep test is carried out after a transient creep test, this document also presents test parameters and test procedures during the transitional thermal period when the rate of heating of the specimen reduces from a constant rate “R” of the transient creep test to zero at a constant temperature level T_{max}, at which point steady-state temperature tests will commence ([2], Part 7).

2. SERVICE AND ACCIDENT CONDITIONS

2.1 Service conditions

Service conditions normally cover long time test temperatures in the range from 20 to 200 °C and moisture states between the two boundary conditions:

Boundary Condition “d”: Drying (unsealed) concrete
Boundary Condition “nd”: Moisture saturated (sealed) concrete

In general, boundary condition “d” applies to drying structures in air with a maximum thickness < 400 mm, or structures with no point which is farther than 200 mm away from a surface exposed to air.

Boundary condition “nd” is defined for the following wet structures:
• Sealed structures independent of their dimensions.
• Zones of structures with a distance > 200 mm from the surface exposed to air.
• Structures under water.

2.2 Accident conditions

Accident conditions normally involve short-term exposure to temperatures in the range from 20 to 750 °C or above and transient moisture states, i.e. the concrete is allowed to dry during heating. In this case the moisture boundary condition is the same as the condition “d” mentioned above.

3. DEFINITION

3.1 General

Steady-state creep is defined as the deformation that occurs during the test period from t_0 to t_1 for a specimen at constant temperature T_{max} and constant load. The specific definitions for non-drying and drying concrete are given in Sections 3.3 and 3.4 respectively.

Two cases of steady-state creep tests may be undertaken depending on the load-temperature sequence:
5. CALCULATION

The load at the limit of proportionality (F_u in N) is determined according to an appropriate diagram in Fig. 5. The moment at mid-span of the test beam corresponding to F_u is:

\[M_u = \frac{F_u L}{2} \] (Nmm)

where L = span of the specimen (mm).

Assuming a stress distribution as shown in Fig. 6, the limit of proportionality f_{ct,fl} can be calculated using the following expression:

\[f_{ct,fl} = \frac{3F_u L}{2bh_{sp}^2} \] (N/mm²)

where b = width of the specimen (mm); h_{sp} = distance between tip of the notch and top of cross section (mm).

The energy absorption capacity D_{BZ,2} (D_{BZ,3}) is equal to the area under the load-deflection curve up to a deflection δ_2 (δ_3) (Fig. 5). D_{BZ,2} (D_{BZ,3}) consists of two parts:

- plain concrete \(\Rightarrow D_{BZ}^e \) (Nmm)

\[D_{BZ,2} = D_{BZ,2,1}^e + D_{BZ,2,II}^e \] (Nmm)
\[D_{BZ,3} = D_{BZ,3,1}^e + D_{BZ,3,II}^e \] (Nmm).

The dividing line between the two parts can be simplified as a straight line connecting the point on the curve corresponding to F_1 and the point on the abscissa “δ_{FU} + 0.3 mm”. δ_{FU} is the deflection at the limit of proportionality. The deflections δ_2 and δ_3 are in turn defined as:

\[\delta_2 = \delta_{FU} + 0.65 \text{ mm (mm)} \]
\[\delta_3 = \delta_{FU} + 2.65 \text{ mm (mm)} \]

\[F_2 = \frac{D_{BZ,2,1}^e}{0.65} + \frac{D_{BZ,2,II}^e}{0.50} \] (N)
\[F_3 = \frac{D_{BZ,3,1}^e}{2.65} + \frac{D_{BZ,3,II}^e}{2.50} \] (N)

The moment at mid-span of the test beam corresponding to F_2 (F_3) is:

\[M_2 = \frac{F_2 L}{2} \left(\frac{D_{BZ,2,1}^e}{0.65} + \frac{D_{BZ,2,II}^e}{0.50} \right) \frac{L}{4} \] (Nmm)
\[M_3 = \frac{F_3 L}{2} \left(\frac{D_{BZ,3,1}^e}{2.65} + \frac{D_{BZ,3,II}^e}{2.50} \right) \frac{L}{4} \] (Nmm)

Assuming a stress distribution as shown in Fig. 6, the equivalent flexural tensile strength f_{eq,2} and f_{eq,3} can be determined by means of the following expressions:

\[f_{eq,2} = \frac{3}{2} \left(\frac{D_{BZ,2,1}^e}{0.65} + \frac{D_{BZ,2,II}^e}{0.50} \right) \frac{L}{bb_{sp}} \] (N/mm²)
\[f_{eq,3} = \frac{3}{2} \left(\frac{D_{BZ,3,1}^e}{2.65} + \frac{D_{BZ,3,II}^e}{2.50} \right) \frac{L}{bb_{sp}} \] (N/mm²)

Note: if the crack starts outside the notch, the test has to be rejected.

Fig. 6 – Stress distribution assumed.
3.2 List of symbols and notations

\(e \) = strain \(\frac{(L - L_i)}{L_i} \)
\(\sigma \) = stress level (constant)
\(D \) = thermal diffusivity
\(L \) = measured length (variable)
\(L_i \) = initial reference length at ambient temperature (constant)
\(r \) = radius of specimen
\(R \) = constant heating rate \(\left(dT_s/dt \right) \)
\(RH \) = relative humidity
\(t \) = time (variable)
\(t_i \) = time at initiation of test
\(t_0 \) = time at start of steady state creep measurements
\(T_{\text{max}} \) = time at which \(T \) reaches \(T_{\text{max}} \)
\(t_1 \) = time of unloading
\(t_2 \) = time at end of test
\(T \) = reference temperature (variable)
\(T_{\text{cf}} \) = temperature at central axis of rotation of specimen (variable)
\(T_{\text{max}} \) = maximum reference test temperature (constant)
\(T_s \) = temperature at the surface of specimen (variable)
\(T_s^* \) = surface temperature at which \(dT_s/dt \) starts to reduce from "\(T_s^* \)"
\(\text{TTP} \) = transitional thermal period
\(\Delta T \) = temperature difference \(T_s^* - T_{\text{cf}} \)
\(\sigma \) = superscript index for zero stress (\(\sigma = 0 \)) or subscript for time of loading
\(\sigma \) = subscript index for location at central axis of rotation of specimen
\(\sigma \) = subscript index for constant temperature regime
\(\sigma \) = subscript index for creep
\(\sigma \) = subscript index for creep according to case 1
\(\sigma \) = subscript index for creep according to case 2
\(\sigma \) = superscript index for drying (unsealed concrete)
\(\sigma \) = subscript index for elastic
\(\sigma \) = subscript index for initial
\(\sigma \) = subscript index for maximum
\(\sigma \) = superscript index for non-drying (sealed concrete)
\(\sigma \) = subscript index for creep recovery
\(\sigma \) = subscript index for location at surface of specimen
\(\sigma \) = subscript index for shrinkage
\(\sigma \) = subscript index for thermal
\(\sigma \) = subscript index for total

3.3 Non-drying concrete

3.3.1 Case 1 - Specimen is heated without load

For non-drying concrete shrinkage is not considered. The total strain difference \(e_{\text{tot}}^{\text{cr},\sigma,\text{nd}} \) measured during the period \(\Delta t = t_1 - t_0 \) of concrete loaded at constant temperature \(T_{\text{max}} \) and time \(t_0 \) consists of non-drying creep \(e_{\text{cr}}^{\text{cr},\sigma,\text{nd}} \) plus elastic strain \(e_{\text{el}}^{\text{cr},\sigma,\text{nd}} \), i.e.:

\[
e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) + e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

Therefore, steady-state creep of non-drying concrete for a period \(\Delta t = t_1 - t_0 \) is:

\[
e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) = e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) - e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

This type of steady-state creep test is illustrated in Fig. 2.

3.3.2 Case 2 - Specimen is heated under load

In this case, the measured total strain difference \(e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) \) of loaded concrete at constant temperature \(T_{\text{max}} \) during the period \(\Delta t = (t_1 - t_0) \) is the creep \(e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) \) of non-drying concrete:

\[
e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_0)
\]

This type of steady-state creep test is illustrated in Fig. 3. It should be noted that in case 2, the elastic strains are considered in the transient creep test ([2], Part 7).

3.3.3 Creep recovery

The measured total strain difference \(e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) \) of concrete at constant temperature during a period \(\Delta t = (t_2 - t_1) \) after removal of the load at \(t_1 \), can be expressed for case 1 as follows:

\[
e_{\text{tot}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) + e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

For case 2, it becomes:

\[
e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) + e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

Therefore, creep recovery of non-drying concrete for a period \(\Delta t = (t_2 - t_1) \) for case 1 is:

\[
e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) + e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

For case 2, it becomes:

\[
e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) = e_{\text{cr}}^{\text{cr},\sigma,\text{nd}}(t_1-t_1) + e_{\text{el}}^{\text{cr},\sigma,\text{nd}}(t_1)
\]

Note: The instantaneous strain comprises elastic and plastic components. For practical purposes the instantaneous strain is referred to in the document simply as "elastic strain".
3.4 Drying concrete

3.4.1 Case 1 - Specimen is heated without load

For drying concrete, the measured total strain difference $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$ during a period $\Delta t = (t_1 - t_0)$ at constant temperature T_{max} is expressed in terms of shrinkage of drying concrete $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$ ([2], Part 9), creep of drying concrete $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$ and elastic strain $\varepsilon_{2,cr,\tau(t_1-t_0)}$, i.e.:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_0)} = \varepsilon_{Tmax,cr,\tau(t_1-t_0)} + \varepsilon_{Tmax,cr,\tau(t_1-t_0)} + \varepsilon_{2,cr,\tau(t_1-t_0)}$$

(6)

Therefore, steady-state creep of drying concrete for a period $\Delta t = (t_1 - t_0)$ is:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_0)} = \varepsilon_{Tmax,cr,\tau(t_1-t_0)} - \varepsilon_{Tmax,cr,\tau(t_1-t_0)} - \varepsilon_{2,cr,\tau(t_1-t_0)}$$

(7)

3.4.2 Case 2 - Specimen is heated under load

In this case, the measured total strain difference $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$ during a period $\Delta t = (t_1 - t_0)$ of loaded concrete at constant temperature T_{max} is expressed in terms of shrinkage of drying concrete $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$ and creep of drying concrete $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$, i.e.:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_0)} = \varepsilon_{Tmax,cr,\tau(t_1-t_0)} + \varepsilon_{Tmax,cr,\tau(t_1-t_0)} + \varepsilon_{2,cr,\tau(t_1-t_0)}$$

(8)

Therefore steady-state creep of drying concrete for a period $\Delta t = (t_1 - t_0)$ is:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_0)} = \varepsilon_{Tmax,cr,\tau(t_1-t_0)} - \varepsilon_{Tmax,cr,\tau(t_1-t_0)} - \varepsilon_{2,cr,\tau(t_1-t_0)}$$

(9)

It should be noted, that in case 2 the elastic deformations are considered in the transient creep test ([2], Part 7).

3.4.3 Creep recovery

The measured total strain difference $\varepsilon_{Tmax,cr,\tau(t_1-t_1)}$ during a period $\Delta t = (t_2 - t_1)$ of concrete at constant temperature T_{max} after removal of the load at t_1, can be expressed for case 1 in terms of shrinkage $\varepsilon_{Tmax,cr,\tau(t_1-t_0)}$, creep recovery $\varepsilon_{Tmax,cr,\tau(t_1-t_1)}$ and elastic strain $\varepsilon_{Tmax,cr,\tau(t_1-t_1)}$, i.e.:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_1)} = \varepsilon_{Tmax,cr,\tau(t_1-t_1)} + \varepsilon_{Tmax,cr,\tau(t_1-t_1)} + \varepsilon_{Tmax,cr,\tau(t_1-t_1)}$$

(10.1)

For case 2, it becomes:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_1)} = \varepsilon_{Tmax,cr,\tau(t_1-t_1)} + \varepsilon_{Tmax,cr,\tau(t_1-t_1)} + \varepsilon_{2,cr,\tau(t_1-t_1)}$$

(10.2)

Therefore, creep recovery of drying concrete for a period $\Delta t = (t_1 - t_1)$ for case 1 is:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_1)} = \varepsilon_{Tmax,cr,\tau(t_1-t_1)} - \varepsilon_{Tmax,cr,\tau(t_1-t_1)} - \varepsilon_{2,cr,\tau(t_1-t_1)}$$

(11.1)

For case 2 follows:

$$\varepsilon_{Tmax,cr,\tau(t_1-t_1)} = \varepsilon_{Tmax,cr,\tau(t_1-t_1)} - \varepsilon_{Tmax,cr,\tau(t_1-t_1)} - \varepsilon_{2,cr,\tau(t_1-t_1)}$$

(11.2)

Note: Elastic strain $\varepsilon_{\varepsilon_{cr,\tau(t_1-t_1)}}$ for drying and non-drying concrete at t_0 and t_1 shall be determined in accordance with the recommendations given in ([2], Part 5).

Note: The shrinkage strain is influenced by temperature in so far as temperature influences moisture content. When testing high strength concrete, shrinkage can also occur with sealed specimens due to endogenous desiccation. For this case see section 3.4. Shrinkage strain is determined in accordance with the recommendations given in ([2], Part 9).

4. MATERIAL

4.1 Material type

The recommendation applies to all types of concrete used in construction including high performance concrete.

4.2 Mix proportions

Mix proportions shall be determined according to the concrete design in practice with the following provisos: The maximum aggregate size should not be less than 8 mm.

5. SPECIMEN

5.1 Introduction

The specimens referred to in this recommendation may be laboratory cast, field cast or taken as cores and should conform to the recommendations given below.

5.2 Specimen shape and size

The concrete specimens (Fig. 1) shall be cylindrical with a length/diameter ratio between 3 and 5 (slenderness).

The recommended diameters of the test specimen are 150 mm, 100 mm, 80 mm, and 60 mm to be taken as standard. Others diameters, when used, should be described as "non-standard".

The specimen's minimum diameter shall be four times the maximum aggregate size for cored samples and five times for cast specimens.

5.3 Moulds, casting and curing

Moulds shall be cylindrical and should meet the general recommendations of RILEM. The same applies to casting and curing of the specimens.
The moulds should preferably be constructed from sufficiently stiff, cylindrical or semi-cylindrical shells made of steel or polymer. The assembled moulds should be watertight so as to prevent leakage of cement paste or water during casting. If polymer moulds are used the polymer should not be water absorbent.

The compaction of the concrete in the mould should be done using a vibrating table. Casting should be performed in two or three stages.

All specimens shall be stored during the first seven days after casting at a temperature of 20 ± 2 °C as follows:
- in their moulds during the first 24 ± 4 hours after casting,
- under conditions without any moisture exchange during the next 6 days.

This can be achieved by several means. The recommended method is to keep the specimens in their moulds adding a tight cap on the top. Other possibilities include storage:
- in a room with a vapour saturated environment (relative humidity > 98 %);
- in plastic bags containing sufficient water to maintain 100 % RH;
- after wrapping in metal foil to prevent moisture loss;
- under water (preferably water saturated with Ca(OH)₂).

Further storage conditions up to the beginning of testing shall be chosen to simulate the moisture conditions of the concrete in practice. The following storage conditions are proposed:

- moisture condition “d” (drying concrete):
 - storage in air at 20 ± 2 °C and RH of = 50 ± 5 %.
- moisture condition “nd” (non-drying concrete):
 - storage within sealed bags or moulds or wrapped in water diffusion tight and non-corrosive foil at 20 ± 2 °C.

In each case the moisture loss of specimens over the storage period should be determined by weighing. The weight loss should not exceed 0.2 % of the concrete weight for the case of sealed specimens.

5.4 Specimen preparation

The length, diameter and weight of the specimen shall be measured before testing.

The concrete specimen shall be prepared so that each end is flat and orthogonal to its central axis. This shall be done at an age of at least 28 days and not later than 2 months before testing.

Non-drying concrete specimens shall be sealed by polymer resin, metal or polymer foils, or impermeable encasement depending upon the maximum test temperature (see paragraph 6.4.2). The encasement shall not influence the deformation of the specimen or the contact between the specimen and the strain measuring device. The time for the preparation of sealed specimens under laboratory conditions should not exceed 4 hours.

Note: When using impermeable encasements the air-vapour tightness of the encasement containing the specimen should be tested before initiation of the test by subjecting it to an over pressure of 1.2 times the expected maximum vapour pressure at T_{max}, i.e. using compressed air over a period of at least 24 hours. During this time the pressure loss shall be less than 10 %.

5.5 Age at testing

The specimen should be at least 90 days old before testing.

5.6 Standard and reference strength

The standard cube or cylinder strength at ambient temperatures shall be determined at 28 days, and at the time of testing, according to national requirements.

In addition, the characteristic compressive strength of the test specimen should be determined at 28 days and at the time of testing, using samples of same type cast from the same batch. The latter shall be used as the reference strength of the specimen ([2], Part 3).

6. TEST METHOD AND PARAMETERS

6.1 Introduction

The following test parameters are recommended as “standard” to allow consistent generation and comparison of test results. However, other test parameters may be substituted when information is required for specific applications. The “non-standard” test conditions should be carefully detailed in the test report.

6.2 Measurements

6.2.1 Length measurement

The measured length L is determined in the direction of the central axis of the cylindrical specimen by measuring the mean distance between two cross-sections at the surface of the specimen with at least two, preferably three, measuring points per cross-section. The cross-sections shall be perpendicular to the central axis and at least one diameter away from each flat end of the specimen.

At the beginning of the test the length between the two cross sections is defined as the initial reference length L_i and shall be at least one diameter. The initial reference length L_i shall be measured at 20 ± 2 °C with a precision of at least 0.5 %.

During the test, usually changes in length are measured. From these measurements strains are derived. For strains up to 1000 microstrain, the uncertainty should be less than 10 microstrain. For strains exceeding 1000 microstrain the uncertainty should be less than 20 microstrain.
6.2.2 Temperature measurement

Surface temperature measurements shall be made at three points on the surface of the specimen at the centre and at the level of the two cross-sections (see Fig. 1), by a temperature measuring system.

Thermocouples or other types of temperature measuring devices may be used. In special cases it may be necessary to protect the thermocouples against radiation. Temperature measurements at the central axis of rotation shall be made at least at one point in the center of the specimen for service conditions, or two points located at one third points between the measuring length cross-sections respectively for accident conditions.

The precision of the temperature measurements should be at least 0.5 °C or 1% of the measured values whichever is the greater.

The steady-state creep measurements start at \(t_0 \) which is within 30 minutes of the temperature reaching \(T_{\text{max}} \) (see Fig. 2). One set of temperature and length or length change measurements shall be taken with 30 s before the beginning of the loading process. The load should be applied continuously in the direction of the central axis of the specimen, as quickly as possible, at least at a rate of 5 MPa/s to the chosen load level (see section 6.4.3). The load level must be kept constant according to section 6.2.3. Another set of measurement shall also be taken immediately after reaching the chosen load level. Thereafter the measurements should be continued as follows:

- in first five minutes, each minute
- in first hour, every five minutes
- in first day, every hour
- later, every day.

In the case of service conditions the duration \(\Delta t = (t_f - t_0) \) of a steady-state creep test shall be at least 6 months.

Note: The upper bound of steady-state creep is attained when the specimen is loaded within 30° of reaching \(T_{\text{max}} \). Less steady creep could be attained, if loading is delayed beyond 30° because of possible greater stabilisation of the concrete.

6.2.3 Load measurement

The load applied should be constant with a precision of ± 1%.

6.2.4 Vapour Pressure Measurement

When using impermeable encasements for testing non-drying concrete the pressure in the space between encasement and specimen shall be measured during the test with a precision of 5% of the theoretical saturation vapour pressure, related to \(T_{\text{max}} \).

6.3 Test procedure

6.3.1 Case 1 - Specimen is heated without load

The test procedure before the commencement of the steady-state creep measurements up to the end of the transitional thermal period TTP [2], Part 7 shall follow the recommendations for thermal strain ([2], Part 6) and modulus of elasticity ([2], Part 5).

6.3.2 Case 2 - Specimen is heated under load

The test procedure before the commencement of the steady-state creep measurements up to the end of the transitional thermal period TTP ([2], Part 7) shall follow the recommendations for thermal strain ([2], Part 6) and modulus of elasticity ([2], Part 5).

The load of the previous transient creep test shall be kept unchanged. The steady-state creep test starts at \(t_0 \) within 30 min after the end of the transitional thermal period TTP (see Fig. 3).

First recordings of temperatures and lengths or length changes shall be taken at \(t_0 \) and thereafter as follows:

- in the first hour: every five minutes
- in the first day: every hour and later every day.

The total test duration shall be the same as for case 1.

6.3.3 Creep recovery

To determine the creep recovery, the temperature \(T_{\text{max}} \) of the previous steady-state creep test shall be kept unchanged until reaching \(t_0 \). The applied load shall be removed at \(t_0 \) with a rate of 1 MPa/s until a small load or a compressive stress not exceeding 0.2 MPa is reached. The applied small load is necessary to maintain the alignment of the specimen.

Recordings of temperatures and length or length changes shall be taken 30 s before \(t_0 \) is reached and immediately after removing the applied load. The recordings shall be continued according to the procedure as described for the measurements section 6.3.1.

The test duration for determining the creep recovery for the cases 1 and 2 shall be at least 1 month.
6.4 Test parameters

6.4.1 Thermal condition

The recommended constant rates "R" for service and accidental condition are given in ([2], Part 6 and 7). The first measurement shall be taken at t₀. The specimen shall be maintained at temperature T_max until t₁ or t₂ (see Fig. 2 or 3). Maximum differences between temperature T_max and any of the three surface temperature readings (section 6.2.2) shall not exceed the values as given in Table 1.

Table 1 - Maximum temperature differences at the specimen surface

<table>
<thead>
<tr>
<th>Temperature T_max (°C)</th>
<th>Maximum differences at service conditions (°C)</th>
<th>Maximum differences at accidental conditions (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>> 100</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

For intermediate values, the maximum temperature differences permitted shall be calculated by linear interpolation, between the two adjacent points.

6.4.2 Moisture condition

The moisture content shall be determined at t₀ (initial moisture content), at t₁ and at the end of the test.

The initial moisture content is determined as described for the thermal strain test ([2], Part 6) and for the transient creep test ([2], Part 7) for case 1 and case 2.

The moisture content at t₀ shall be determined by weighing the specimens at the end of TTP using companion specimens. The moisture content of the test specimens shall be determined by weighing the test specimens.

Unsealed specimens shall be maintained in a heating device where the moisture can freely escape from the specimen and from the heating device.

Sealed and autoclaved specimens shall be tested with a total moisture loss from t₁ to the end of the test of less than 0.3% by the weight.
Note: It is difficult to avoid moisture transport from the specimen into the free space between encasement and specimen and opposite during heating and cooling respectively. Therefore when the specimen is sealed by an impermeable encasement, the difference of the specimens diameter and the clearance of the encasement should be a minimum and at most 1 mm.

6.4.3 Load condition
During a steady-state creep test, the specimen shall be subjected to a constant uniaxial compressive load applied in the direction of the specimen's central axis. For comparison of data between different laboratories, a constant load of 30% of the reference strength (section 5.6) is recommended.

6.4.4 Number of tests
A minimum of two "replicate" specimens shall be tested for any unique combination of test and material parameters. The related specimens for determining the initial moisture content, shrinkage ([2], Part 9) and compressive strength ([2], Part 3) should come from the same series of batches and should be tested under the same conditions.

7. APPARATUS
The test apparatus normally comprises a heating device, a loading device, and instruments for measuring temperatures, load, and lengths of the specimen.

The test apparatus must be capable of fulfilling the recommendations given in section 6 for the test conditions, test parameters and the levels of precision.

8. EVALUATION AND REPORTING OF RESULTS
8.1 Evaluation of the reference temperature
The reference temperature T$_{\text{ref}}$ during the steady-state part of the test is the simple average of the measurements of T$_{\text{s}}$ and T$_{\text{ca}}$.

8.2 Evaluation of strain results
8.2.1 General
All strains are evaluated as the arithmetic mean of two or more of the measured values. The shrinkage strain $\varepsilon_{\text{sh,0,d}}$ and the elastic strain $\varepsilon_{\text{el,0,d}}$ and $\varepsilon_{\text{el,0,d}}$ are evaluated in accordance with Ref. 2, Part 9 and Part 5 respectively.

8.2.2 Non-drying concrete
The steady-state creep strain $\varepsilon_{\text{cre,0,d}}$ and the creep recovery strain $\varepsilon_{\text{rec,0,d}}$ of a sealed concrete specimen for case 1 are evaluated in accordance with equations (2) and (5.1) respectively. The corresponding strains for case 2 are evaluated in accordance with equations (3) and (5.2) respectively.

8.2.3 Drying concrete
The steady-state creep strain $\varepsilon_{\text{cre,0,d}}$ and the creep recovery strain $\varepsilon_{\text{rec,0,d}}$ of an unsealed concrete specimen for case 1 are evaluated in accordance with equations (7) and (11.1) respectively. The corresponding strains for case 2 are evaluated in accordance with equations (9) and (11.2) respectively.

8.3 Test report
8.3.1 General
The report shall include the items highlighted by underlining below. The other items listed below should be reported when available.

8.3.2 Mix Proportions
Cement type and source, cement replacements, additives, cement content, water/cement ratio, maximum aggregate size, aggregate/cement ratio, aggregate grading, mineralogical type of aggregate, aggregate content by volume of concrete.

8.3.3 Fresh concrete
Air content, bulk density, slump (or equivalent).

8.3.4 Hardened concrete and specimen details
Curing regime, age at testing, initial moisture content of reference specimen and the moisture content of the tested specimen after the test, standard cube strength or cylinder strength, reference compressive strength, diameter and length of specimen, mode of preparation of the flat surfaces of the specimen, method of scaling, weight before and after testing (excluding the weight of items such as thermocouples).

8.3.5 Test apparatus
The apparatus used shall be described unless it is in accordance with a published standard in which case the standard should be referenced.

8.3.6 Test parameters
Time between removal of specimen from the curing environment and initiation of loading and heating. Time between end of TTP, start of loading and loading rate. Initial reference length. Duration of TTP, maximum constant test temperature T$_{\text{max}}$.

The following should be reported as functions of time during heating: individual temperature measurements, mean surface temperature, mean centre temperature, reference temperature, rate of heating, axial and radial tem-
perature differences, and changes in the measured length (including any adjustments made for movements of any or all components of the length measuring device).

Any deviation from the recommended test parameters (e.g., heating rate, maximum constant temperature T_{max}, T_s and T_{ca} with time, loading rate, load level during heating, moisture loss of sealed specimen) shall also be reported separately as "non-standard".

8.3.7 Strain results

The total strain $\varepsilon_{\text{tot,nds}}^{T_{\text{max}},\sigma}$ or $\varepsilon_{\text{tot,nds}}^{T_{\text{max}},\sigma,\alpha}$, the steady-state creep $\varepsilon_{\text{cr},(t_{1}-t_{0})}^{T_{\text{max}},\sigma}$ or $\varepsilon_{\text{cr},(t_{1}-t_{0})}^{T_{\text{max}},\sigma,\alpha}$ and the creep recovery $\varepsilon_{\text{cr,rec}(t_{1}-t_{0})}^{T_{\text{max}},\sigma}$ or $\varepsilon_{\text{cr,rec}(t_{1}-t_{0})}^{T_{\text{max}},\sigma,\alpha}$ for case 1 or case 2 of every specimen shall be reported in tabular and/or graphical form as functions of time.

The "average curve" of each set of results shall also be reported.

8.3.8 Place, date, operator

The following information shall be included in the report:
- Country, city and institution where the experiment was carried out;
- Date of the experiment;
- Name of the operator.

REFERENCES
