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Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and

pathological situations. One major challenge is now to establish the biological contribution of alternative splicing var-

iation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational

approach, named “Exon Ontology,” based on terms corresponding to well-characterized protein features organized in

an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-en-

coded protein features instead of gene level functional annotations. Exon Ontology describes the protein features en-

coded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to

exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental valida-

tion, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alterna-

tive splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of

coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling

pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely

available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the

protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological

information.

[Supplemental material is available for this article.]

Alternative splicing is a major step in the gene expression process
leading to the production of different transcripts with different
exon content (or alternative splicing variants) from one single
gene. This mechanism is the rule, as 95% of human genes produce
at least two splicing variants (Nilsen and Graveley 2010; de Klerk
and ‘t Hoen 2015; Lee and Rio 2015). Alternative splicing decisions
rely on splicing factors binding on pre-mRNA molecules more or
less close to splicing sites and regulating their recognition by the
spliceosome (Lee and Rio 2015). Other mechanisms, including us-
age of alternative promoters and alternative polyadenylation sites,
also increase the diversity of transcripts and drive both quantita-
tive and qualitative effects (Tian and Manley 2013; de Klerk and
‘t Hoen 2015). Indeed, alternative promoters and alternative poly-
adenylation sites can impact mRNA 5′- and 3′- untranslated re-
gions, which can have consequences on transcript stability or
translation (Tian and Manley 2013; de Klerk and ‘t Hoen 2015).
In addition, alternative splicing can lead to the biogenesis of non-
productivemRNAs degraded by the nonsense-mediatedmRNAde-

cay pathway (Hamid and Makeyev 2014). These mechanisms can
also change the gene coding sequence. Alternative promoters
and alternative polyadenylation sites can change protein N- and
C-terminal domains, respectively, and alternative splicing can im-
pact any protein feature (Kelemen et al. 2013; Light and Elofsson
2013; Tian and Manley 2013; de Klerk and ‘t Hoen 2015).
Therefore, all these mechanisms increase the diversity of the pro-
teome coded by a limited number of genes.

The nature (i.e., exon content) of gene products is tightly reg-
ulated, leading different cell types to express specific sets of protein
isoforms contributing to specific cellular functions. For example,
the selective expression of protein isoforms plays a major role in
the biological functions of epithelial and mesenchymal cells,
which are two major cell types found in many tissues (Bebee
et al. 2014; Mallinjoud et al. 2014; Yang et al. 2016b). Epithelial
and mesenchymal cells ensure different physiological functions
(epithelial cells are interconnected and nonmotile cells, while
mesenchymal cells are isolated and motile cells), and the epitheli-
al-to-mesenchymal transition has been shown to contribute to
metastasis formation during tumor progression (Bebee et al.
2014; Yang et al. 2016b). Several splicing factors, including

4These authors contributed equally to this work.
Corresponding author: Didier.auboeuf@inserm.fr
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.212696.116.
Freely available online through the Genome Research Open Access option.

© 2017 Tranchevent et al. This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution 4.0 International), as de-
scribed at http://creativecommons.org/licenses/by/4.0/.

Resource

27:1087–1097 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org Genome Research 1087
www.genome.org

mailto:Didier.auboeuf@inserm.fr
mailto:Didier.auboeuf@inserm.fr
mailto:Didier.auboeuf@inserm.fr
http://www.genome.org/cgi/doi/10.1101/gr.212696.116
http://www.genome.org/cgi/doi/10.1101/gr.212696.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


ESRP1, ESRP2, RBM47, and RBFOX2, control the exon inclusion
rate in an epithelial cell- or mesenchymal cell-specific manner,
leading to the production of protein isoforms driving biological
processes like cell polarity, adhesion, or motility (Venables et al.
2013; Bebee et al. 2014; Mallinjoud et al. 2014; Vanharanta et al.
2014; Yang et al. 2016b).

Alternative splicing plays a major role in several pathological
situations, as massive splicing variation is observed in many
diseases (Cieply and Carstens 2015; Daguenet et al. 2015;
Sebestyen et al. 2016). However, the analysis of the cellular func-
tions driven by specific splicing-derived protein isoforms is a ma-
jor challenge for two main reasons. First, multiple splicing
variants from any gene are often observed to be differentially ex-
pressed when comparing two biological situations. This creates,
therefore, a problem of resource prioritization for the massive
task of splicing isoform functional characterization. In this con-
text, the selection of specific splicing variants for further function-
al analyses is often biased and based on the gene functions
described in the literature, which puts the focus on well-character-
ized genes while overlooking the poorly characterized ones. In ad-
dition, the protein features affected by alternative splicing are
currently mostly analyzedmanually in a time-consuming process.
The second challenge relies on the identification of processes im-
pacted by coregulated exons. Indeed, the functional output result-
ing from splicing variant misregulation is currently analyzed on a
gene-by-gene basis without considering the global impact of cor-
egulated splicing variants. It is expected that identifying common
protein features affected by splicing variations will allow a better
understanding of the contribution of alternative splicing in cellu-
lar phenotypes.

In order to address these concerns, we developed and made
available on the web a computational approach named “Exon
Ontology,” that is conceptually similar to the Gene Ontology ap-
proach but focuses on exon-encoded protein features instead of
gene-level functional annotations. This strategy allowed us to
characterize individual and coregulated protein features impacted
by alternative splicing of exons that are differentially spliced be-
tween epithelial and mesenchymal cells.

Results

Exon Ontology tree and exon annotation

Large-scale RNA sequencing technologies allow characterization of
the expression level of cellular transcripts as well as their exon con-
tent. Computational analyses based on Gene Ontology (GO),
which relies on gene functional annotations (or GO terms), allow
prediction of the biological processes (enriched GO terms) that are
likely to be impacted by changes in gene expression level (Fig. 1A).
We developed Exon Ontology to identify protein domains and
features that are impacted by alternative splicing variations (Fig.
1A). For this purpose, we defined Exon Ontology (EXONT) terms
from existing databases including Sequence Ontology, Protein
Modification Ontology, InterPro, and Gene Ontology (Montec-
chi-Palazzi et al. 2008; Mungall et al. 2011; Gene Ontology Con-
sortium 2015; Mitchell et al. 2015). The EXONT terms were
organized in an ontology tree based on eight major protein fea-
tures that can be affected by alternative splicing (Fig. 1B,C). These
include protein domains with catalytic, binding, receptor, and
transporter activities and protein regions containing subcellular
localization signals, structural features, and experimentally vali-
dated post-translational modifications (PTMs). Each class of pro-

tein features was next divided into categories based on existing
ontological trees. For example, the “Localization” classwas divided
into eight categories using the ontology tree defined by the “Se-
quence Ontology” resource (SO) (Fig. 1C; Mungall et al. 2011).
Categories corresponding to the “catalytic” class were extracted
from InterPro and Gene Ontology (Gene Ontology Consortium
2015; Mitchell et al. 2015). A total of 5312 Exon Ontology terms
was used to generate the Exon Ontology tree (Fig. 1C; Supplemen-
tal Table S2).

Meanwhile, protein annotations retrieved from reference
tools and databases were mapped to the genomic exons defined
in the FasterDB genome annotation database that we previously
developed (Fig. 1B; Mallinjoud et al. 2014). In so doing, FasterDB
genomic exons were associated with one or several EXONT terms
and a web interface was developed in order to easily retrieve the
EXONT terms associatedwith genomic exons (Fig. 1B). A large pro-
portion of the 190,617 coding exons defined in FasterDBwas asso-
ciatedwith “Structure”-, “PTM” (post-translationalmodification)-,
“Binding”-, “Localization”-, and/or “Catalytic”-associated terms
(Fig. 1D). It is important to emphasize that ExonOntology is based
on exon-level annotations and relies neither on full-length tran-
script annotations nor on transcript/gene-associated GO terms.
Exon Ontology allows the association of each human coding
exon to the characteristic(s) or protein feature(s) it encodes for,
but it does not allow one to precisely predict the impact of alterna-
tive splicing on protein cellular functions.

Enrichment of Exon Ontology terms

In order to look for potential enrichment of specific protein fea-
tures (or EXONT terms) within a list of coregulated exons, we es-
tablished an EXONT score by measuring the coverage of each
EXONT term in a list of exons. The EXONT score is defined as
the number of nucleotides covered by hits of the EXONT term di-
vided by the total number of nucleotides of all the exons from the
tested list (Fig. 2A; Methods). We also established a Z-score associ-
atedwith a statistical test by comparing the score of a selected exon
set to scores of randomly built exon sets of approximately the same
total size (Fig. 2A; Methods).

In an attempt to decide what kind of control exons should be
used, we generated three categories of exons (first, internal, and
last coding exons), as we anticipated that the protein features en-
coded by exons may depend on their position within the gene.
We therefore calculated the Z-scores for each of the three exon cat-
egories by comparing its exons to all coding exons defined in
FasterDB. This revealed that different EXONT terms are enriched
(positive Z-score values) in different parts of the mRNAs, as illus-
trated in Figure 2B (Supplemental Table S3). In addition, when
comparing annotated alternative internal coding exons (or alter-
natively spliced exons [ASEs]) to constitutive internal coding
exons (CEs), we observed differential EXONT term enrichment
and confirmed several previous findings (Fig. 2C; Supplemental
Table S3). For example, there was a strong enrichment for the
“Intrinsically Unstructured Protein Regions” (IUPRs) term in
ASEs when compared to CEs (a positive or negative Z-score value
means that an EXONT term is enriched in ASEs or CEs, respective-
ly) (Fig. 2C), as previously reported (Romero et al. 2006; Buljan
et al. 2012, 2013; Ellis et al. 2012; Weatheritt et al. 2012; Colak
et al. 2013). Meanwhile, CEs are enriched for the “Polypeptide
Conserved Regions” termwhen compared to ASEs, supporting pre-
vious reports indicating that CEs are often more conserved than
ASEs (Plass and Eyras 2006; Lev-Maor et al. 2007; Mudge et al.
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2011). Several terms from the “Localization” class were enriched in
CEs when compared to ASEs. There was, however, an enrichment
for several terms associated with “membrane” in ASEs (Fig. 2C,
“Intramembrane Polypeptide Region” [IPR]; Supplemental Table
S3). This observation suggests that alternative splicingmay impact
the ability of proteins to be incorporated into cellular membranes
as was reported in a few cases (Stamm et al. 2005; Jones et al. 2009;
Tejedor et al. 2015). Even though we do not know yet the biolog-
ical meaning of the enrichment for some protein features in differ-
ent exon categories, we believe these data are important to
underscore the importance of using an appropriate set of control
exons.

Exon Ontology reveals specific protein features affected

in exons that are differentially spliced between epithelial

and mesenchymal cells

Tobetter predict the biological roleof alternative splicing in epithe-
lial and mesenchymal cells, we extracted from several large-scale
data sets (Supplemental Table S1) a list of differentially spliced ex-
ons when comparing normal mesenchymal to normal epithelial
cells and when comparing breast cancer mesenchymal-like cells
(Claudin-lowsubtype) to breast cancer epithelial-like cells (luminal
subtype). This established a list of 81 differentially spliced exons
(Supplemental Table S4) that were initially validated by RT-PCR.

Figure 1. (A) Genome-wide transcriptomic analyses allow identification of genes whose expression levels aremodified when comparing two experimen-
tal conditions. Looking for the enrichment of Gene Ontology (GO) terms associated with these genes allows prediction of the biological processes and
cellular activities that are likely to be impacted by gene expression level modifications. Exon Ontology aims at identifying protein features associated
with changes of exon content owing to alternative splicing regulation, which may contribute to cellular phenotypes. Both GO and Exon Ontology predic-
tions can next be addressed by dedicated experimental approaches. (B) The Exon Ontology workflow is based on ontological terms (EXONT terms) that
were derived from existing ontologies and databases (e.g., GO, Sequence Ontology, PSI-MOD, and InterPro). Protein features were derived from reference
tools and databases and weremapped to annotated genomic exons in the ‘Faster DB’ database. Genomic exons can thus be associated with one or several
EXONT terms. A computational suite (Exon Ontology) then calculates a dedicated EXONT term score and looks for potential EXONT term enrichment by
statistical analysis. (C) Protein features and domains have been assigned Exon Ontology (EXONT) terms based on existing ontologies and databases as
described in panel B. The EXONT terms were organized in an Exon Ontology tree based on height classes of protein features (e.g., catalytic, binding).
Each class was divided in categories and contains a more or less large number of associated terms. For example, the “Localization” class was divided
into “Nuclear Localization Signal” (NLS), “Nuclear Export Signal” (NES), “Mitochondrial Targeting Signal” (MTS), “Peroxisomal Targeting Signal”
(PTS), “Endoplasmic Reticulum Signal Sequence” (ERSS), “Endosomal Localization Signal” (EL), and “Signal Peptide” (SP) categories based on the
“Sequence Ontology” resource. (D) Pie chart showing the distribution of functional annotations of human coding exons; more than 170,000 human cod-
ing exons are associated with at least one Exon Ontology term. The numbers represent the number of exons associated with each of the main classes of the
Exon Ontology terms.
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Averygood correlationwasobtainedwhencomparingRT-PCRand
RNA-seq exon inclusion (percent spliced in [PSI]) rate variation
(change in splicing/’delta PSI’) (Fig. 3A; Supplemental Fig. S1;
Supplemental Table S4). In addition, using the same data sets, we
identified six splicing factorswhose expressiondifferedwhen com-
paring epithelial- and mesenchymal-like cells. As already reported

(Venables et al. 2013; Bebee et al. 2014; Mallinjoud et al. 2014;
Vanharanta et al. 2014; Yang et al. 2016b), ESRP1, ESRP2, and
RBM47 genes were more expressed in epithelial-like cells as con-
firmed by RT-qPCR and Western blot analysis, while MBNL1,
MBNL2, and RBFOX2 genes were more expressed in mesenchy-
mal-like cells (Supplemental Fig. S2, panels A to C). As shown on
Figure 3B (Supplemental Figs. S2, S3; Supplemental Table S4),
ESRP1 and ESRP2 depletion in epithelial-like cells switched the
splicing pattern from an epithelial- to a mesenchymal-like pattern
for 36 exons, as did RBM47 depletion for 13 exons. In contrast,
MBNL1 andMBNL2 depletion inmesenchymal-like cells switched
the splicing pattern from a mesenchymal- to an epithelial-like
pattern for 29 exons, as did RBFOX2 depletion for 37 exons
(Fig. 3B; Supplemental Figs. S2, S3; Supplemental Table S4).
Some redundancywasobserved since, for example,most exons reg-
ulated by MBNL1 and MBNL2 are also regulated by RBFOX2 (Fig.
3B). Most mesenchymal cell-enriched exons are regulated by
MBNL1 andMBLN2and/or RBFOX2,whilemost epithelial cell-en-
riched exons are regulated by ESRP1 and ESRP2 and/or RBFOX2
(Fig. 3C).

Applying the Exon Ontology suite to the 81 selected exons
(referred to below as the Mes-Epi exons list), we first noticed that
all these exons are internal coding exons (“Mapping” in
Supplemental Table S4) and encode for protein subcellular locali-
zation signals, protein–protein interacting domains, and/or phos-
phorylated peptides (“Exon annotations” in Supplemental Table
S4). Interestingly, several protein features are selectively impacted
by alternative splicing. For example, an enrichment for the
“Nuclear Localization Signal” (NLS) term was observed (Fig. 4A;
“Functional features” in Supplemental Table S4). This suggests
that epithelial- and mesenchymal-like cells may express a similar
set of proteins but with different subcellular localization (Fig.
4B). We sought to functionally validate this hypothesis, focusing
on the Exon Ontology-identified putative NLS encoded by exon
15 of the SLK gene that produces a cytoplasmic kinase involved
in cytoskeleton remodeling and cell migration (“Exon annota-
tions” in Supplemental Table S4; Supplemental Fig. S4, panel A;
Al-Zahrani et al. 2013). As SLK exon 15 is more often included in
epithelial- than in mesenchymal-like cells (Fig. 4B, cf., for exam-
ple, MDA-MB-231 toMCF-7 cells), we anticipated that SLK protein
staining should be more pronounced in the nucleus of epithelial
cells. As expected, immunofluorescence staining revealed a more
restricted nuclear localization of SLK in MCF-7 (epithelial-like)
than in MDA-MB-231 (mesenchymal-like) cells (Fig. 4C). To fur-
ther challenge the role of SLK exon 15 coding sequence, MCF-7
cells were transfected with oligonucleotides inducing SLK exon
15 skipping (TOSS E15) combined with siRNA specifically target-
ing SLK exon 15 (siRNA E15), leading to the decrease of E15-con-
taining transcripts (Supplemental Fig. S5, panel A). As predicted,
the SLK protein staining in MCF-7 cells was less restricted to the
nucleus in these conditions (Fig. 4D). Getting automated compu-
tational assistance for predicting protein features impacted by al-
ternative splicing, as provided by Exon Ontology, will speed up
the functional analysis of protein isoforms.

Regulation of the AKT signaling pathway by epithelial cell-

enriched splicing factors

As already mentioned, the Exon Ontology database contains ex-
perimentally validated PTMs, including phosphorylation sites re-
trieved from several databases (see Methods). The Exon
Ontology-based analysis revealed that the 81 selected exons are

Figure 2. (A) Looking for enrichment of protein features (EXONT terms)
encoded by a set of exons requires a quantitative measurement. The
‘EXONT score’ for each EXONT term associated with exons from a test-
list is calculated by dividing the number of nucleotides covered by each
EXONT term (size [h]) by the total number of nucleotides of each tested
exon (size [e]). The enrichment Z-score and statistical significance are cal-
culated by comparing the calculated EXONT score as described above to
the scores obtained from a large number of sets of control exons having
approximately the same size as the test-list. This analysis is available on
the Exon Ontology website for the 91 EXONT terms that are most fre-
quently associated with exons (listed in Supplemental Table S2). (B)
Several Exon Ontology terms were enriched at either end of their
mRNAs (first, internal, and last coding exons). The x-axis corresponds to
the Z-scores obtained by comparing one category of exons to all exons.
Positive Z-score values (red numbers and boxes) indicate EXONT term en-
richment in the corresponding exon category. IUPR: Intrinsically
Unstructured Polypeptide Region, Acetylated: Acetylated residues. (∗)
FDR adjusted P-value < 0.05, (∗∗∗) FDR adjusted P-value < 0.005. (C )
Constitutive and alternative coding exons are enriched for different
EXONT terms. The y-axis corresponds to the Z-scores obtained by compar-
ing alternative to constitutive exons. Positive Z-scores indicate enrichment
of the corresponding EXONT term in alternative exons, while negative val-
ues indicate enrichment in constitutive exons. IUPR: Intrinsically unstruc-
tured polypeptide region, IPR: Intramembrane Protein Region. (∗) FDR
adjusted P-value < 0.05, (∗∗∗) FDR adjusted P-value < 0.005.

Tranchevent et al.

1090 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1


enriched for “Phosphorylated Residue,” “O-phospho-L-serine,”
and “O-phospho-L-threonine” terms, but not for the “O4’-phos-
pho-L-tyrosine” term when compared to CEs or ASEs (Fig. 5A;
“Functional Features” in Supplemental Table S4). About one third
(i.e., 28) of the protein segments coded by the 81 Mes-Epi exons
contain at least one experimentally validated phosphorylation
site (“PTM annotation” in Supplemental Table S4; Fig. 5B). Inter-
estingly, the identified phosphosites are often associated with oth-
er protein features like subcellular localization or protein–protein
interacting domains (Supplemental Fig. S4, panels B and C; Sup-
plemental Fig. S5, panel B).

As the Exon Ontology web suite provides the sequences sur-
rounding the PTM residues present in the selected exon set
(“PTM annotation” in Supplemental Table S4), we looked for po-
tential phosphorylation site consensus sequences in Mes-Epi ex-
ons using the PhosphoSite website (http://www.phosphosite.org/).
Remarkably, the LOGO obtained is very similar to the AKT signal-
ing pathway consensus sequence defined as RXRXXS/T (Fig. 5C;
Toker 2008). We also noticed that a large proportion of the phos-
phorylation sites are encoded by exons that aremore often includ-
ed in epithelial-like cells (Fig. 5D) in an ESRP1/ESRP2-dependent
manner (Fig. 5E,F).

Based on these observations, we tested whether the AKT
signaling pathway is impacted by depletion of ESRP1 and ESRP2
in MCF-7 epithelial-like cells. Because the potential AKT-targeted
phosphorylation sites frequently lie within exons that are skipped
upon ESRP depletion (green exons on Fig. 5F), we anticipated
that the AKT signaling pathway could be impaired in the absence
of ESRP splicing factors. Indeed, ESRP1 and ESRP2 depletion
specifically decreased the AKT-dependent phosphorylation of
some of its targets, including 4EBP1 and RPS6 (also known as

S6), after cell treatment with the SC79
AKT-activator (Fig. 5G, cf. lanes 4 and 3;
Fig. 5H).

To test whether the ESRP-mediated
effect on the AKT signaling pathway
was a consequence of splicing regula-
tion, we focused on the TSC2 gene,
which is known to play a major role in
the AKT signaling pathway (Inoki et al.
2002; Cai et al. 2006; Toker 2008), and
whose exon 27 is skipped upon ESRP-
depletion (Fig. 5F). TSC2 exon 27 skip-
pingwas induced inMCF-7 cells using ol-
igonucleotides inducing TSC2 exon 27
skipping combinedwith exon27-specific
siRNAs (Supplemental Fig. S5, panel A).
Strikingly, this resulted in a decrease
in AKT-mediated phosphorylation of
4EBP1, as did ESRP depletion (Fig. 5I, cf.
lanes 3 and 2).

The Exon Ontology approach re-
vealed that exons differentially spliced
between epithelial- and mesenchymal-
like cells code for protein segments
containing phosphorylated residues
(Fig. 5A,B) and that the splicing events
regulated by ESRP1 and ESRP2 play an
important role in theAKT signalingpath-
way in epithelial cells (Fig. 5C–F), as ex-
perimentally validated (Fig. 5G–I).

Interplay between autophagy and mesenchymal cell-enriched

splicing factors

In analyzing the protein features encoded by the Mes-Epi exons,
we noticed that the EXONT scores corresponding to “Structure”
and “Secondary structure” terms were low compared to CEs or
ASEs, while the IUPR score was slightly higher (Fig. 6A). This is in-
teresting, as intrinsically disordered protein regions play an impor-
tant role in protein–protein interactions that are regulated by
phosphorylation (Fukuchi et al. 2011; Colak et al. 2013; Oldfield
and Dunker 2014; Uversky 2015). Remarkably, more than 82%
of the phosphorylation sites present in the 81 exons lie within
IUPRs and/or annotated “protein binding” regions (Fig. 6B;
Supplemental Table S4; Supplemental Fig. S4, panel C). In addi-
tion, these regions contain “P-rich” and “RXXK” motifs that are
recognized by proteins like GRB2 containing SH3 domains
(Supplemental Fig. S6, panel A; Supplemental Table S4; Belov
and Mohammadi 2012). The co-occurrence of phospho-residues,
IUPRs, and/or protein bindingmotifs in the protein segments cod-
ed by the 81 Mes-Epi exons suggested that alternative splicing of
these exons may affect protein–protein interaction networks.

We therefore looked within the IntAct database (http://www.
ebi.ac.uk/intact) for the partners of the 81 proteins harboring dif-
ferentially spliced Mes-Epi exons. Interestingly, these partners are
involved in biological processes relying on “nonmembrane-
bounded organelles,” “vesicles,” “autophagy vacuole,” and “exo-
cytosis” (Supplemental Fig. S6, panels B and C). In addition, sever-
al genes bearing exons regulated by mesenchymal cell-enriched
splicing factors interact with autophagic factors (Fig. 6C–E). This
includes the RUBCN gene (named KIAA0226 in FasterDB and
Exon Ontology) that codes for a major autophagy inhibitor

Figure 3. (A) Comparison of the percent splicing inclusion (psi) rate variations (deltaPSI) of the
81 exons of the “Mes-Epi” list, as measured by RT-PCR (x-axis) and by RNA-seq (y-axis). Exons
are differentially spliced between normal fibroblast (Fibro) and normal epithelial (Epi) cells (left pan-
el) and between Claudin-Low (mesenchymal-like) versus luminal (epithelial-like) breast cancer cells
(right panel). (B) Venn diagram representing exons regulated by MBNL1&2 and RBFOX2 in MDA-
MB-231 cells or regulated by ESRP1&2 and RBM47 in MCF-7 cells. Significant collusion was ob-
served among mesenchymal and epithelial splicing factors, respectively. (C) Venn diagram repre-
senting exons more (red circles) or less (green circles) included in mesenchymal-like cells
compared to epithelial-like cells and regulated by MBNL1&2, RBFOX2 (right), and ESRP1&2 and/
or RBM47 (left).
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interacting with beclin 1 (BECN1) and the WDFY3 gene (also
known as ALFY) that codes for an important adaptor protein
for selective autophagy interacting with MAP1LC3B (also known
as LC3B), SQSTM1 (also known as p62), and GABARAPs (Matsu-
naga et al. 2009; Isakson et al. 2013; Lamb et al. 2013; Baixauli
et al. 2014; Wild et al. 2014; Khaminets et al. 2016; Ktistakis and
Tooze 2016).

Based on these observations, we investigated the role of mes-
enchymal cell-enriched splicing factors in autophagy, a process in-
volved in the degradation and recycling of cellular components, in
particular, under cellular starvation (Matsunaga et al. 2009;
Isakson et al. 2013; Lamb et al. 2013; Baixauli et al. 2014; Wild
et al. 2014; Khaminets et al. 2016; Ktistakis and Tooze 2016).
Autophagy is a dynamic process of intracellular bulk degradation
in which cytosolic proteins and organelles are sequestered into
double-membrane vesicles called autophagosomes, which are
then fused with lysosomes for degradation and recycling.
Autophagy receptors such as SQSTM1 recognize autophagic cargos
and mediate formation of autophagosomes via binding to small
ubiquitin-like modifiers such as MAP1LC3B and GABARAPs
(Matsunaga et al. 2009; Isakson et al. 2013; Lamb et al. 2013;
Baixauli et al. 2014; Wild et al. 2014; Khaminets et al. 2016;
Ktistakis and Tooze 2016). The effect of depleting mesenchymal
cell-enriched splicing factors on autophagy was tested by
Western blot analysis of MAP1LC3B (whose level of lipidation
can be traced by the appearance of the MAP1LC3B-II form) and
of the autophagy receptor SQSTM1 which is a standard marker
of cellular autophagy activity as it is degraded in the autophago-
some with its cargos (Matsunaga et al. 2009; Isakson et al. 2013;
Lamb et al. 2013; Baixauli et al. 2014; Wild et al. 2014;
Khaminets et al. 2016; Ktistakis and Tooze 2016).

As shown on Figure 6F, depletion of MBNL1, MBNL2, and
RBFOX2 (siM+R) in MDA-MB-231 cells affected both the
SQSTM1 and MAP1LC3B protein expression patterns. In particu-
lar, serum starvation with Earle’s Balanced Salt Solution (EBSS),
which is classically used to activate autophagy, induced a decrease
of SQSTM1, which was further decreased upon depletion of
mesenchymal cell-enriched splicing factor (Fig. 6F, left panel, cf.
lanes 3 and 2; see right panel for quantification). This effect was
not due to a decrease in SQSTM1 mRNA level (Supplemental Fig.
S5, panel C). Depletion of mesenchymal cell-enriched splicing
factors under starvation conditions also affected the MAP1LC3B
protein expression pattern as it induced a slight increase and
decrease of the levels of MAP1LC3B-I and MAP1LC3B-II forms, re-
spectively, when compared to EBSS treatment alone (Fig. 6F, cf.
lanes 3 and 2). This could result from MAP1LC3B-II degradation
along with SQSTM1, since we observed an increase in total
MAP1LC3B mRNA levels (Fig. 6F, right panel), which, in turn,
may contribute to the slightMAP1LC3B-I form increase. Altogeth-
er, these results show that, in the absence of MBNL1, MBNL2 and
RBFOX2, autophagy is stimulated, as evidenced by SQSTM1 and
MAP1LC3B-II protein levels.

To test whether the effect of mesenchymal cell-enriched
splicing factors was a consequence of splicing regulation, we fo-
cused on the RUBCN gene whose exon 14 is included in a
MBNL1/2- and RBFOX2-dependent manner (Fig. 6D). Skipping
of RUBCN exon 14was forced inMDA-MB-231 cells using oligonu-
cleotides inducing RUBCN exon 14 skipping and exon-specific
siRNAs (Supplemental Fig. S5, panel A). Remarkably, RUBCN
exon 14 skipping mimicked the effect of depletion of mesenchy-
mal cell-enriched splicing factors, further reducing the SQSTM1
protein level under serum starvation (Fig. 6G, cf. lanes 3 and 2).

Figure 4. (A) Exons differentially spliced between epithelial-like and
mesenchymal-like cells (Mes-Epi exons) code for protein segments that
are enriched in “NLS” termwhen compared to constitutive (CE) or alterna-
tive (ASE) exons. (∗) P-value < 0.05. (B) RT-PCR performed with total RNAs
obtained from four normal epithelial (1 = HEPic, 2 = HPAEPic, 3 = HMEC, 4
= AG01134) and four normal mesenchymal (5 = HMF, 6 = HCFaa, 7 =
AG0449, 8 = AG0450) cell lines and fromMCF-7 andMDA-MB-231 breast
cancer cell lines. The selected genes correspond to genes bearing alterna-
tive exons coding for protein segments containing nuclear localization sig-
nal (NLS). Red and green rectangles correspond to alternative exons with
higher and lower inclusion rate, respectively, in mesenchymal-like cells
compared to epithelial-like cells. (C) SLK exon 15 that encodes for a NLS
is more often included in MCF-7 than in MDA-MB-231 cells (see panel
B). Immunofluorescence of SLK protein indicates that SLK ismore restricted
to the nucleus in MCF-7 (epithelial-like) than in MDA-MB-231 (mesenchy-
mal-like) cells. (D) Depletion of SLK transcripts that contain exon 15 (TOSS
E15 + siRNA E15) leads to a more diffuse SLK staining within transfected
MCF-7 cells compared to control (CTRL) cells.

Tranchevent et al.

1092 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212696.116/-/DC1


A similar effect was observed by inducing the skipping of WDFY3
exon 46 that is also regulated bymesenchymal cell-enriched splic-
ing factors (Fig. 6D; Supplemental Fig. S5, panel D).

Interestingly, manipulation of RUBCN exon 14 splicing also
resulted in the decrease of MBNL1 and MBNL2 protein levels
(Fig. 6H, left panel), without affecting their mRNA level (Fig. 6H,

Figure 5. (A) Exons differentially spliced between epithelial- and mesenchymal-like cells (Mes-Epi exons) encode for protein segments that are enriched,
when compared to constitutive (CE) or alternative (ASE) exons, for “Phosphorylated residue” (Phosphosites), “O-phospho-L-serine” (pSerine), “O-phos-
pho-L-threonine” (pThreonine) terms but not for the “O4′-phospho-L-tyrosine” (pTyrosine) term. (∗) FDR adjusted P value < 0.05. (B) RT-PCR performed
with total RNAs obtained from four normal epithelial (1 = HEPic, 2 = HPAEPic, 3 = HMEC, 4 = AG01134) and four normal mesenchymal (5 = HMF, 6 =
HCFaa, 7 = AG0449, 8 = AG0450) cell lines and from MCF-7 and MDA-MB-231 breast cancer cell lines. The selected genes correspond to genes bearing
alternative exons coding for protein segments containing experimentally validated phosphosites. Red and green rectangles correspond to alternative exons
with higher and lower inclusion rate, respectively, in mesenchymal-like cells compared to epithelial-like cells. (C) Sequence logo generated from the
“PhosphoSite” website using sequences surrounding experimentally validated phosphorylated residues coded by exons differentially spliced between ep-
ithelial- and mesenchymal-like cells. (D) 44 and 25 experimentally-validated phosphorylated residues are encoded within exons more often included and
less often included, respectively, in epithelial-like cells. (E) 40 and 26 experimentally validated phosphorylated residues are encoded within exons regulated
by epithelial cell-enriched splicing factors (ESRP1, ESRP2, and RBM47) and bymesenchymal cell-enriched splicing factors (MBNL1, MBNL2, and RBFOX2),
respectively (left panel). 26 and 10 experimentally validated phosphorylated serine residues are encoded within exons regulated by epithelial cell-enriched
splicing factors (ESRP1, ESRP2, and RBM47) and by mesenchymal cell-enriched splicing factors (MBNL1, MBNL2, and RBFOX2), respectively (right panel).
(F) RT-PCR performed with total RNAs extracted from epithelial-like MCF-7 cells transfected with control siRNAs (1), siRNAs targeting ESRP1 and ESRP2 (2)
or RBM47 (3). The selected genes correspond to genes bearing alternative exons encoding for experimentally validated phosphorylated residues. Red and
green rectangles correspond to alternative exons with higher and lower inclusion rate, respectively, in mesenchymal-like cells compared to epithelial-like
cells. (G) Western blot analyses of the phosphorylation pattern of proteins involved downstream of the AKT signaling pathway in epithelial-like MCF-7 cells
transfected with control siRNAs or siRNAs targeting ESRP1 and ESRP2 and treated, or not, for 1 h with SC79 (AKT kinase activator). The p4EBP1(70) and
p4EBP1(37&46) antibodies recognize phosphorylated residues on position 70, 37 and/or 46 of the E4BP1 protein. The pS6 antibody recognizes phosphor-
ylated RPS6 protein. H3 (histone H3) is used as a loading control. (H) Quantification of Western blots shown in panel G. p4EBP1(70) and p4EBP1(37&46)
signals were normalized by the signal obtained with an antibody recognizing both phosphorylated and unphosphorylated 4EBP1 protein (4EBP1).
Likewise, the pS6 signal was normalized to total RPS6 signal (S6). (∗∗) P-value < 0.005. (I) Western blot analyses of the phosphorylation pattern of
4EBP1 protein in MCF-7 cells transfected, or not, with TOSS and siRNAs targeting TSC2 exon 27 (TOSS/siTSC2) and treated, or not, for 1 h with SC79.
H3 (histone H3) is used as a loading control.
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right panel). Remarkably, it also mim-
icked the splicing effects induced by
MBNL1/2 silencing (Fig. 6I). These re-
sults support a model where mesenchy-
mal cell-enriched splicing factors
control alternative splicing of autopha-
gic regulators that, in turn, regulate
MBNL1 and MBNL2 protein expression
level.

Because a computational approach
allowing prediction of the protein fea-
tures affected by alternative splicing will
be useful to the research community,
we created a freely availableweb interface
(http://fasterdb.ens-lyon.fr/ExonOntology/)
that, after uploading the genomic coordi-
nates of selected exons, gives access to
the information stored in the Exon
Ontology database, allows acquisition
of potentially enriched protein features,
and retrieval of relevant protein–protein
networks (Supplemental Fig. S7).

Discussion

Being able to routinely measure splicing
variation at the RNA level, the main
challenge is now to determine how these
variants drive physiological and patho-
logical cellular phenotypes. To address
this challenging task, we methodically
associated human exons to encoded
protein features (named EXONT terms)
using an ontology tree approach and
already defined ontology terms
(Montecchi-Palazzi et al. 2008; Mungall
et al. 2011; Gene Ontology Consortium
2015; Mitchell et al. 2015). We also im-
plemented an EXONT Z-score allowing
measurement of a potential EXONT
term enrichment within a list of selected
exons compared to the appropriate set of
control exons (Figs. 1, 2). Because we
showed that different exon categories
(e.g., first, internal, or last coding exons,
constitutive and alternative exons) are
differentially enriched for specific
EXONT terms (Fig. 2), we want to stress
here that it is important to compare a
list of selected exons to the appropriate
control list. For example, if one aims to
identify EXONT terms enriched in a se-
lected list of coregulated exons, it is ad-
visable to compare exons corresponding
to alternative promoters to the “First cod-
ing exons” category and to compare
splicing regulated exons to either consti-
tutive or alternative internal coding ex-
ons. The Exon Ontology web suite
provides support for this specific step
(Supplemental Fig. S7, panels C and H).

Figure 6. (A) Exons differentially spliced between epithelial- and mesenchymal-like cells (Mes-Epi ex-
ons) code for protein segments poorly associated with “structure” and “secondary structure” terms
but that do contain unstructured regions (IUPR). (B) 28 and 37 exons out of the 81 selected exons
code for protein segments containing experimentally validated phosphosites, IUPRs, and/or “Protein
Binding” motifs, respectively; 23 of them contain both phosphosites and protein interacting motifs.
(C ) RT-PCR performed with total RNAs obtained from four normal epithelial (1 = HEPic, 2 = HPAEPic, 3
= HMEC, 4 = AG01134) and four normal mesenchymal (5 = HMF, 6 = HCFaa, 7 = AG0449, 8 =
AG0450) cell lines and from MCF-7 and MDA-MB-231 breast cancer cell lines. The selected genes cor-
respond to genes bearing alternative exons coding for protein interacting with autophagic factors.
Red and green rectangles correspond to alternative exons with higher and lower inclusion rate, respec-
tively, inmesenchymal-like cells compared to epithelial-like cells. (D) RT-PCR corresponding to geneswith
alternative exons and interacting with proteins involved in autophagy, using total RNAs obtained from
mesenchymal-like MDA-MB-231 breast cancer cells transfected with control siRNAs (lane 1), siRNAs tar-
getingMBNL1 andMBNL2 (lane 2), or RBFOX2 (lane 3). Red and green rectangles correspond to alterna-
tive exons with higher and lower inclusion rate, respectively, in mesenchymal-like cells compared to
epithelial-like cells. (E) Genes with exons regulated by mesenchymal cell-enriched splicing factors pro-
duce proteins interacting with proteins involved in autophagy. Red and green proteins correspond to
genes with alternative exons with higher and lower inclusion rate, respectively, in mesenchymal-like cells
compared to epithelial-like cells. (F )Western blot analyses of SQSTM1,MAP1LC3B,MBNL1,MBNL2, and
RBFOX2 in control (Earle’s Balanced Salt Solution−[EBSS−]) or serum starved (EBSS +)MDA-MB-231 cells
transfected with control siRNAs or siRNAs targeting MBNL1, MBNL2, and RBFOX2 (siM+R). H3 (histone
H3) is used as a loading control. The quantification of the SQSTM1 Western blot signal and
MAP1LC3B mRNA level by RT-qPCR is shown on the right. (∗) P-value < 0.05. (G) Western blot analyses
of SQSTM1 and MAP1LC3B in control (EBSS−) or serum starved (EBSS +) MDA-MB-231 cells transfected
with TOSS and siRNA targeting RUBCN exon 14 (TOSS/siRUBCN). H3 (histone H3) is used as a loading
control. (H) MDA-MB-231 cells were transfected with TOSS and siRNA targeting RUBCN exon 14
(TOSS/siRUBCN). Western blot analysis of MBNL1 and MBNL2, with H3 (histone H3) used as a loading
control (left panel). RT-qPCR analysis of the MBNL1 and MBNL2 mRNA levels in the same experimental
conditions (right panel). (I) RT-PCR analysis using total RNAs extracted from mesenchymal-like MDA-
MB-231 cells transfected as described in panel H or transfected with siRNAs targeting MBNL1 and
MBNL2 (siMBNL1&2).
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Applying Exon Ontology to a list of exons differentially
spliced between epithelial- andmesenchymal-like cells, we uncov-
ered specific protein features affected by alternative splicing (e.g.,
NLS) (Fig. 4; Supplemental Fig. S4, panel A). A dedicated table
(“Exon annotations” in Supplemental Fig. S7, panel E) is automat-
ically generated on the Exon Ontology website and describes all
the protein features encoded by each of the analyzed exons. Of
note, each protein annotation can be visualized on the FasterDB
protein website (Supplemental Fig. S4). These resources will there-
fore speed up the characterization of biological consequences re-
sulting from splicing variation.

This approach also revealed common protein features encod-
ed by coregulated exons (e.g., phosphosites) (Fig. 5). In this setting,
the Exon Ontology website generates a table containing the en-
richmentZ-scores for themost frequent protein features associated
with the tested exons (“Functional features” in Supplemental Fig.
S7, panels H and I). Finally, the Exon Ontology approach is useful
to uncover protein features co-occurring within a set of co-
regulated alternative exons. For example, we observed that many
phosphosites are embedded within protein–protein interaction
domains (e.g., protein binding motifs, intrinsically disordered re-
gions) (Fig. 6B). This observation suggests that Mes-Epi exons
code for protein segments playing a role in the regulation of pro-
tein interaction networks. Integrating alternative splicing and
interactome data sets allowed the identification of biological pro-
cesses impacted by alternative splicing, as we uncovered an intri-
cate relationship between autophagy and alternative splicing:
splicing factors and alternative splicing events impact autophagy
(Fig. 6F,G), and autophagic regulators impact splicing factor ex-
pression and splicing decisions (Fig. 6H,I). However, further
experiments will be required to determinewhether autophagy reg-
ulates directly or indirectly theMBNL1 andMBNL2protein expres-
sion level. To provide users with useful information for
investigating functional consequences of alternative splicing vari-
ation, the ExonOntologyweb resource provides the list of proteins
interacting with the products of the genes bearing tested alterna-
tive exons (“Protein–protein network” in Supplemental Fig. S7,
panel G).

Wenoticed that some splicing-regulated genes share the same
interacting partners (Fig. 6E; Supplemental Fig. S6, panel C) and
that, in such a case, the regulated exons encode for similar protein
sequences (Supplemental Fig. S6, panel D). For example, the
WDFY3 and PLOD2 genes, whose products both interact with
ATG5 (Fig. 6E), contain alternative exons that share strong se-
quence similarity (Supplemental Fig. S6, panel D). The same is
true for alternative exons 11 and 7 of EXOC1 and EXOC7 genes, re-
spectively, whose protein products interact with EXOC4 (Fig. 6E;
Supplemental Fig. S6, panel D). These observations support amod-
el where alternative exons play a role in regulating the competition
in protein interaction since EXOC1 exon 11 and EXOC7 exon 7 are
regulated in an opposite manner: EXOC1 exon 11 is frequently in-
cluded in epithelial cells and is repressed bymesenchymal splicing
factors, while EXOC7 exon 7 is more often included in mesenchy-
mal cells and is positively regulated by mesenchymal splicing fac-
tors (Fig. 6D). Therefore, although further experiments are needed,
comparing the protein sequences encoded by coregulated exons or
exons that are inversely regulated could help to identify important
functional amino acid residues.

Combinedwith the effort of the research community to char-
acterize alternative splicing-dependent protein interaction net-
works (Corominas et al. 2014; Raj et al. 2014; Li et al. 2015;
Tseng et al. 2015; Will and Helms 2016; Yang et al. 2016a) and

with web services allowing the association of splicing events to
protein feature annotation (Li et al. 2014; Rodriguez et al. 2015;
Mall et al. 2016), the Exon Ontology website will be a useful tool
for experimental biologists by providing computational support
to help in the prediction of the biological consequences resulting
from splicing variation.

Methods

Ontology tree

Ontological terms were selected from the Sequence Ontology–SO
(version 1.45 25:08:2014), the Protein Modification Ontology–
PSI-MOD (version 1.013.0 30:05:2014), and the InterPro tree and
its GO mapping (interpro2go version 46.0). The original ontolog-
ical trees were linked to eight main classes of protein features.

Annotations

Annotations were derived from reference tools and databases, in-
cluding InterProScan (version 5.3-46.0) (Jones et al. 2014),
TMHMM (version 2.0c) (Krogh et al. 2001), IntAct (May 2015)
(Orchard et al. 2014), UniProt (Oct. 2014) (UniProt Consortium
2015) , dbOGAP (Mar. 2014) (Wang et al. 2011), hUbiquitome
(Mar. 2014) (Du et al. 2011), PhosphoSitePlus (Apr. 2014)
(Hornbeck et al. 2012), dbPTM (May 2013) (Huang et al. 2016),
PhosphoELM (May 2013) (Dinkel et al. 2011), ProteomeScout
(Mar. 2014) (Matlock et al. 2015), and D2P2 (Dec. 2014) (Oates
et al. 2013). We only used the “experimental” data sets of
UniProt, dbOGAP, and dbPTM3. Localization motifs were identi-
fied using a custom Perl (version 5.10.1) script based on regular ex-
pressions. These annotations were mapped at the exon level using
our splicing database FasterDB and stored in a MySQL database
(version 14.14 distribution 5.1.73).

EXONT score, Z-score, and FDR

For a given exon and a given feature, the EXONT score is computed
by dividing the feature size (in nucleotides) by the exon size (in
kilo-nucleotides). Only the coding part of the exon is considered.
When the feature only partially overlaps the exon, only this over-
lapping region is considered. The Z-score is based on the compar-
ison of an EXONT score of interest (for a selected set of sequences)
with the distribution of 1000 EXONT scores obtained with se-
quence sets of approximately the same size that are randomly gen-
erated from a control sequence set (for instance, from all first
coding exons). This is only done for the EXONT terms that are an-
notated with at least 4% of the human exons (91 EXONT terms)
(see Supplemental Table S2). The EXONT score distributions
were generated offline for sequence sets of varying sizes (from
100 nucleotides to 32 kilo-nucleotides). The EXONT scores are
log-normally distributed, so the log of the EXONT scores are
used to compute the Z-scores. The FDR is computed using the
Benjamini and Hochberg strategy.

Web interface

Theweb interface is written in PHP and Javascript. It also relies on a
set of Perl (version 5.20.2) scripts to interact with theMySQL data-
base (version 14.14 distribution 5.5.49). The web server is run by
Apache (version 2.4.10) on a Debian machine (version 8.5).

Cell culture, treatment, and transfection

Cell culture of standard MCF-7 and MDA-MB-231 cells as well as
transient transfection assays were performed essentially as
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described previously (Dardenne et al. 2012; Samaan et al. 2014).
Sequences of siRNAs and TOSS are provided in Supplemental
Table S1. AKT activation experiments were performed as follows:
24 h after siRNA transfection, cells were first starved in serum-
free medium (Earle’s Balanced Salts with Sodium medium, Sigma
E3024 and E2888) for 16 h and then reactivated in medium con-
taining 5 µg/mL of SC79 (pan-AKT activator by phosphorylation;
S7863, Selleckchem) for 1 h.

RNA analysis

RNA extraction, RT-PCR, and RT-qPCR were described previously
(Dardenne et al. 2012; Samaan et al. 2014). qPCR data were nor-
malized with the RNA18S5 gene as a control. Statistical analyses
on means were performed using Student’s t-tests (unilateral,
paired, P < 0.05). Primer sequences for PCR and qPCR are provided
in Supplemental Table S1.

Western blot analysis

Total cell extracts were lysed in “NP40 buffer” (50 mM Tris-HCl ,
400mMNaCl, 5mMEDTA , 1% IGEPAL , 0.2% SDS) complement-
ed with protease and phosphatase inhibitors (11836145001 and
04906837001, Roche) and then incubated on ice for 30 min.
Extracts were then sonicated for 10 min (Diagenode Bioruptor,
10 cycles, 30′ ′ on / 30′ ′ off). Protein concentrations from total
cell extracts were determined using a Pierce BCA Protein Assay
kit (Thermo Scientific). Total cell extracts were run on 4%–12%
Bis-Tris gels (Invitrogen) and transferred on nitrocellulose mem-
branes (iBlot Gel Transfer Stacks Nitrocellulose, Invitrogen).
Membranes were washed in TBST (20 mM Tris, pH 7.6 , 130 mM
NaCl , 0.1% Tween 20) and blocked in 5% (w/v) dry nonfat milk
or 5% (w/v) bovine serum albumin (Sigma) for primary phos-
pho-antibodies.Membraneswere then incubatedwith primary an-
tibodies (overnight, 4°C) and washed before being incubated with
secondary HRP-conjugated antibodies for 1 h. Primary and sec-
ondary antibodies are listed in Supplemental Table S1. Image ac-
quisitions were performed using the ChemiDoc Touch Imaging
System (Bio-Rad), and quantification was performed using Image
Lab software (v.5.2.1, Biorad) and normalized with histone H3 or
total nonphosphoprotein. Statistical analyses on means were
made using Student’s t-tests (unilateral, paired, P < 0.05).

Immunofluorescence

Cells were fixed in 4% paraformaldehyde for 20 min. After three
washes in 1× PBS, cells were permeabilized in 0.2% Triton X-100
for 30 min and left for 1 h in blocking solution (1× PBS, 15% se-
rum, 0.1% Triton X-100). Slides were then incubated in blocking
solution containing rabbit anti-SLK (1/100; ab65113, Abcam) pri-
mary antibody (overnight, 4°C). After three washes in 1× PBS,
slides were incubated 2 h in blocking solution containing FITC-
conjugated anti-rabbit IgG (1/2000; Sigma), and nuclei were
stained with DAPI (10 nM final, 10 min).

Software availability

The ExonOntology version used and released in thismanuscript is
v1.5.0. The ontology (i.e., the EXONT terms) and the human an-
notation (i.e., the association between EXONT terms and human
coding exons) are available on the Exon Ontology website (except
for the dbPTM data set, which is still available from the dbPTM
website). In addition, the scripts to run Exon Ontology analyses
from the command line are available in our GitLab repository
(https:// gitlab.com/ExonOntology/ExonOntology), and in Sup-
plemental Data S1.
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