Regional scale simulation of the forest resources evolution in Southern Belgium (Wallonia)

PERIN J.¹, PITCHUGIN M.¹, LEJEUNE P.¹, HÉBERT J.¹

IUFRO 125TH ANNIVERSARY CONGRESS

18 - 22 September 2017 – Freiburg, Germany

¹ University of Liège Gembloux Agro-Bio Tech Department of Biosystems Engineering

Developping methods and tools to :

- 1) Assess the current forest resources with accuracy
- 2) Study the likely outcome of changing forestry
- 3) Predict forest resources evolution

Context : Southern Belgium forest

Cover 1/3 of Wallonia :

• 450 000 ha of productive forest stands \approx 50 % public managed forest (DNF)

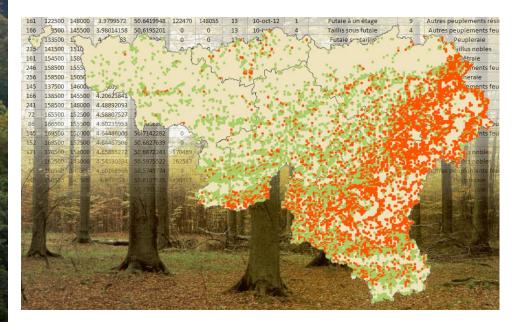
Small-scale intensive forest management :

- Highly fragmented forest
- Generally thinned every 6 to 12 years
- Main harvesting method = clearcutting

Context : Southern Belgium forests

Undergoing transformation to deal with :

- Climate change and forest disturbances
- New environmental regulations
- New economic opportunities


Question : What impact on wood industry supply?

Need updated data and simulation tools

Wallonia forest observation network

Permanent Forest Inventory of Wallonia (FIW)

Systematic sampling : 0.1 ha every 1000 * 500 m

- 11 000 PSP in forest land
- \pm 10 % monitored / yr
 - First monitoring : 1994-2008
 - Second in progress : $\approx 50\%$ done

Wallonia forest observation network

→ Fast composition changes underway

		Estimated area (ha)		Variation	
Species		2001	2012	(ha/yr)	
Softwood	Norway spruce	167 000	141 000	-2 364	-15%
	Douglas-fir	20 000	27 500	682	+38%
	Other	26 000	24 000	-182	
	Total	212 500	192 500	-1 818	-9%
Hardwood	Oak	108 000	109 000	91	
	Beech	59 500	65 500	545	
	Other	71 500	81 500	909	
	Total	239 000	255 500	1 500	+7%

→ A better time resolution is required

Method : updating FIW data

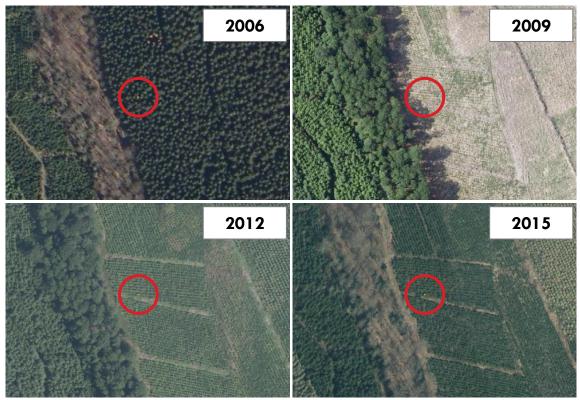
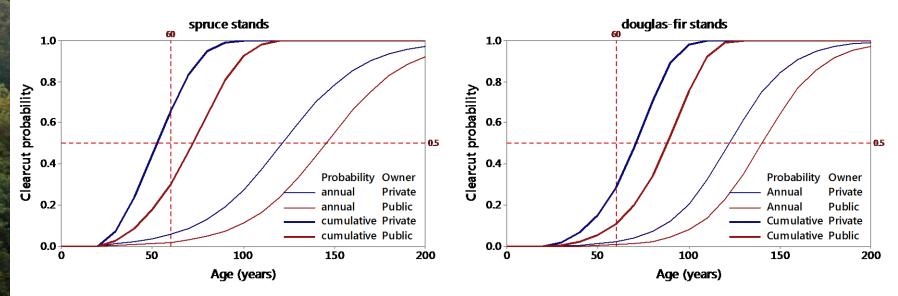

FIW data were updated using aerial photographic cover :

Photo interpretation on PSP coordinates (11 079 plots)

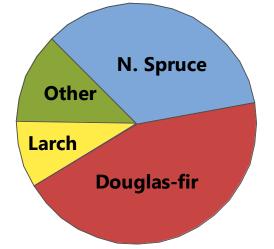
Working pace : $\approx 400 \text{ plots / hour}$

➔ 1 213 CC identified


In example : 41 years spruce stand sampled in 1998

Method : updating FIW data

Photo interpretation results analysis :


- Clearcut area ≈ 4500 ha/yr (80% in softwood)
- Clearcut probability = f(species, owner, age, SI)

Method : updating FIW data

Reforestation survey in recent clearcuts (N = 529**) :**

- Total reforestation rate \approx 92 %
- Reforested species in softwood stands :

Low productivity softwood heta hardwood

Development of a forest simulation software :

- Integrated in the CAPSIS¹ platform (java)
- From the tree level to the regional scale

First version fully functional (GYMNOS)

For pure even-aged softwood stands

New version in development (SIMREG)

Expansion to other species and structures

¹Computer-aided projection of strategies in silviculture (http://www7.inra.fr/capsis/)

10

Operating of GYMNOS

- Virtual stand creation from basic variables
 - Nha, Age, Hdom, Cg, Stdev
- Integrate latest growth and allometric models
 - Tree level distance independent
- Several thinning procedures available
 - Type and intensity are perfectly configurable

Forest Ecology and Management 298 (2013) 62-70

Modelling the top-height growth and site index of Norway spruce in Southern Belgium

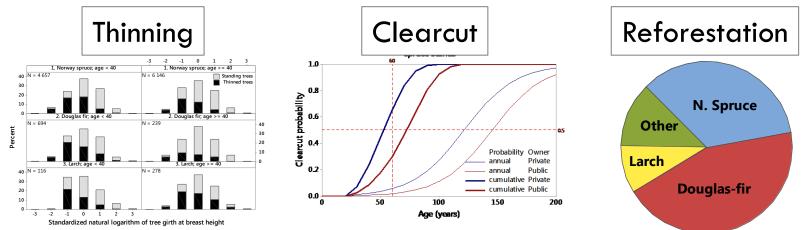
European Journal of Forest Research

April 2017, Volume 136, <u>Issue 2</u>, pp 193–204

Distance-independent tree basal area growth models for Norway spruce, Douglas-fir and Japanese larch in Southern Belgium

Authors

Authors and affiliations

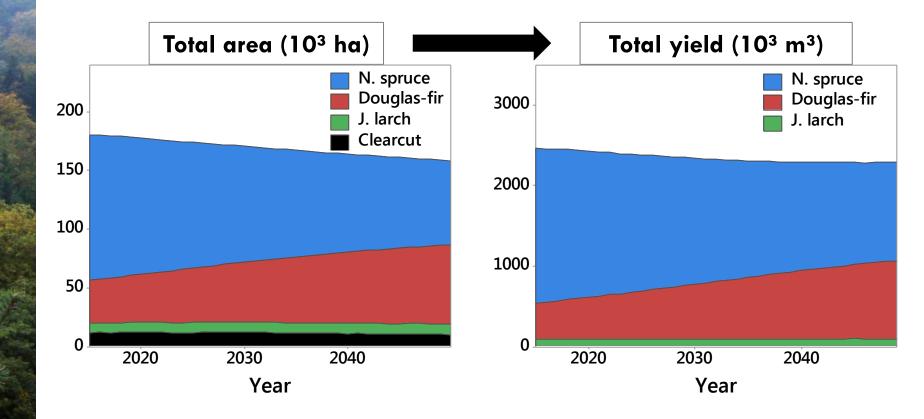

Jérôme Perin^{a,*}, Jacques Hébert^a, Yves Brostaux^b, Philippe Lejeune^a, Hugues Claessens^a

Jérôme Perin 🖂 , Hugues Claessens, Philippe Lejeune, Yves Brostaux, Jacques Hébert

Operating of GYMNOS at the regional scale

INPUT = regional forest inventory data

Forest management calibrated with 3 process :


Operating of GYMNOS at the regional scale

Performances

200 000 ha for 50 years ≈ 90 min
 1.2 * 10⁶ annual tree growth /s

Simulation of Wallonia softwood evolution

14

Simulation of Wallonia softwood evolution

Conclusions :

Unsustainable harvesting rate ■ ≈ 1.2 * yield

Partially offset by high yield of douglas-fir ■ DF yield ≈ 1.3 * NS yield

➔ Possible solution : ↗ douglas-fir reforestation

Automatic detection of clearcuts :

With Sentinel-1 and Sentinel-2 data

Improvement of the simulator :

Expansion to other species and structures

