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Introduction

The GEC1 gene (also known as GABARAPL1 or ATG8L) 
was first identified in 1993 as an early estrogen-induced 
gene in quiescent guinea-pig endometrial glandular epithe-
lial cells (GEC).1,2 In 1999, a new protein named GABARAP 
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A
 receptor-associated protein 

GABARAPL1, GABARAPL2, GABARAPL3, GABARAP-like 1, 2 and 3; GATE-16, Golgi-associated ATPase enhancer of 
16 kDa; GEC1, glandular epithelial cell protein 1; GFP, green fluorescent protein; GnRH, gonadotropin releasing hormone; 
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(GABA
A
-receptor-associated protein) was described to bind both 

GABA
A
R (γ-aminobutyric acid receptor) and tubulin, and to 

be involved in intracellular GABA
A
 receptor trafficking.3 The 

discovery of this new protein, which shares 87% identity with 
GABARAPL1, led to the classification of GEC1 as a member of 
the GABARAP family.4 We therefore propose to unify the some-
what confusing nomenclature and spelling of this protein and to 
refer to GEC1 (or GABARAP-L1) as GABARAPL1 (GABA

A
-

receptor-associated protein-like 1).
In this review, we will show that although GABARAPL1 

shares a high sequence homology with other GABARAP family 
members, its expression pattern and regulation differ. Together, 
these findings suggest that GABARAPL1 might have essential 
and specific functions.

The GABARAP Family

GABARAPL1 belongs to the GABARAP family, which is one of 
2 subfamilies of the yeast Atg8 (autophagy-related 8) ortholog, 
the other being the MAP-LC3s (consisting of the light-chain of 
microtubule-associated proteins MAP1A, MAP1B and MAP1C, 
also known as LC3A, LC3B and LC3C). The GABARAP fam-
ily comprises GABARAP, GABARAPL1 and GABARAPL2/
GATE-16 (GABARAP-like 2/Golgi-associated ATPase enhancer 
of 16 kDa) (Fig. 1). GABARAPL1 shows 87% identity with 
GABARAP and 61% identity with GATE-16 5,6 and also shares a 
distant homology with LC3A (30.8% identity), LC3B (29% iden-
tity) and LC3C (35.8% identity).7-10 Members of the GABARAP 
and LC3 families are composed of 117 to 145 amino acids and all 
possess a conserved C-terminal glycine, essential for their role in 
autophagy (Fig. 1).11,12 In addition to their sequence similarity, 
the crystal structures of GABARAP,13-17 GATE-16,6 LC3,18 and 

The GABARAPL1 (GABARAP-LIKE 1) gene was first described as 
an early estrogen-regulated gene that shares a high sequence 
homology with GABARAP and is thus a part of the GABARAP 
family. GABArAPL1, like GABArAP, interacts with the GABAA 
receptor and tubulin and promotes tubulin polymerization. 
The GABArAP family members (GABArAP, GABArAPL1 and 
GABArAPL2) and their close homologs (LC3 and Atg8) are not 
only involved in the transport of proteins or vesicles but are 
also implicated in various mechanisms such as autophagy, 
cell death, cell proliferation and tumor progression. However, 
despite these similarities, GABArAPL1 displays a complex 
regulation that is different from that of other GABArAP family 
members. Moreover, it presents a regulated tissue expression 
and is the most highly expressed gene among the family in the 
central nervous system. in this review article, we will outline the 
specific functions of this protein and also hypothesize about 
the roles that GABArAPL1 might have in several important 
biological processes such as cancer or neurodegenerative 
diseases.



© 2011 Landes Bioscience.

Do not distribute.

www.landesbioscience.com Autophagy 1099

review review

LC3A, B and C (on chromosomes 20, 16 and 1, respectively) 
did not indicate the presence of any ERE in the 1,200 bp region 
upstream of the initial start codon. Indeed, no other GABARAP 
or LC3 family member has been shown to be upregulated by 
estrogen as is the case for GABARAPL1. This specific regula-
tion of the GABARAPL1 gene by estrogen might indicate that 
it exerts particular functions in tissues or pathologies in which 
estrogens play a major role such as breast cancer or Parkinson 
disease as discussed further below.

Expression in the central nervous system. Real-time RT-PCR 
experiments performed on mRNA from male rat cerebral extrac-
tions showed that Gabarapl1 displays the highest expression levels 
followed by Lc3, Gabarap and Gabarapl2.27 Transcript expression 
levels of each member, however, differ depending on the specific 
region of the brain. Gabarapl1 mRNA is the most highly expressed 
in all regions of the brain examined and its expression is the high-
est in the pons and diencephalon (thalamus and hypothalamus).27 
These results were confirmed in the adult rat using in situ hybrid-
ization experiments, which showed that Gabarapl1 is indeed 
widely expressed in the brain, most likely exclusively within neu-
rons, ranging from the olfactory bulb to the brain stem and spinal 
cord.28 More specifically, Gabarapl1 appears to be expressed more 
predominantly in neurons that are involved in somatomotor and 
neuroendocrine functions and to a lesser extent in sensory and 
reticular structures.28 Gabarapl1 is also highly expressed in gonad-
otropin-releasing hormone (GnRH) neurons,29,30 a neuronal pop-
ulation that is regulated by estrogen. Indeed, estrogen receptors 
are highly expressed in the hypothalamus21,29 and play a major 
role in the regulation of the reproductive axis through their con-
trol on the release of luteinizing hormone and follicle-stimulating 
hormone at the anterior pituitary. Moreover, the primary neu-
rotransmitter inputs to these neurons are GABA

A
 and glutamate, 

which exert their effects in the neurons through GABA
A
 receptors 

GABARAPL1 (Structural Genomic Consortium, code: 2R2Q) 
are also highly similar. It is also worth mentioning that the 
GABARAPL1 protein sequence is highly conserved throughout 
evolution from plants to mammals (100% identity) suggesting 
that this protein plays an essential role in these organisms.4,7

Regulation and Expression of the GABARAPL1 Gene

GABARAPL1 mRNA is expressed in a variety of tissues within 
the mouse, rat and human. The highest expression levels were 
initially observed in the brain, heart, liver, skeletal muscle, kid-
ney, spleen, ovary, small intestine, placenta and peripheral blood 
leukocytes.4,7,19 In contrast to its differential expression in adult 
human tissues, GABARAPL1 is present at comparable mRNA 
levels in all fetal tissues.20

Regulation by estrogen. The human and guinea pig 
GABARAPL1 cDNA consist of 1,959 and 1,921 nucleotides, 
respectively. Their coding sequences are composed of 351 nucleo-
tides, which share 93% identity and translate into the exact same 
protein. The guinea-pig Gabarapl1 gene has a full-length ERE 
sequence (estrogen responsive element, reviewed in ref. 21) that 
is located in the first exon and described as the primary response 
element necessary for gene activation by Estradiol-17β (E

2
) via 

ERα (estrogen receptor α).22

Sequence analysis of the human GABARAPL1 gene (on chro-
mosome 12) by the Matinspector program from Genomatix23 
or the Cister software24 reveals the presence of several possible 
regulatory sequences such as ERE, SP-1 (Specificity Protein-1) 
and AP-1 (Activator Protein-1), to which estrogen receptors 
could bind (Fig. 2).25,26 However, the precise functions of these 
sequences have not yet been determined.

In contrast, analysis of the DNA sequences of GABARAP 
(on chromosome 17), GABARAPL2 (on chromosome 16) and 

Figure 1. Alignment of the GABArAP and LC3 family members. Amino acid sequences (obtained from NCBi or GeneBank databases) of GABArAPL1 
(NP_113600), GABArAP (CAG47031), GABArAPL2 (NP_009216), LC3A (NP_852610), LC3B (NP_073729), LC3C (NP_001004343) and Atg8 (NP_009475) pro-
teins were aligned using the NCBi Protein BLAST tool. The amino acids that differ from those present in GABArAPL1 are indicated in red. The terminal 
glycine (position 116, 120 or 124), which is essential for congugation to phospholipids, is displayed in blue.
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of the whole animal. This finding may indicate that Gabarapl1 
is particularly important for the specific autophagic degradation 
of unwanted proteins in the cell and not just involved in nutrient 
recycling, a hypothesis that will require further examination.

Regulation by the FoxO transcription factor family. Several 
groups have demonstrated that Gabarapl1 is regulated by FoxO 
transcription factors. For instance, Sengupta and colleagues 
found that, in primary cultures of both cardiomyocytes from 
neonatal rats and mouse heart tissue, stress conditions, such as 
glucose deprivation or oxidative stress, cause the translocation of 
FoxO1 and FoxO3 to the nucleus, where they activate autophagy-
related genes (Gabarapl1, Atg12 and Lc3) and a FoxO1/FoxO3 
conditional double-knockout mouse displays reduced expres-
sion of Gabarapl1 and Lc3-II following ischemia/reperfusion 
injury.38,39 Another study indicated that the effects of insulin sup-
pression on autophagy are mediated by a FoxO1-dependent tran-
scription of genes implicated in autophagy (Gabarapl1, Atg12 and 
Vps34).40 Furthermore, Gabarapl1 as well as several other genes 
implicated in either the process or the regulation of autophagy 
(Bnip3, Bnip3l, Vps34, Lc3, Atg12, Beclin 1 and Atg4B) are upreg-
ulated in a model of muscle atrophy in vivo.41,42 A recent study 
linked FoxO, AMPK and p38α in colorectal cancer cells (CRC) 
during stress-response. In this study, the authors used an inhibi-
tor of p38α (SB20219) to study the expression of FoxO3A target 
genes and demonstrated that, of the genes involved in autophagy, 
GABARAPL1 shows the highest transcriptional induction after 
treatment and accumulates in autolysosomes.43

Three FoxO target consensus sequences are located upstream 
of the promoter region in the mouse Gabarapl1 gene44 and  

and glutamate receptors, respectively.31,32 As an estrogen-regulated 
gene, Gabarapl1 may play a role in the responsiveness of GnRH 
neurons to estrogen through its implication in GABA

A
R traffick-

ing to the plasma membrane.
Regulation by circadian rhythms. In mammals, the central 

pacemaker in the hypothalamus, the suprachiasmatic nucleus, 
and the intracellular oscillation generators within several periph-
eral organs all work together to generate circadian oscillation.33,34 
Two separate studies have shown that Gabarapl1 expression varies 
depending on the day/night rhythms.30,35 The first study showed 
that Gabarapl1 expression peaks halfway through the light phase 
of a 24-h cycle (12 h light/12 h dark) in mouse liver.35 The sec-
ond study demonstrated that Gabarapl1 expression is temporally 
related to the oscillations of Circadian Locomotor Output Cycle 
Kaput (Clock) transcription factors and dependent on Period 1 
(Per1) expression in GnV-3 cells (conditionally immortalized 
gonadotropin-releasing hormone-expressing neurons from rat).30 
Among the Gabarap and Lc3 family members, Gabarapl1 is the 
only gene identified thus far to be regulated by circadian rhythms.

Several recent publications have hypothesized a relation-
ship between autophagy and circadian rhythms, although the 
mechanism is not yet determined (reviewed in ref. 36). It has 
been shown that the autophagy-related genes Vps4b and Bnip3, 
like Gabarapl1, undergo rhythmic variations. Gabarapl1 may, 
therefore, be regulated by Per1 in order to participate or regulate 
autophagy during the diurnal cycle. Moreover, unlike the studies 
done on Vps4b and Bnip3,37 Gabarapl1’s rhythmic expression was 
demonstrated in vitro, suggesting that autophagic activity may 
vary intrinsically in the cell, independent of the circadian pattern 

Figure 2. Comparison of the human and guinea pig GABARAPL1 gene promoter regions. Predictive computer analysis was conducted on promoter  
sequences. in the guinea pig gene, the iNr element is sufficient to direct transcription and the ere located in the first exon permits induction of the 
gene by estradiol-17β via erα.4 These sequences are conserved in the human gene but their roles have not yet been addressed. A similar analysis of 
the equivalent region for the GABARAP gene revealed no estrogen responsive cis-regulatory sequences. AP-1: binding site of the Activator Protein-1; 
SP-1: binding site of the transcription factor Specificity Protein-1; ere: estrogen response element; FHre: ForkHead responsive element; iNr: transcrip-
tion initiator element; TATA: TATA box; Atg: translation initiation codon. Cister and Matinspector softwares were used to predict the presence of estro-
gen response cis-regulatory sequences.23,24 Only sequences identified by both software programs are represented in the figure. Matinspector software 
was used to predict FHre.
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fast inhibitory transmission in the brain.50,51 They are involved in 
many different physiological processes such as anxiety, circadian 
rhythm, memory, learning, controlling excitability of the brain, 
synaptic plasticity and synaptogenesis.52 It has been recently 
demonstrated that Gabarapl1 interacts with tubulin and the γ2 
subunit of the GABA

A
 receptor and is able to promote tubulin 

polymerization and bundling to form microtubules.45,49,53 A simi-
lar role for the Gabarap protein has also been previously dem-
onstrated, suggesting that the two proteins are redundant with 
regard to this function.3,54

This idea has been confirmed with the creation of the Gabarap 
knockout mouse.55 These mice lack a phenotype, they do not 
display any change in localization or number of GABA

A
 recep-

tors, nor are Gabarapl1 or Gabarapl2 protein levels upregulated. 
siRNA knockdown of Gabarap in primary hippocampal neurons 
also gave similar results.56 A double-knockout mouse of both 
Gabarap and Gabarapl1 will therefore be essential in order to 
evaluate their collective role and to determine the role of the third 
member of the family, Gabarapl2, has in the transport of GABA

A
 

receptors in vivo.
Interestingly, N-ethylmaleimide-sensitive factor (NSF) was 

also identified as a Gabarapl1 binding partner in rat brain extracts 
and Chinese hamster ovary cells.45 Although the relevance of 
the Gabarapl1/NSF interaction has not yet been elucidated, it 
is likely that this complex will be involved in the trafficking of 
neuronal receptors as it has been described for the Gabarap/NSF 
and Gabarapl2/NSF complexes.5,57

Another protein partner of Gabarapl1 is the kappa opioid recep-
tor (KOR), which is a member of the G-protein coupled recep-
tor family.45 Immunocytochemical studies show that Gabarapl1 
colocalizes with the KOR in the endoplasmic reticulum and Golgi 
where it appears to increase the number of cell-surface receptors.45 
KOR/Gabarapl1 binding involves hydrophobic interactions53 and 
the Gabarapl1 residues that are responsible for these interactions 
are highly conserved in Gabarap and Gabarapl2. However, com-
pared with Gabarapl1, Gabarap and Gabarapl2 affect the trans-
port of the KOR to a lesser extent. Moreover, Gabarapl1 displays 
a higher affinity for KOR and, unlike Gabarap, can associate with 
and enhance the expression of this receptor without being pro-
cessed at its G116 residue and associated to membranes.58 These 
data suggest a different role of these proteins in the transport of 
the kappa opioid receptor. The residues within the opioid recep-
tor that are necessary for Gabarapl1 interaction are located within 
a FPXXM motif at its C terminus. This motif is also present 
in the GluR1 (glutamate receptor type 1) subunit of the AMPA 
receptor and in the prostaglandin receptor EP3.f. The expression 
of these receptors is increased as a result of Gabarapl1 overexpres-
sion, suggesting that Gabarapl1 has a role that is more complex 
than merely in receptor transport.53 Indeed, the authors of the 
previous study suggest that Gabarapl1 might act as a chaperone 
for the KOR and possibly other proteins.

The Role of GABARAPL1 in Autophagy

Autophagy is a highly catabolic process leading to the degradation 
of cytoplasmic components and sometimes also the degradation 

4 potential FoxO binding sites are present in the guinea pig gene 
(Fig. 2). While no FoxO binding sites are found in the human 
gene within the homologous region, they are present further 
upstream (2–3 kb respective to the start codon) in the human 
gene. Interestingly, even if GABARAPL1 is not the only member 
of the GABARAP family found to be regulated by FoxO tran-
scription factors, it is regulated by several FoxO transcription 
factors and in different physiological processes such as muscle 
atrophy or colorectal cancer, therefore demonstrating its wide 
range of action.

Expression and localization of the GABARAPL1 protein. As 
the protein sequences among the GABARAP family members, 
and in particular between GABARAP and GABARAPL1, share 
a high identity, a detailed analysis of their differential expres-
sion has been limited. To avoid the use of nonspecific antibod-
ies, research efforts have focused on the analysis of GABARAPL1 
mRNA expression since mRNA probes, complementary to the 
3'-untranslated region of the gene, are able to specifically identify 
GABARAPL1.

Despite the lack of a GABARAPL1-specific antibody,27,28,45 
some tissue expression analysis has been performed. High levels 
of GABARAPL1 have been found in the brain, in neurons but 
not in glial cells, and in the lungs.46 In addition, GABARAPL1 
protein levels decrease in the failing human heart after mechani-
cal unloading, possibly due to a decreased demand in energy 
from the heart during this process.47 Nevertheless, it is important 
to point out that it cannot be excluded that, in these studies, sev-
eral members of the GABARAP family have been detected and 
not only GABARAPL1.

Cell lines that stably express GABARAPL1 linked to a fluo-
rescent tag have also been utilized for protein expression experi-
ments. These studies have shown that the cellular distribution of 
GABARAPL1 is highly variable, including the cytoplasm, Golgi 
complex, endoplasmic reticulum or the plasma membrane, but 
with a common feature, a staining linked to intracytoplasmic 
vesicles that can partially colocalize with autophagosomes or 
lysosomes.45,46,48,49 Although these experiments make it possible 
to determine the expression pattern of exogenous GABARAPL1, 
the cellular distribution of endogenous GABARAPL1 remains to 
be confirmed.

Taken together these data show that GABARAPL1 displays a 
specific regulation (estrogens and circadian rhythms) not shared 
by the other members of the GABARAP and LC3 families. This 
regulation might allow the investigators to use specific inducers 
targeting only one member of these families. Nevertheless, sev-
eral points will need to be addressed in the future: Do the dif-
ferences observed at the mRNA level reflect differences at the 
protein level? Is this specific regulation linked to any cellular 
process, such as autophagy, or pathologies, such as cancer and 
neurodegenerative disease?

The Role of GABARAPL1 in Neuronal Signal 
Transmission

GABA
A
 receptors are ligand-gated chloride ion channels found 

at neuronal synapses and are responsible for the majority of the 
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This difference is thought to be governed by yet unidentified 
‘selective factors’ that are only present in vivo.63

Recently, Gabarapl1 has been described as a new marker of 
autophagosomes48 and can be cleaved by Atg4B in vitro, a matu-
ration step described to be inhibited in Atg4B-/- mice.48,64,65 The 
loss of the maturation of the Gabarap family members by Atg4B 
in this in vivo model leads to balance disorders owing to a loss of 
autophagic function within the inner ear. Another recent study 
shows that the proteins of the Atg8 family are involved in the for-
mation of the autophagosomes but display different and specific 
function during this process: the LC3 family is necessary for the 
elongation of the phagophore, whereas the GABARAP family is 
implicated in later stages of the formation of the autophagosome.66

One main question remains: What is the specificity of func-
tion of the GABARAP and LC3 family members in autophagy? 

of the cell as a whole. It has been implicated in many biological 
processes from development to disease states (reviewed in ref. 59 
and 60). Numerous recent studies have focused on elucidating the 
molecular mechanism of this process and it is now known that 
the elongation of the phagophore is regulated by two conjugation 
systems.61 The first system involves the conjugation of Atg12 to 
Atg5 by the Atg7 and Atg10 enzymes. The second involves the 
conjugation of the LC3 protein onto phosphatidylethanolamine 
by the Atg7 and Atg3 enzymes (reviewed in ref. 62). Before con-
jugation, the precursor form of LC3 is cleaved by the cysteine 
protease Atg4B, a member of the Atg4 family of endopeptidases, 
to expose a glycine residue at its C terminus (Fig. 1). The mature 
LC3 is then attached to its target phospolipid, typically a phos-
phatidylethanolamine on the forming autophagosomal structure 
in vitro and in vivo (Fig. 3), or even a phosphatidylserine in vitro. 

Figure 3. role of GABArAPL1 in autophagy. GABArAP, GABArAPL2 and LC3 are cleaved in the cell by Atg4 enzymes to produce their mature forms; 
GABArAPL1-i, GABArAP-i, GABArAPL21-i and LC3-i. Under autophagy-inducing conditions (e.g., stimulation with rapamycin or nutrient starvation) 
(1), nucleation of phagophores is initiated (2) and followed by elongation of the pre-autophagosomal membrane, which leads to the creation of auto-
phagosomes. During this process, GABArAPL1-i, GABArAP-i, GABArAPL2-i and LC3-i are conjugated to phospholipids by Atg7 and Atg3 (3) to produce 
the phospholipid-linked forms GABArAPL1-ii, GABArAP-ii, GABArAPL2-ii and LC3-ii. LC3-ii is essential for elongation of autophagosomes (4), whereas 
GABArAP-ii, GABArAPL1-ii and GABArAPL2-ii are required for the closure of autophagosomes (5). Autophagosomes then undergo maturation into 
autophagolysosomes (6), resulting in the degradation of their content and the recycling of the breakdown products (7). GABArAPL1 is also involved 
in selective autophagy through its interaction with cargo adaptor proteins, such as Nix, p62 or NBr1, to activate the clearance of specific unwanted 
proteins or organelles (4').



© 2011 Landes Bioscience.

Do not distribute.

www.landesbioscience.com Autophagy 1103

breast cancer cell lines, both at the mRNA and protein levels.78 
GABARAP also has a role in other cancers as GABARAP tran-
script expression correlates with a better survival rate for patients 
affected by neuroblastoma,79 and GABARAP protein expression 
is significantly upregulated in colorectal cancer.80

Autophagy has been described to play a paradoxical role in 
tumor apparition and progression. Early in the process of tumori-
genesis, autophagy prevents tumor progression by degrading dam-
aged organelles such as mitochondria, which would otherwise be 
stressors in the cell.81,82 Under metabolic stress, and at later stages 
of tumorigenesis, however, some tumors exploit their autophagic 
capabilities in order to provide themselves with the necessary 
nutrients to survive (reviewed in ref. 83–85). Later on, autophagy 
is also responsible for the development of drug resistance in many 
cancers.86 Since GABARAPL1 is regulated by estrogens, and its 
gene expression is a good prognostic indicator for breast cancer 
patients,77 it has a tremendous potential as a therapeutic target 
against cancer. In fact, anti-estrogen treatments (tamoxifen) are 
currently being combined with an inhibitor of autophagy (chlo-
roquine) in clinical trials to treat breast cancer.86

The Role of GABARAPL1 in Neurodegeneration

In the last decade, there has been a growing body of evidence that 
supports a role for autophagy in the protection against unwanted 
protein aggregates in the brain. Anomalies in the autophagic pro-
cess have been discovered in many neurodegenerative diseases 
including, but certainly not limited to, Alzheimer, Huntington 
and Parkinson diseases (reviewed in ref. 87). As discussed above, 
GABARAPL1 interacts with the autophagy cargo adaptors p62 
and NBR1, which bind to ubiquitinated protein aggregates to 
identify them for degradation.68-70

However, GABARAPL1 not only binds to these autophagy 
cargo adaptors, but also confers an affinity for those mutated 
proteins that form aggregates in neurodegenerative diseases, 
such as α-synuclein oligomers in Parkinson disease.88 Moreover, 
Gabarapl1 mRNA is highly expressed in the substantia nigra pars 
compacta (SNpc), the region of the SN that consists of dopaminer-
gic neurons, implicated in the progression of Parkinson disease, 
whereas its expression is lacking in the pars reticula.28 Two recent 
microarray analysis showed that GABARAPL1 expression, but not 
GABARAP or LC3, is significantly reduced in the prefrontal cortex 
of macaque monkeys in an MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) experimental model of Parkinson disease,89 
and highly downregulated in laser microdissected dopaminergic 
neurons (DA) of the SNpc of Parkinson disease patients.90 The 
latter observation might indicate a need for a decreased auto-
phagic activity, by means of the degradation of GABARAPL1 
and/or other autophagy proteins, in order for these neurodegen-
erative diseases to progress, further suggesting the importance of 
GABARAPL1 in the prevention of neurodegenerative diseases.

It is worth noting that sex steroids, in particular estrogens, 
have a protective effect in various models of brain injury and, 
in particular, in a MPTP-murine model of Parkinson dis-
ease.91 Since estrogens regulate GABARAPL1 transcription, the 
GABARAPL1 protein may be one of the links between estrogen 

Deletion of Gabarap does not result in an increased expression 
of Gabarapl1 or Gabarapl2.55 Similarily, Lc3β knockout mice do 
not display a compensation of Lc3α or Gabarap expression.67 As 
such, one could assume that the members of each subfamily are 
simply redundant. Nevertheless, given their specific expression 
patterns, their role in autophagy might be tissue or cell specific or 
linked to specific types of autophagy such as selective autophagy 
as described below.

The Role of GABARAPL1 in Selective Autophagy

The autophagic pathway has evolved to include more specific pro-
cesses in which certain autophagic targets are selected via auto-
phagic receptors such as sequestosome1 (SQSTM1, also known 
as p62) or neighbor of Brca1 (NBR1).68-70 These proteins act as 
cargo adapters and connect the ubiquitinated target proteins, 
protein aggregates or damaged organelles to the autophagosome-
linked GABARAP and LC3 family members. They do so by 
binding both the cargo (i.e., the material to be sequestered) via 
their C-terminal ubiquitin-associated domain (UBA)71 and the 
LC3 or GABARAP family members via their LC3-interacting 
domain (LIR).69 Indeed, GABARAPL1 interacts with both p62 
and NBR1,69,72,73 and the interaction between GABARAPL1 
and p62 facilitates the autophagy of ubiquitinated protein aggre-
gates.69 GABARAPL1 is also thought to be involved in mitoph-
agy through its interaction with the mitochondria-associated 
protein NIX1 and its recruitment to damaged mitochondria in 
vitro.74 It is therefore likely that GABARAPL1 constitutes a pro-
tein target for cargo adapters and thus is necessary for the degra-
dation of unwanted organelles or protein aggregates, a function 
that could prove to be useful for the therapy of various diseases, 
such as cancer or neurodegeneration. Therefore, it will be of great 
interest in the future to determine whether the GABARAP and 
LC3 family members play redundant roles in this process or are 
involved in the degradation of different targets that are associ-
ated with specific pathologies, such as α-synuclein in Parkinson 
disease75 or p62 in cancer.76

The Role of GABARAPL1 in Cancer

The first evidence for a potential role of GABARAPL1 and 
GABARAP in cancer was a study that described reduced 
GABARAPL1 expression in different cancerous cell lines com-
pared with normal tissues.19 More recently, we investigated 
GABARAPL1 expression in a large cohort of breast adenocarci-
noma (265 samples) 77 and demonstrated that those patients who 
presented with high GABARAPL1 expression levels had a lower 
risk of metastasis, specifically for lymph node-positive patients. 
Moreover, decreased GABARAPL1 expression correlates with 
clinic-pathological features such as the histological grade of a given 
tumor. Reduced levels of GABARAPL1 mRNA are observed in 
tumors of high histological grade, with lymph node-positive and 
estrogen- and/or progesterone receptor-negative status. These 
results suggest a role for GABARAPL1 as a prognostic marker 
in breast cancer, specifically in lymph node-positive patients. 
Like GABARAPL1, GABARAP expression is also diminished in 
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Figure 4. Confirmed and putative roles of GABArAPL1. Schematic illustration of described or putative roles for GABArAPL1 and regulation of  
Gabarapl1 gene and GABArAPL1 protein in physiological processes or pathologies.

Table 1. List of confirmed GABArAPL1-interacting partners

and neuroprotection. If this is indeed the case, it might constitute 
an attractive therapeutic target in the future.

Other Functions of GABARAPL1

GABARAPL1 mRNA expression is upregulated in periph-
eral blood mononuclear cells from chronic fatigue syndrome 

patients compared with normal blood donors.92 GABARAPL1 
is the only member of the GABARAP family that has been  
shown to interact with the autosomal recessive hypercho-
lesterolemia protein93 in the brain. Lastly, GABARAPL1  
interacts with the starch binding domain-containing  
protein 1, a protein thought to play a role in glycogen metabolism  
(Table 1).94,95
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not shared by the other members of the GABARAP family. In 
particular, GABARAPL1 might prove a useful therapeutic target 
for estrogen responsive cancers and in neurodegenerative diseases. 
The example of GABARAPL1 demonstrates the importance to 
differentiate between the different members of the GABARAP 
family when studying their role and no longer consider these pro-
teins as being functionally redundant.
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Conclusion

GABARAPL1, like GABARAP, is implicated in several different 
cellular processes and presents a specific regulation including the 
estrogen hormones, the FOXO family and the circadian rhythms. 
Moreover, it is differentially regulated in various pathologies, 
such as breast cancer, colorectal cancer, neurodegenerative mod-
els and chronic fatigue syndrome (Fig. 4).

Together, these data suggest an essential and specific role 
for this protein that is distinct from that of its closest homolog, 
GABARAP. At the molecular and cellular levels, the main ques-
tion to address will be the specificity of their protein partners: 
are they identical for all the members of the family or are they 
specific to different pathologies? The necessary studies to answer 
these questions, however, will require a specific antibody to fur-
ther characterize the interaction of GABARAPL1 with its pro-
tein partners. The therapeutic potential of GABARAPL1 looks 
promising since this protein displays a specific regulation that is 
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