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Abstract 

An original study of nanofluid viscosity is proposed. The carrier fluid is assumed Newtonian 

but the two-phase nanofluid displays properties typical of a generalized Maxwell constitutive 

law. Our approach is based on an extension of Einstein’s model describing suspensions of solid 

particles  in  fluids  by the introduction of the following elements: presence of a layer around 

the nanoparticles and a thermodynamic description of the role of size effects. The theoretical 

formalism is applied to liquid argon with lithium nanoparticles and to alumina nanoparticles in 

water. Good agreement with experimental data and molecular dynamics simulation is observed. 
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1. Introduction. 

 Nanofluids are binary mixtures consisting of nanoparticles dispersed in a host fluid. 

These systems have met an increasing interest in several industrial applications, like in 

biotechnology, nanotechnology, electromechanical systems, they have proved to be relevant in 

the developments of new drugs, paints, lubricants among others. It is well know that the 

presence of nanoparticles influences considerably the thermo-mechanical properties of the 

basic fluid like, in particular, thermal conductivity and viscosity. 

 In this paper, focus is put on the role of nanoparticles on the shear viscosity of the 

system, an impressive lot of works (e.g. [1- 10]) have been published on the subject. Viscosity 

depends essentially on the temperature, the nature of the particles and the fluid, the volume 

fraction of particles and their size. Subsequently, the analysis is focused on the role of volume 

fraction and particles size, the temperature is assumed uniform. 

         It has been observed that the viscosity of nanofluids is much lager that that of the host 

fluid. Several theoretical and ad hoc expressions for the viscosity η in terms of the particle’s 

volume fractions φ have been proposed, among which the celebrated Einstein formula [11] 

                   η=ηf (1+ 2.5φ),          (1)  

with ηf  denoting the viscosity of the  host  fluid, this expression is valid for dilute  mixtures 

 (φ<0.05) with spherical particles. Other more sophisticated ad-hoc relations have been 

formulated like  a quadratic dependence in the viscosity [12] 

                                                 η= ηf (1+ a1 φ+ a2 φ²),            (2)  
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wherein a1 and a2 are ad hoc parameters taking  different values according to the nature of the 

nanofluid. Other models like those of  Chen et al [5] and  Krieger and Dougherty [ 8 ] have also 

been exploited. 

 The dependence of viscosity on the size of nanoparticles has been a subject of debate. 

For some authors [13, 14], viscosity increases with increasing dimensions of nanoparticles 

while others [15-17] assert that viscosity diminishes with increasing size. For sufficiently large 

particles, the dependence with respect to size becomes negligible. It is however worth to 

mention that no valuable theoretical considerations, outside molecular dynamic simulations 

[18] are able to explain such behaviors.  

 The gap will be filled in the forthcoming: a formalism based on Extended Irreversible 

Thermodynamics (EIT) [19-21] is presented wherein the nanofluid is viewed as a generalized 

Maxwell model. In addition, our analysis will emphasize the role of interfacial layers 

surrounding the solid particle, acting as a possible mechanism for momentum transfer. This 

concept  was introduced by Choi [22] and exploited by Yu and Choi [23]  and Xie et al [24] to 

interpret the enhancement of thermal conductivity in nanofluids. 

  The working hypotheses of our model are the following: 

 the dispersed particles are solid spheres  of radius  r, 

 the host fluid is  homogeneous,  isotropic and Newtonian,  

 the particles are homogeneously distributed  in the fluid,  

  no formation of aggregates, 

 the effects of the Brownian motion of nanoparticles is neglected, 

 thermal effects are not taken into account and temperature is uniform. 
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   The paper is organized as follows. In Section 2, the main ingredients underlying EIT 

are recalled and the evolution equations governing the behavior of the state equations, 

essentially the internal energy and the viscous pressure tensor, are formulated. In Section 3, an 

expression of the effective shear viscosity of nanofluids in presence of spherical rigid 

nanoparticles is derived. In Section 4, the model is applied to lithium particles dispersed in 

Argon and to aluminate particles in water respectively. Conclusions are drawn in Section 5. 

 

2.  Extended Irreversible Thermodynamics 

 

 The description of systems at subscales, such as nanoparticles, requires to go beyond 

the classical theory of irreversible processes [25]. A good candidate for treating these classes 

of problems is Extended Irreversible Thermodynamics (EIT). The principal idea behind EIT is 

to elevate the fluxes, as the fluxes of mass, energy and momentum to the status of independent 

variables at the same level as the classical conserved variables like mass, energy or momentum.  

 As a case-study, let us consider the flow of a viscous incompressible fluid at uniform 

temperature. The generalization to more complicated systems as fluids mixtures [26], polymer 

solutions [27], suspensions [28], porous media [29] and others have been dealt with in detail in 

numerous publications and books. In the case of an incompressible fluid flow, the only relevant 

conserved variable is the specific internal energy e (per unit mass)) whereas the corresponding 

flux variable is the viscous pressure tensor P, it is a second order symmetric traceless tensor, in 

contrast with e, it is not a conserved quantity. The corner stone of EIT is to assume the existence 

of a specific non-equilibrium entropy function s depending on both e and P so that  s= s(e, P) 

or, in terms of time derivatives, 
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wherein    stands for the inner product of the corresponding tensors, the symbol dt  designates 

the time derivative which is indifferently the material or the partial time derivative as the system 

is, respectively, in motion or at rest. It is assumed that s is a concave function of the variables 

and that it obeys a general time-evolution equation which can be written in the form 

      0s s
td s .   J ,                    (4)  

 with σs its  rate of production per unit volume (in short, the entropy production) to be positive 

definite in order to satisfy the second principle of thermodynamics, ρ is the mass density of the 

nanofluid and the vector Js is the entropy flux, the dot between and Js denotes  the scalar 

product.  Let us define the temperature by T -1 = ∂s /∂e assumed to be independent of the 

dissipative flux  P, next,  we select the constitutive equation for ∂η/∂P as  assumed to be given 

by the linear relation  ∂s/∂P = -(γ1/ρ) P, where γ1 is a material coefficient depending generally 

on ρ and T, γ is positive definite in order to meet the property that s is maximum at local 

equilibrium, the minus sign in front of γ(T)P  has been introduced for convenience. Under these 

conditions, expression (3), can be written as 

                      
1

1 t td s T d     P D P P ,                                         (5)

            

after use  has been made of the energy conservation law  

     td e   P D ,             (6) 
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wherein D is the symmetric traceless velocity gradient tensor. At the actual order of 

approximation  and in absence of heat flux, the entropy flux is zero and the entropy production 

takes the form  

               1
1( ) 0s

tT d     P D P .                      (7) 

It is a bilinear relation in the flux P and the quantity represented by the two terms between the 

parentheses that is usually called the thermodynamic force X. The simplest way to guarantee 

the positiveness of the entropy production σs is to assume a linear flux-force relation of the form 

X = -μ1 P with μ1 a positive phenomenological coefficient, this procedure leads to the well-

known Maxwell model  

          1 2td   P P D ,                                                             (8) 

after one has put  γ1/ μ1=τ1 (relaxation time) and 1/Tμ1=2η (shear viscosity) and wherein  τ1   

and  η are positive quantities as μ1  and γ1 have been proven  to be positive coefficients. Letting 

τ1 vanish, one finds back Newton’s law P= - 2ηD. Although Maxwell’s relation is useful at 

short time scales (high frequencies), it is not satisfactory with the purpose to describe short 

length scales wherein non-localities play a preponderant role, for instance fluids in presence of 

nanoparticles. 

 In more complex materials like in nanofluids, fluxes of higher order should be 

introduced as extra states variables. Non-local effects, which are important in presence of 

nanoparticles, are elegantly accounted for, in the framework of EIT, by appealing to a hierarchy 

of fluxes P (2) (≡P),  P(3), ...  PN) where the second order tensor P(2) is identified with the usual 

viscous pressure tensor P, P(3) (a tensor of rank three) is the flux of the pressure tensor , …etc. 
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Here for simplicity , we limit our developments  to the use of  P and P (3)  as flux state variables  

but there will be no difficulty to include  higher order tensors as  P(4), …   P(N)  as done 

previously in the problem of non-local heat conduction wherein an infinite number of extra 

fluxes have been introduced [30-32].  From the kinetic theory point of view, P(2)  and P(3) 

represent the second and third order moments of the velocity distribution. Written in Cartesian 

coordinates and designating by f the distribution function, the fluxes P(2)
 and  P(3)  read as 

       (2) (3)  ,         ij ij i j ijk i j kP P C C f dc P C C C f dc     ,      (9) 

with C=c-v the relative velocity of  particles with respect to their mean velocity v..  

 Up to the third-order moment approximation, which is sufficient for the present purpose, 

the Gibbs equation generalizing expression (3) takes the form 

               
(3) 1 (3) (3)

1 2( , , ,...) (  ) (  )t t t td s e T d e d d       P P / P P / P P
,                (10) 

while the entropy flux is no longer equal to zero but is given by 

      (3)s  J  P P  ,                             (11) 

with β, a phenomenological coefficient allowed to depend on e and the volume fraction of the 

paticles but not on the flux variables. The entropy production (4) is obtained by substitution of 

dts and Js from (10) and (11) respectively and elimination of dt e via the energy balance (4), the 

result is  

                     1 (3) (3) (3)
1 2(  . ) (  ) 0s

t tT d d              P D P P P P P .   (12)                        
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The above bilinear expression in fluxes and forces (the quantities between parentheses) suggests 

the following linear flux-force equations 

                                        1 (3)
1 1  td T    P P =  D + P ,                                                  (13) 

                               (3) (3)
2 2  td    P P P ,                                   (14)                         

wherein γn ,β and μn (n= 1,2) are phenomenological coefficients allowed to depend in particular 

on the temperature and/or the relative volume fraction of the constituents. Relations (13) and 

(14) can also be viewed as time evolution equations for the fluxes  P and  P(3). Making use of 

(13) and (14), expression (12) of the entropy production reads as 

      (3) (3)
1 2 0s      P P P P ,                               (15)      

from which  follows that μ1≥ 0 and  μ2 ≥0  to satisfy the positiveness of the entropy production.. 

Identifying the quantities γ1 /μ1=τ1 and γ2/ μ2= τ2   with τ1 and τ2, the positive relaxation times 

of the pressure tensors P and P(3) respectively and, assuming  that 2 1  , as confirmed by the 

kinetic theory of gases,  equation (14) leads to 

      (3)

2




 P P .                 (16) 

Substitution of this result in (13) and making use of the identification  2η=(μ1 T)-1 yields  

                                               𝜏ଵ𝑑௧𝑷 + 𝑷 = −2𝜂𝑫 +
ఉమ

ఓభఓమ
∇ଶ𝑷.     (17) 

The last term accounts for the non-local effects related to the presence of nanoparticles. In a 

previous works [19,31,33], general relations between the  various  phenomenological 
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coefficients were obtained. Through dimensional analysis, it was inferred that 𝛽 = −𝜏ଵ𝜇ଵ and 

𝜇ଶ = ቀ
ఛభ

 ௅
ቁ

ଶ

𝜇ଵ, with L denoting a characteristic reference length, related to the mean free path l 

of the momentum carriers. Moreover, in a nanofluid (a two-component system), the reference 

length L will generally be dependent on the volume fraction of the nanoparticles, i.e. L=

𝐿(𝜑, 𝑙). At the simplest first-order approximation in both l and φ, one has L=  lφ. In virtue of 

the above results, we may write  

             

    2 2
1 2/ ( 0) ²l      .                  (18)                

This coefficient fulfills the following three requirements: it is positive definite, it has the 

dimension of a length to the square, it vanishes in absence of nanoparticles, i.e for φ=0. 

Substituting expression (18) in (17), one obtains the time-evolution equation of the pressure 

tensor P , 

        2
1 2 ² ²td l      P P D P ,     (19)           

 Introduction of the factor φ² in (18) is justified, because, as recalled above, a-priori all 

the phenomenological coefficients are φ-dependent as we are faced with a two-component 

system formed by a fluid and nanoparticles;  a dependence in  φ² is not new and was also shown 

in the constitutive equation of the pressure tensor in polymer blends (e.g. [27,34]). It is the 

introduction in (19) of the factor φ which accounts explicitly for the dependence of the 

constitutive equation on the nanoparticles; for φ=0 and at steady states expression (19) reduces 

to the classical Newton law  𝑷 = −2 𝜂 𝑫  for a Newtonian fluid. 
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 Relation (19) is the key one of our formalism and is the equivalent of the Guyer-

Krumhansl [35] equation used to describe nonlocal effects in heat transport wherein the flux 

variable P is replaced by the heat flux vector q [19-21]. 

  In the next section, we will determine the dependence of the effective viscosity of the 

nanofluid with respect to the size of the nanoparticles. 

   

 

3. Effective viscosity of nanofluids 

 After application of the spatial Fourier transforms 
^

.( , ) ( , ) it t e d
 


  k rP k P r r  and

^
.( , )   ( , ) it t e d






  k rv k v r r  to relation (19), with k designating the wave-number vector, r the 

position vector and v(r,t) the vectorial  velocity field, one is led to the following time-evolution 

equation of the Fourier transformed fluxes 

    
^ ^ ^ ^

1 ( ) ² ² ²sym
td i l k     P P k v P .                                       (20)    

wherein, k²=  k.k. and (k v)sym is the symmetric traceless dyadic product of the vectors k  and v.  
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 Restricting the analysis to steady states, which is sufficient for our purpose to determine 

the effective viscosity in terms of the volume fraction and size of the nanoparticles, expression 

(20) writes as  

                                                
^ ^

(1 ² ² ²) ( )syml k i   P k v  ,                                                      (21) 

suggesting that the effective viscosity of the nanofluid is given by 

   

 
1

(1 ² ² ²)eff l k
 





,   (22)                           

with η designating the viscosity of the nanofluid when the size effects, modelled by the 

corrective term in 1/(1+l²φ²k²) are ignored. At relatively small concentration of the 

nanoparticles, it is widely admitted (e.g.[1-8]),  that η is either a linear or a quadratic function 

of the volume fraction φ of dispersed particles. As our main objective is to focus on the study 

of size effect, we shall, as a first approximation, take for η the simplest φ-dependence, namely 

the linear law  

                                          η= ηf (1+αφ),                                                                       (23) 

wherein  ηf  is the viscosity of the host fluid and  α the enhancement coefficient, in Einstein’s 

classical theory of suspensions [11], this coefficient is a constant  given by  α= 2.5. This is the 

value selected in the forthcoming of the present work. It is important to realize that a 

phenomenological description as Extended Thermodynamics cannot be used to determine the 

complete dependence of the transport coefficients with respect to the particles density, or 

temperature. This is in particular true for the viscosity η versus particle volume-fraction density, 

which must resort either from experience, or from another theory, say like here, Einstein’s one. 
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 An important feature that distinguishes the viscosity of nanofluids from classical 

particles dispersion in fluids is the effect caused by the presence of an amorphous overlayer 

encapsulating the nanoparticles [22-25, 32, 36-39]. As a consequence of  liquid layering, the 

radius r of the particles will  be modified from  r to r+h and the  volume fraction  of the particles 

from φ to an effective volume fraction φ(1+ h/r)³ with h standing for the thickness of the 

surrounding layer. 

 Selecting the wave number k in expression (22) is a delicate task. Indeed, k will be 

related to a characteristic length that takes into account the presence of nanoparticles. Here we 

find it rather naturel to take r+h as reference length. A similar attitude is followed in  works 

about the effect of nanoparticles’ dispersion  on the heat conductivity  coefficient of  nanofluids 

and nanocomposites [31,39-41]. Accordingly, the wave number k will therefore be given by 

                 𝑘 =
ଶగ

௥ା௛
 .                          (24)                                    

 To summarize, the final expression of the effective viscosity of the nanofluid will take 

the following form obtained by combining (22), (23) and (24),  

        
4

1 2.5 (1 / )³

1 4 ² ²(1 / ) ( ² / ²)eff f

h r

h r l r

 
 
 


 

,                                      (25) 

                 

for φ = 0,  ηeff  reduces to  ηf  as expected.  In the next section, we apply the result (25) to the 

problem of dispersion of lithium nanoparticles in liquid argon and alumina nanoparticles in 

water, respectively. 

4. Applications 
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4.1 Li nanoparticles dispersed in liquid Ar 

 This example has been chosen in order to compare with a recent analysis by Rudyak 

and Krasnotlutskii [42] and to provide an answer to the controversial question of increase or 

decrease of nanofluid viscosity with the particle size. The nanoparticles are assumed to be rigid 

spheres uniformly dispersed in the fluid carrier, the temperature is fixed at T= 300 K and 

volume fraction of particles is small, ranging from 0.01 to 0.10. As our aim is not to find the 

best dependence of the viscosity with particle concentration, we have selected for  it the simplest 

linear law with the coefficient α= 2.5 as suggested by Einstein [11] rather than more 

complicated laws with ad hoc values [1, 38] The radius r of the nanoparticles Li is ranging from 

1 to 4 nm. As for the mean free path l, we start from Matthiessen‘s rule stating that 1/𝑙 =

1/𝑙஺௥ି஺௥ + 1/𝑙௅௜ି௅௜ + 1/𝑙஺௥ି௅ , with 𝑙஺௥ି஺௥, 𝑙௅௜ି௅௜, 𝑙஺௥ି௅௜  designating the mean free path 

associated to collisions between Ar-Ar,  Li-Li and Ar-Li molecules respectively. Referring to 

the kinetic theory [43], the mean free path is inversely proportional to the number of particles 

per unit volume, it follows that the main contribution will arise from the term  1/lAr-Ar . We have 

checked numerically that by including the other contributions of Matthiessen’s law, the  

modifications are minute without influence on the final results, we select therefore as a first 

approximation l=lAr-Ar. The mean free path  is found to be given by  𝑙஺௥ି஺௥ = ൫ඥ3/2 − 1൯𝑟஺௥ ≈

0.043 nm, after taking for 𝑟஺௥ the Van der Waals radius, 𝑟஺௥= 0.19 nm. The value of lAr-Ar takes 

into account the radius of an interstitial sphere that would fit between closely packed spheres 

of Ar without distorting the structure explicitly: this particular value has been selected because 

of the strong packing of the Ar molecules considered in [42] to which our results will be 

compared. Since no value for the thickness h of the boundary layer surrounding Li particles in 

Argon is found in the literature, we have assumed that h=0.2 nm, which is of the order of 
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magnitude of the Van der Waals radius of Ar, which, by the way, lies within the range of values 

proposed for other fluids [44-49]. 

 The dependence of the relative viscosity ηeff/ηf   on the volume fraction of Li particles is 

shown in Fig.1, assuming that the radius of Li nanoparticles is r= 1 nm, the thickness of the 

bounding layer h=0.2 nm and the mean free path in liquid Ar is l=0.043nm. The results are 

compared with experimental data and with Einstein’s model [11], which accounts only for the 

volume fraction of dispersed particles.  

  
 
Fig. 1: Relative effective viscosity as a function of the volume fraction of Li nanoparticles with 
r=1 nm in 300 K liquid Argon, comparing our model (Eq. (25)) with Einstein’s relation (Eq. 
(1), dotted line) and data from [42] (full circles) 

  

  Numerical simulations indicate a drastic increase of effective viscosity with the volume 

fraction of nanoparticles in full agreement with the theoretical models developed earlier. This 

Eq. (25) 
Eq. (1) 
Data from [42] 
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result may be interpreted by the fact that by increasing the volume fraction, one increases the 

interfacial surface between particles and fluid giving rise to a larger resistance to deformation, 

whence a higher viscosity. Our results are also shown to be in good accord with these obtained 

by Rudyak and Krasnolutskii [42] using a molecular dynamics method. It is seen that for 

volume fractions higher than 0.06, the agreement between the model and the data from [42] is 

less satisfactory, which can be understood by recalling that Einstein’s model is only valid for 

small volume fractions.  

  Our main objective remains the study of the behavior of viscosity as a function of the 

particle size. In that respect, we have analyzed the dependence of the viscosity versus the size 

of the Li particles for two different values of the volume fraction: φ=0.02 and 0.04. It is seen 

in Fig. 2 that viscosity is decreasing with increasing dimensions, in accord with Rudyak and 

Krasnolutskii [42].This is a confirmation that, at least for the couple Li-Ar, a reduction of 

viscosity is expected with increasing particle size. This may be explained because by 

augmenting the dimensions of the particles, one decreases the interface between particles and 

host fluid whence a weaker resistance to deformation and as a consequence, reduction of 

viscosity. It is worth mentioning that the dependence of viscosity with particles’ dimensions is 

weak as soon as the diameter exceeds 4 nm, meaning that for large particles, viscosity is 

independent of the size of dispersed particles, as confirmed by the next example.  
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Fig. 2:  Relative effective viscosity as a function of the radius r of Li nanoparticles in 300 K 

liquid Argon, comparing our model (Eq. (25)) with data from [42] for two volume fractions: 

φ=0.02 (black solid line) and φ=0.04 (red dotted line). Full circles and triangles represent the 

data from [42]. 

 
4.2 Alumina Al2O3 particles in water  

 For alumina nanoparticles dispersed in water, it is found [49] that the thickness of the 

boundary layer around Al2O3 particles is roughly h = 4 nm. The mean free path l is taken to be 

that of the average distance between water molecules [50], i.e. l = 0.31 nm. In Fig. 3, the 

theoretical effective viscosity of the nanofluid is compared to experimental values [51] for two 

different radii of Al2O3 particles: r=4 and 21.5 nm. For the sake of completeness, we have also 

drawn the results provided by Einstein’s theory. It is still shown that viscosity is increasing with 

increasing volume fraction and decreases with larger size. The latter is confirmed by the results 

   Data from [42] 𝜑 = 0.04           Model; 𝜑 = 0.04 
   Data from [42] 𝜑 = 0.02           Model; 𝜑 = 0.02 
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reported in Fig. 4, where we have represented the dependence of the relative effective viscosity 

on the particle radius. It is also worth noting that our model fits satisfactorily the few 

experimental data available in the literature, the less good results for the largest volume fraction 

may be explained by the use of Einstein’s model. 

 
 

 
Fig. 3: Relative viscosity as a function of the volume fraction of Al2O3 nanoparticles in water   
at ambient conditions, comparing our model (Eq. (25)) with Eq. (1) and experimental values 
[50] for two nanoparticles radii: r=4 nm and 21.5 nm. 
 

     Eq. (25); 𝑟 = 4 nm 
     Eq. (25); 𝑟 = 21.5 nm 
     Eq. (1) 
     Experiments [50]; 𝑟 = 4 nm 
     Experiment [50];  𝑟 = 21.5 nm 
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Fig. 4: Relative effective viscosity as a function of the radius of Al2O3 nanoparticles in water at 
ambient conditions, comparing our model (Eq. (25)) with experimental values [50,51] for three 
different volume fractions of 𝜑 = 0.006, 0.014 and 0.05. 
 

5. Summary and final comments.  

 Our main purpose is to propose a new analytical expression for the effective viscosity 

of dilute hard sphere nanoparticle suspensions by using a theoretical thermodynamically-based 

model.  In particular, it was also our aim to shed some light on the controversy between people 

who assert that viscosity decreases with the dimensions of the nanoparticles and their detractors 

who claim the opposite. Our approach confirms the first option. This was achieved by appealing 

to an original model, wherein use was made of the following ingredients: 

 

Eq. (25); 𝜑 = 0.006 
Eq. (25); 𝜑 = 0.014  
Eq. (25); 𝜑 = 0.05 
Experiments [50]; 𝜑 = 0.006 
Experiments [50]; 𝜑 = 0.014 
Experiments [51]; 𝜑 = 0.05 
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 Einstein’s model for the dependence of the viscosity with respect to the volume 

fraction of solid particles is taken for granted. 

 Use of higher order moments of the stress tensor in the framework of EIT to account 

for the smallness of particles. 

 The presence of a hydrodynamic layer around the nanoparticles is assumed. 

 Coupling of all three previous effects: volume fraction, particle’s size and liquid 

layering. 

 The main result of our analysis is embedded in relation (25). Accordingly, it is found 

that the effective viscosity of nanofluids increases with the volume fraction of nanoparticles 

and decreases with particle’s size. It is interesting to notice that an opposite behavior was 

observed in the case of the thermal conductivity of nanocomposites which decreases with 

volume fraction but increases with increasing size of nanoparticles (e.g. [31]). Our 

thermodynamics modelling of the size effect on the viscosity in the mixture Li-Ar is in 

agreement with the results obtained by Ruydak and Krassnolutskii [42] based on molecular 

dynamics simulation and experiments. Our approach is also in accord with the data reported for 

the more classical nanofluids, involving alumina particles dispersed in water [48, 51]. 

 It should be kept in mind that the present approach is based on a phenomenological 

thermodynamic formalism referred to as Extended Irreversible Thermodynamics (EIT). Like 

any other macroscopic theory, EIT is not sufficient per se to provide a complete relationship 

between viscosity and the volume fraction of nanoparticles and/or to account for the formation 

of an interfacial layer at the fluid-particle interface. These data have to be borrowed from other 

formalisms, like Einstein’s theory, molecular dynamics simulations, statistical physics, kinetic 

theory or experiences. Here, our first objective was to answer the question of the role of 
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particles’ size on the nanofluid viscosity, we have seen that in that respect, EIT is able to provide 

a sound estimate. 

  In the future, it is expected to check to which extent the results are modified by using 

more elaborate models than Einstein’s one to describe the nanoparticles density dependence. In 

that perspective, it would be interesting to examine the influence of approaches like these of 

Krieger and Dougherty [9] or Batchelor [12] among others.  
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