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Generally, > 40% of the useful energy (cooling engine and exhaust gases) are wasted by a biogas power plant
through the cooling radiator and the exhaust gases. An efficient way to convert this waste heat into work and
eventually electricity is the use of an organic Rankine cycle (ORC) power system. Over the last few years,
different architectures have been widely investigated (subcritical, wet expansion and trans-critical). Despite the
promising performances, realistic economic and technical constraints, also related to the application, are re-
quired for a meaningful comparison between ORC technologies and architectures. Starting from the limited
literature available, the aim of the present paper is to provide a methodology to compare sub-critical, trans-
critical and wet expansion cycles and different types of expanders (both volumetric and turbomachinery) from
both technical and economic point of view, which represent one of the main novel aspects of the present work. In
particular, the paper focuses on the thermo-economic optimization of an ORC waste heat recovery unit for a
500 kWe biogas power plant located in a detailed regional market, which was not investigated yet. By means of a
genetic algorithm, the adopted methodology optimizes a given economic criteria (Pay-Back Period, Net Present
Value, Profitability Index and Internal Rate of Return) while respecting technical constraints (expander lim-

itations) and thermodynamic constraints (positive pinch points in heat exchangers, etc.).
The results show that optimal ORC solutions with a potential of energy savings up to 600 MWh a year and
with a pay-back period lower than 3 years are achievable in the regional market analysed.

1. Introduction

Nowadays, the increase of energy consumption has led to concerns
due to the strong environmental impact in terms of global warming and
pollution. The EU emanated several directives aimed to reduce the
environmental impact of our society by fostering the development of
advanced and effective energy efficiency policies [1].

In this context, recovering and reusing the low-grade heat wasted by
industrial processes represents an effective way to increase the overall
performance of a process and, consequently to reduce the primary en-
ergy consumption and the carbon footprint. Generally, the so-called
Waste Heat Recovery (WHR) can be applied to any process where a heat
source with a temperature higher than 80-100 °C occurs [2].

Among others, the Organic Rankine Cycle (ORC) technology is a
promising technique to produce electricity by exploiting this low-grade
heat. Like a conventional steam power plant, an ORC cycle is a Rankine
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cycle in which an organic substance (usually synthetic refrigerants or
hydrocarbons) is adopted as working fluid. A strong interest on this
technology has been raised over the last few years due to the wide
range of possible applications. As for instance, Campana et al. [3] es-
timated an installation potential of 2705 MW, in Europe, which would
lead to about 21.6 TWh, of electricity production with a corresponding
reduction of greenhouse gas emissions (GHG) of about 8.1 million.
Consequently, a lot of efforts have been put by researchers and en-
gineers to investigate deeply the performance and benefits of this
technology [4-8].

Generally, the investment cost of an ORC system is in the
1200-9500 USD/kWe range, but, as highlighted by [9-10], the specific
application, the type of heat sources available and the ORC architecture
strongly influence the actual values. Moreover, the specific market
context and the investment policy adopted assume a relevant role when
a potential investment is assessed [11]. Notwithstanding, a lack of
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Nomenclature

A area [m?]

AD anaerobic digester

B capacity parameter [W] or [m?]
Bo boiling number [-]

C cost [€]

G, isobaric specific heat [J/kg/K]
CHP combined heat and power

CF cash flow [€]

D correlation coefficient [-]

Dy hydraulic diameter [m]

E exergy [kJ/kg]

f friction factor

F factor [-]

h convective heat transfer coefficient [kW/(m?K)]
H enthalpy [kJ/(kg)]

i index

Inv investments [€]

IRR interest rate of return [-]

j index

k thermal conductivity [W/mK]
K correlation coefficient [-]
L characteristic length [m]
LCOE levelized cost of electricity
LHV low heating value [J/kg]
m mass flow rate [kg/s]

NI Northern Ireland

NPV net present value [€]

Nu Nusselt number

ORC organic Rankine cycle

P pressure [bar]

P pitch [m]

PBP pay back period [-]

PEF primary energy factor [-]
PI profitability index [-]

Pr Prandtl [-]

Q heat transfer rate [W]

r discount rate [-]

R thermal resistance [K/W]
Re Reynolds [-]

SP size parameter [-]

T temperature [°C]

U heat transfer coefficient [W/(m?K)
v volumetric flow rate [m3/s]
VC volume coefficient [m3/J]
VR volume ratio [-]

w energy [kWh]

WHR waste heat recovery

1% power [W]

X state of the fluid at the exhaust of the evaporator
y time [year]

Greek

B Chevron angle [°]

A difference

€ effectiveness [-]

1 efficiency [-]

u dynamic viscosity [kg/m/s]
Indices

aux auxiliary

b bulk

el electrical

eV evaporator

ex exhaust

exp expander

gas gas

is isentropic

LMTD  log mean temperature difference
net net

pp pump

sf secondary fluid

su supply

w wall

wf working fluid

information is still present from an economic point of view taking into
characteristics of the market in which the system is located in, and it
represents a paramount aspect for the diffusion of this technology.
One of the most promising applications for ORC systems is re-
presented by biogas power plants [12-15]. Generally, biogas is pro-
duced locally by the anaerobic digestion (AD) of organic substrates
coming from organic waste streams, e.g. biological feedstocks from
agricultural sectors [13], and it can be used as renewable fuel for
transports (after a cleaning treatment) or to produce electricity by
means of CHP engines (biogas power plants, or AD-CHP) [14]. As for
other biofuels, biogas is an important priority of the European energy
policy since it is a cheap and CO5-neutral source of renewable energy,
which offers the possibility of treating and recycling a wide range of
agricultural residues and products. Therefore, an impressive develop-
ment of AD-CHP plants occurred over the last few years and > 17,000
plants were operational in Europe in 2014 with a total installed capa-
city of 8.293 GW, [15]. Generally, only 40% of the biogas energy
content is transformed into electricity [16], while about 25% is used for
the internal parasitic load and for heating the digester to keep the
biological temperature required to allow the chemical processes. The
remaining part is generally released into the atmosphere in form of heat
by the exhaust gas (high temperature, > 350 °C) and by the radiators
(low temperature, < 120 °C). An organic Rankine cycle system might
be used to exploit part of this heat to produce further electricity,

increasing the overall performance of the AD-CHP system.

Despite the amount of work done to analyse the ORC systems, in-
cluding the direct use of biogas as thermal source of the ORC system
[13,16,17-20], the WHR application for biogas plant has not been fully
investigated yet. As for instance, Yangli et al. [14] performed a tech-
nical investigation of subcritical and supercritical ORC systems which
exploit the heat rejected from a biogas CHP engine, obtaining ORC
thermal efficiencies of 15.51% and 15.93% for subcritical and super-
critical cycles respectively. The authors concluded their work high-
lighting that a thermo-economic analysis should be carried out to detect
the configuration which guarantees the best repayment period. At this
regard, Sung et al. [15] performed a thermo-economic analysis of a
biogas micro-turbine system coupled with a subcritical ORC cycle with
a turbine as expander. The analysis, limited to one working fluid (n-
Pentane), is mainly focused on partial load operating conditions of the
biogas micro-turbine. Notwithstanding, the authors demonstrated that
the introduction of a bottoming ORC provides a net gain from an eco-
nomic point of view, despite the analysis was limited to only one eco-
nomic parameter (Net Present Value, see Section 3.3).

Therefore, a lack of thermo-economic analyses on WHR-ORC for
biogas power plant applications is still present. In this context, the aim
of the present paper is to extend the analysis to a wider range of po-
tential ORC configurations (namely subcritical, trans-critical and wet
expansion cycles [8,21-22]) and working fluids. Different AD-ORC
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configurations have been analysed and both volumetric and rotational
expanders have been compared for each case study, taking into account
their intrinsic constraints. The economic performance of the invest-
ments has been investigated considering a specific market context and
introducing several economic indexes — mainly Net Present Value
(NPV), Pay Back Period (PBP), Profitability Index (PI) and Internal Rate
of Return (IRR) [11].

2. Waste heat recovery for biogas power plant through an ORC
power system

2.1. Organic Rankine cycle power system technology

ORC power systems have been used to generate electricity from
waste heat for several decades [23]. Apart from the standard sub-cri-
tical ORC architecture, other configurations have been investigated,
such as wet expansion [21,24-25] and trans-critical cycles [26] (Fig. 1).
Superheating, quality and specific approach are three parameters that
are useful to define the thermodynamic state of the fluid at the inlet.
Table 1 summaries the advantages and disadvantages for each archi-
tecture of ORC power system.

Generally, wet expansion and trans-critical cycles present higher
energy and exergy efficiencies than the standard sub-critical ORC, due
to the better matching of the temperature profiles in the evaporator, as
demonstrated in [7]. However, wet expansion cycles has high mass
flows for a given installed power (greater piping dimension) and it
requires an expander able to handle two-phase flows, leading to lim-
itations in the expander choice and affecting the overall performance.
On the other hand, the trans-critical cycle requires higher pressures
than the wet expansion and sub-critical cycles. Although more efficient,
it leads to higher costs for the evaporator and the expander.

In order to understand the economic suitability of a system for a
specific application, it is necessary to perform a full thermo-economic
analysis [14]. Thermo-economic or techno-economic optimization ap-
proaches comparing different ORC architectures are rather scarce in the
scientific literature [26-28]. Lecompte et al. [29] performed a thermo-
economic optimization between the three architectures, while ac-
counting for practical constraints related to the expansion device. This
paper shows the interest of the wet expansion cycle but no evaluation of
performance of both a turbine and a volumetric expander is carried out.
Furthermore, the evaporator super-heating for the subcritical ORC and
the trans-critical pressure are not optimized and are assumed constant.
One of the main novelty of this paper is that these two parameters are
free to vary and are optimized to achieve the best system performance
according with the objective function chosen.

In summary, the challenge is to devise an ORC design strategy
flexible enough to compare different cycle architectures and expander
technologies (volumetric and turbines) based on thermo-economic
criteria. This paper fills up this gap and applies this methodology to an
ORC system coupled with a biogas power plant.

Heat source
Heat source T Working fluid
Working fluid Heat sink
Heat sink
tSuperheating

Suality
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Table 1
Advantages and disadvantages for each architecture of ORC power system.

Sub-critical Wet expansion Trans-critical

Advantages — Mature — High exergy — High exergy
- Low efficiency efficiency
investment — Good match - Good match with
— Low pressure with heat source heat source profile
profile
Disadvantages — Low exergy — Expander must — High pressure
efficiency tolerate wet — Large volume
expansion ratio’s (several
— High flows stages of expansion

— Larger piping,
exchangers and
expander

necessary)
— Higher investments

2.2. Anaerobic digester applications

Over the last few decades, a strong development of AD biogas power
plant occurred in Europe: about 17,240 biogas plants have been in-
stalled [19] with a total installed capacity of 8.3 GW,. Generally, an
AD-CHP system uses the biogas produced by the AD system (typically
several tanks where the biological reactions occur) as a fuel for a biogas
engine to produce electricity and thermal energy. A lot of configura-
tions has been developed and built; since the focus of this paper is on
ORC applications, the complete technical description of AD-CHP sys-
tems is demanded to [18-20].

On the other hand, AD-CHP sector represents a promising applica-
tion for ORC system since about 29% of the thermal heat available
(high/medium grade) is currently wasted. This heat might be recovered
and reused by an ORC system for electricity production, increasing the
overall performance of the system. ORC systems coupled with AD-CHP
may have a potential output between 5000 and 7000 GWhe/year only
in Europe.

2.2.1. Local market context

The local biogas power plant market in Northern Ireland (NI) has
been used in this paper to assess the economic suitability of ORC sys-
tems for AD-CHP plants. Generally, Ireland is characterised by a great
potential in terms of biogas production, mainly thanks to the high
contribution of agriculture (e.g. about 10,000 km? of land in NI are
devoted to agricultural activities). Only in Northern Ireland, the ex-
ploitation of the organic resources available (estimated to be between
207 and 500 thousands of tons, including municipal, commercial and
industrial wastes) might bring to a potential coverage between 5% and
23% of the total electric energy demand [30,31]. Thanks to this positive
background (and to the incentives put in place to support the AD in-
dustry), the number of AD plants has grown exponentially over the last
few years, as shown in Fig. 2. Table 2 reports the current (April 2016)
and potential AD installations in Northern Ireland.

Approach
Heat source eF

Working fluid
Heat sink

a) 8

//

b)

S

Fig. 1. T-s diagram for sub-critical cycle (a), wet expansion cycle (b) and trans-critical cycle (c).
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Fig. 2. Operative biogas power plants in Northern Ireland [33].
Table 2 snnngfuuns nngfuuns
Biogas production in Northern Ireland [30-33] Evaporator
Units Value Expande C:/i?:(;;”f’ﬁd
= = Heat sink
AD Plants (operating/planned) - 42/86 |
Total installed capacity (2016) MWe 23.99 Condenser
Feedstock demand (2016) tpa/y 479,950 — —— = P =
Biogas production capacity (2016) Nm® 31.74 (millions)
Potential biogas capacity Nm3 133-585 (millions) Fig. 3. Simplified ORC power system configuration.
Potential electric energy capacity GWh,/y 458-2020
Potential heat energy capacity GWhy/y 655-2885

In order to investigate the economic suitability of the ORC tech-
nology in the AD-CHP sector, a medium size typical AD plant in
Northern Ireland was used as Ref. [31-33]. The plant has a nominal
installed power of 500 kWe with a conversion efficiency of 42% (Eq.
(1)) and a feedstock consumption of 16,000 tons/year (see Section 3.5).

Wer

VB lvaa——
(m'LHV)biogas

@

The income from the electricity produced by the AD consists of two
components: (i) the selling electricity price, which is generally a fixed
feed-in tariff typically guaranteed for 20 years and, (ii) the Northern
Ireland renewable energy subsidies, which generally depend on the size
of the plant [34]. In the present work, the feed-in tariff is assumed equal
to €27.1/MWh: €5.42/MWh for the basic feed-in tariff, €10.73/MWh
from the Renewable Obligation Certificates and 10.39€/MWh which is
added to the feed-in tariff to promote AD power plants. Finally, trends
of electricity prices and inflation rates have been considered in ac-
cordance with [35].

3. Methodology
3.1. Thermodynamic model

A steady-state model of a non-regenerative ORC (Fig. 3) has been
developed in Matlab®. The thermo-physical properties of the fluids are
retrieved from CoolProp [36] and the model is used to determine the
optimal cycle (subcritical, wet expansion and trans-critical) over a wide
range of conditions.

The approach and the main assumptions are described in the fol-
lowing sections.

3.1.1. Working fluid

The working fluids considered in this paper are R134a, R245fa,
Butane, n-Pentane, Ethanol, R1233zd(E) and R1234yf, which are
standard fluids for ORC power systems [37,38]. Fig. 4 presents their
respective T-s diagrams. For each fluid, the maximum degradation
temperature (thermal stability) is imposed as a constraint to limit the
temperature at the exhaust of the evaporator.

The comparison between different refrigerants, which represents an
added value of the present study, is paramount for a correct system
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Fig. 4. T-s diagram for R134a, R245fa, Butane, n-Pentane, Ethanol, R1233zd(E) and
R1234yf.

design and optimization and, therefore, future work will be aimed to
extend the range of fluids analysed. Moreover, it is important to state
that other criteria, such as safety (flammability, toxicity, availability,
etc.), are not directly considered in this thermo-economic study for the
sake of simplicity, but they should be taken into account at the final
stage.

3.1.2. Expanders

One of the main novelty of this paper compared to the literature
(e.g. [4]) is that two different expander technologies are investigated:
the turbine and the screw expander. Among the volumetric expanders,
only the screw expander case is investigated because of the lack of
available data on the cost of other technologies [39].

The isentropic efficiency of the expander, defined according to Eq.
(2), is supposed to be constant and equal to 75% for both turbine and
screw expanders. This hypothesis is assumed valid since it is in line with
what reported in the literature [4,7,40,41].

"Vexp,el

Cexpis = o, ~
m (hexp,su_hexp,ex,is)

(2)
Some practical constraints have been implemented to make sure the
expander works with this efficiency:

o Turbine: the size parameter (SP, Eq. (3)) — a paramount value pre-
dicting the efficiency penalties related to flow compressibility and/
or small blade dimensions — must be between 0.2 m and 1 m, while
the volume ratio (VR, Eq. (4)) must be lower than 50 [42]. Since a
turbine presents difficulties to handle wet expansion, the ORC model
imposes a minimum superheating of 1K during the whole expan-
sion.

~1/2

SP = Vexp,m

- 1/4
AH 3

VR = Vexp,ex
Vexp,in (4)

® Volumetric expanders (i.e. screw): the Volume Coefficient (VC, Eq.
(5)) defines the ratio of the outlet volumetric flow divided with the
output power. It is constrained between 0.25 and 0.6 m3/MJ [7].
Moreover, the volume ratio (Eq. (4)) is limited to 5 for one screw
expander [43]. When the volume ratio is higher than 5, the ORC
model allows the connection of multiple screw expanders in series to
limit the volume ratio of each machine to a maximum of 5.
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Ve Vexp,ex
Wesp )
3.1.3. Pump

The efficiency of the pump is calculated as shown in Eq. (6). In order
to avoid cavitation, a sub-cooling of 5K is set [44].

m(HPp,ex_ pp,su)
Ep = W
ppel

(6)

3.1.4. Heat exchangers

The heat exchangers are modelled considering the global thermal
conductance of a given zone of a heat exchanger (AU), calculated by
combining the thermal resistances of the secondary fluid (sf), the
working fluid (wf) and the inner wall (Eq. (7)).

-1
AU = ( L + Rwall)
)

Ashy *

Considering that the aim of the present work is to investigate the
system performance in a preliminary stage of the design, when detailed
information (e.g. geometrical constraints) are not available, several
simplifications and assumptions are required. Firstly, the wall thermal
resistance is assumed to be negligible, due to the high conductivity of
the common materials used in ORC heat exchangers [44]. Therefore,
only the working fluid and secondary fluid convective heat transfer
coefficients h are computed by means of correlation based on the
Nusselt number.

Awf h wf

k
h = Nu—
“T ®)

Regarding the single-phase turbulent flow, the Gnielinsky equation
[45] can be used to calculate Nu, as shown in Eq. (9):

_ (f/8)-(Re—1000)Pr

T 1+ 127(F/8)03(Pr¥3-1)

0.5 < Pr < 2000
3-10° < Re < 5-10°

©)

where Re and Pr are the Reynolds and Prandtl numbers respectively,
while f is the friction factor, which can be calculated using the Petukov
equation [46].

Boiling and condensation may occur on the refrigerant side de-
pending on the type of ORC cycle analysed. Egs. (10) and (11) show the
Nusselt correlations for two phases processes, i.e. evaporation (Eq.
(10)) and condensation (Eq. (11)) [47-48]:

—0.04 —2.83 p 008277 \O6I
Nu = 2-8£ (E—ﬁ) Re(o‘an (5-5) )Bo°-3Pr0-4
Dy, 2 (10)
P 283 —4.5 (0_74L—0.23(£_ﬁ)1.4x)
Nu =11.2— (——ﬁ) Re Dy 2 Pr1/3
Dy 2 a1

where f} is the chevron angle, Re the Reynolds number, Pr the Prandtl
number, Dy, is the hydraulic diameter, Bo is the boiling number, P is the
pitch, p is the dynamic viscosity, k is the thermal conductivity, Cp is the
specific heat.

The heat transfer in supercritical conditions is affected by several
phenomena, in particular when the pseudo-critical temperature (i.e. the
temperature where the maximum of the specific heat occurs) is crossed
[49]. The strong variation of the properties in this region may lead to
several effects related to the fluid acceleration, high specific heat layer,
buoyancy (for vertical channels), etc., which can deteriorate or enhance
locally/globally the heat transfer [49]. In order to reproduce these
phenomena, several authors introduced correction factors in the Nusselt
correlation [50-52].

Despite the wide utilisation of the above equations, most of them
are only partially validated (range of flow, geometry, etc.) with only
one working fluid and only valid for a given type of heat exchanger [4].
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Moreover, they require the knowledge of the fluid conditions at the wall
of the pipe, which means that information coming from detailed ana-
lyses (i.e. CFD) are required. Furthermore, an accurate modelling re-
quires the detailed geometry of the heat exchanger, generally not
known during the preliminary stage of the design at which this paper is
aimed at.

No other accurate general correlations exist for predicting the heat
exchange coefficient of refrigerant in different states (liquid, vapor,
evaporation, condensation, trans-critical), as shown in [53]. Con-
sidering that the heat transfer coefficient on the working fluid side is
much higher than the heat transfer coefficient on the secondary fluid
side in most of the applications [54], the working fluid contribution is
neglected in Eq. (7). It is important to state that this assumption can be
considered valid only during a preliminary stage of the system design,
when the analyses are focused on determining which size of the system
must be targeted, depending on the specific objective function chosen.
During the subsequent design stage, when the optimisation procedure
must get into each component to define their specifications, a detailed
analysis is required.

In accordance with the above considerations, typical values [48] of
the global heat transfer coefficient in the range of 3000-10,000 W/
(m2K) and 500-2500 W/(m?K) have been obtained for the condenser
and the evaporator respectively. The surface area required by each zone
(i) of the heat exchangers is then computed by using the LMTD method
for each zone (liquid, two-phase or vapor) (Eq. (12)).

I
(U ATymrp)

i

12)

The Logarithmic Mean Temperature Difference (ATpygp) is eval-
uated as shown in Eq. (13), where AT; and AT, are the temperature

Energy Conversion and Management 157 (2018) 294-306

differences between the two streams at each side of the heat exchanger.
AT—-AT

ATiymrp = #
n(33)

ATy (13)

The difference between the inlet and outlet temperature of the
secondary fluid in the condenser (glide) is set to 10 K, while the cold
sink supply temperature is equal to 20 °C. The secondary fluid in the
condenser is water, cooled by air using a cooling tower (Section 3.5).

3.1.5. Cycle

The layout of the ORC system is depicted in Fig. 3, while Fig. 5
presents the solver architecture of the ORC model.

The net power generation of the ORC is calculated using Eq. (14),
where the pump and auxiliary consumptions are considered.

"Vnet = Wexp_"{/pp_%ux 14
Then, the energy efficiency is defined by Eq. (15).

Whet
n=—=

Qu 15)

The model assumptions and the parameter ranges used in the pre-
sent work are listed in Table 3. In particular:

— Each process is considered in steady-state regime. Potential and
kinetic energies of the flowing fluid are considered negligible.

— Pressure drops and heat losses through pipe lines are neglected.

— The maximum pressure is limited to 3 times the critical pressure of
the selected fluid (for the robustness of the algorithm) while the
maximum condensation temperature is limited to 100 °C which is
the case of the majority of ORC power systems [38].

Parameters

Inputs | |

Ouputs

*Eexp,is = Epp,is . AUcd,[ S AUeU,i
AT, { } }
>
P ORC model
mhtc,ev = >
PP eyex P
ev e — — — — - —
Thtf,ev,su .
—_—| Mhatrev EV | Kev EXP Py
e
Thtf,cd,su Thtf,eu,su m .
= — =L - —» Wexp W,
— A\ - - - L
T} o Ve \ I ' | 2
1itf,cd,ex P i
' ’ * | hexp,ex .
Mptf,cd ¥ \ A4 o
P CPPY S
* Pcd hcd,ex Thtf,cd,ex
AToh,ev — e  —
.
PP Pey CD Mhptf,cd
PPe\' " Pe\' . - ——
i i Thtf,cd,su ATSC
&2 —_—
cd T |
Pev pr ¥ ch*

Fig. 5. Inputs, outputs, parameters and solver architecture of the cycle model. The parameter x represents: (i) the over-heating for sub-critical cycles, (ii) the quality for wet expansion

cycles and (iii) approach (Fig. 1) for trans-critical cycles.
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Table 3
Optimization parameters and model assumptions.

Energy Conversion and Management 157 (2018) 294-306

Optimization parameters

Minimum
Evaporator pressure [bar]
Condenser pressure [bar]

Inlet expander Over-heating (Sub-critical) 0
Approach (Wet expansion) 0
Quality (Trans-critical) 0

Evaporator pinch-point [K] 1

Fluid (cost, Tqegradation)

Architecture

Fixed parameters
Heat source fluid mass flow rate [kg/s]

Heat source supply temperature [°C] 300
Condenser glide [K] 10
Heat sink fluid supply temperature [°C] 20

Sub-cooling [K] 5

Expander isentropic efficiency [-] 0.75
Pumps (working fluid & secondary fluid) isentropic efficiency [-] 0.7
Ambient losses Neglected
Fan of the cooling tower consumption

Constraints

Turbine Size Parameter (SP) [0.02-1]
Volume coefficient (VC) [m3/MJ] [0.25-0.6]
Turbine superheating during expansion [K] >0
Turbine volume ratio (VR) [-] < 50
Screw volume ratio [-] <5
Condenser pinch-point [K] >0

Condenser pressure
Min(Pgar(Tsf,cd,su)>1)

[0.05;0.11; 0.18; 0.25; 0.32;

Maximum
3 X Pcrit
Psar(100 °C)
200

200

1

200

R134a, R245fa, Butane, Pentane, Toluene R1233zd(E) and R1234yf
Sub-critical, wet expansion, trans-critical

0.38; 0.45; 0.52; 0.59; 0.66; 0.72; 0.79; 0.86; 0.93; 1]

5% of condenser thermal power

— The state of the fluid at the inlet of the expander is defined in dif-
ferent ways depending on the cycle architecture:

o Sub-critical cycle: superheating is free to vary between 0K and
200 K.

o trans-critical cycle: the difference between the expander suction
temperature and the hot source supply temperature (approach) is
varied between 0 and 200 K.

o wet expansion cycle: the quality of the fluid at the exhaust of the
evaporator is free to vary between 0 and 1.

— The minimum condensation pressure is set to 1bar to avoid the
infiltration of air into the system.

The primary energy savings are computed assuming that the whole
electricity produced by the ORC power system does not need to be
produced by another power plant or imported from the grid. The pri-
mary energy factor, ratio between the electrical energy and the re-
quired primary energy to produce it (Eq. (16)), is assumed equal to 2
[55].

PEF = — e

(16)

primary

The constraints of positive pinch-point and dry expansion of the
turbine have to be strictly satisfied. However, to guarantee a con-
vergence of the optimiser, the size parameter (SP), the maximum vo-
lume ratio (VR) and the volume coefficient (VC) can be varied outside
the range from Table 3. When one of the variables SP, VC or VR (called
z in Eq. (17)) gets a value outside the acceptable range (2;;,,), the cost of
the expander is multiplied by a factor F (Eq. (17)). Then, it is verified a
posteriori that the square term in Eq. (17) leads to an optimal solution
within the acceptable range, if a feasible solution exists.

F= (Zactual_zlim)2 a7

3.2. Exergy analysis

The exergy analysis is a useful tool for the design and the optimi-
zation of energy systems since it permits to consider the “quality” of the
energy fluxes of the system. The exergy related to a given
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thermodynamic state i can be calculated as shown in Eq. (18), where
the index O indicates the reference state (in this case, saturated liquid of
working fluid at the ambient temperature, i.e. the lowest reachable
state in the condenser).

E; = m((Hi—Ho)—Ty (Si—S,)) (18)

The exergy balance equation is shown in Eq. (19), where Q; is the
heat transfer rate at temperature Tj, W is the work rate and I represents
the total exergy destroyed due to irreversibilities.

2

)y . .
1—%)Qj—W + D) Mg Bgx— D Mery Bexy=I = 0
J

J X v

19

The exergy balance equation is solved for each ORC component and,
then, the exergy efficiency is calculated according to Eq. (20).

Exergy used 1— Exergy destroyed + Exergy not used
Exergy supplied

nexergetic -

Exergy supplied
(20)

3.3. Economic model

3.3.1. Investment costs

In order to determine the overall investment cost of the ORC system
(starting from its thermodynamic parameter), the cost correlation
shown in Eq. (21) was used [53]. The parameter B corresponds to the
heat transfer area for heat exchangers, while for pumps and turbines it
corresponds to the power. The costs of the heat exchangers are also
related to their material and the maximal pressure (p). Therefore, a
correction factor F, (to be multiplied with C to get the total cost) is
introduced (Eq. (22)). F, is computed with Eq. (23), while the values of
all the coefficients for each component (F,,, B; D; K;) can be found in
[56].

log(C) = K; + K;log(B) + K;(logB)? (21)
Fy = B, + B,F,F, 22)
log(F,) = Dy + D,log(p) + Ds(logp)* (23)
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The overall cost includes direct costs (installation of equipment,
piping, instrumentation and controls), indirect costs (engineering and
supervision, transportation), contingency costs and fees, assumed at
15% and 3% respectively. Finally, a cost correlation based on the ex-
haust volume flow is used for the screw expander [28].

Since the coefficient used refers to 2001 prices [56], the inflation
rate was introduced to determine the current value.

3.3.2. Economic indicators
Four economic indicators have been considered in this study to
compare the economic performance of each ORC architecture:

— The Net Present Value (NPV - Eq. (24)), which is the difference
between the cash flow (CF — defined as the income from the elec-
tricity sold less the operating cost of the plant), including the dis-
count rate (r, assumed equal to 4%), and the investment costs. The
considered time (y) is equal to 20 years, which corresponds to the
typical lifetime of an ORC power system [26].

o CFO) .
NPV (y) = Z ar r)i—lnv

i=1

(24

— The Internal rate of Return (IRR), which consists of the calculation
of the term r in Eq. (24) imposing a NPV equal to zero on a 20 years
basis.

— The Pay-Back Period (PBP), which is the time required to recover
the investment cost (NPV equal to zero — Eq. (24)). It minimizes the
capital risks associated with the investment costs.

— The Profitability Index (PI — Eq. (25)), which determines the ratio
between the cash flow, including the interests, and the investment
cost. This indicator can be considered as a measure of the invest-
ment efficiency, giving an idea about the ratio between money
earned and original investment. It can be effectively used to rank
different alternatives. As for the NPV, y is taken equal to 20.

_ 1y CFO)
PIO) = inv Z; a+r)

(25)

— the Levelized Cost Of Electricity (LCOE), defined according to Eq.
(26) where W(i) is the energy generated during the period i. This
index is not used as objective function in the present work, but it is
calculated for each case analysed.
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Z inv (i)

a+r)t
i=1

y
y
w @)
i=1

LCOE =

A+r)t (2 6)

It is important to state that the choice of the performance indicator
reflects the investment policy of the company/investor and it may have
a significant impact on the optimization results, leading to different
technical configurations, as demonstrated in [11].

3.4. Thermo-economic optimization tool

A genetic algorithm is used to solve the thermo-economic optimi-
zation (Fig. 6): for the given inputs (heat source and heat sink flows,
Weysfsu and Tieggr s, and temperatures Tp,g, and Togg ), the ORC
model is run using a given configuration of optimization parameters
(mainly working fluid, architecture, evaporator pinch-point, evaporator
and condenser pressure and expander inlet conditions). Regarding the
genetic algorithm, the tournament size is 4, the number of individuals
that are guaranteed to survive to the next generation is 5% of the po-
pulation size and the fraction of the next generation, other than elite
children, that are produced by crossover is 0.8.

The ORC model computes the electrical production and it gives as
outputs: the expander power production (W,,,), the heat transfer areas
of each exchanger (Apyg) and the auxiliary consumption related to
pumps and fans (W,,.). Based on these outputs and on the feed-in tariff
of electricity, the economic model estimates the investment cost and,
then, the economic indexes (NPV, PPB, IRR and PI). Finally, the opti-
mizer gives the optimization parameters (Table 3) to the ORC model
while respecting the aforementioned constraints (Table 3). The opti-
mizer can optimize the PBP, the NPV, the IRR or the PI as set by the user
(Section 3.1.3).

It is important to state that the optimizer tends to match the T-s
profiles of the heat source and the working fluid to reduce the irre-
versibilities without achieving a too low evaporator pinch-point
(leading to high exchange area and therefore increased costs). An ex-
ample is provided in Fig. 7 where R245fa was used as working fluid.

3.5. Case studies

The methodology presented in Section 3.4 is applied to the case
study of an ORC system coupled with a biomass power plant consisting
of an AD producing biogas for a CHP engine (Fig. 8).

ORC

Tcd,s f.su M
mev,sf ,SUu L
———> T]exp
: Sub-cooling
Mea,sfsu Glide 4
Tev,s f.su

P.,, Pca, PPev, O, fluid, architecture

AHE! M./expt Waux
—_—

Optimizer
(constraints)

Economic
model

Cel,feed—in

Fig. 6. Optimization methodology.
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Fig. 7. T-s profile for R245fa working fluid.

The plant is assumed working for 7971 h per year at full load. The
engine power is 500 kWe with an efficiency of 42% and about 247 kW
thermal power is rejected by the exhaust gases at 470 °C and 263 kW by
the engine coolant. A maximum of 200 kW is used to heat the digester
to ensure an optimal temperature (~ 45 °C) for the biological processes,
while the remaining is rejected through an air-cooled exchanger. Using
the exhaust gases (case study 1) or the sum of the exhaust gases and the
engine coolant (case study 2) to feed an ORC power system (Table 4 and
Fig. 9) is the idea this paper is focused on. The minimum exhaust gases
temperature is fixed to 180 °C to avoid condensation phenomena.

Two heating options for the anaerobic digester were detected:

e part of the waste heat from the engine is used to heat the digester
while the remaining heat is used by the ORC (option 1)

o all the waste heat is used by the ORC power unit the heat required
by the anaerobic digester is provided by a gas burner (option 2).

The costs (i.e. benefit lost) associated to option 1 are equal to the
thermal energy necessary for the digester multiplied by the ORC effi-
ciency multiplied by the feed-in tariff of electricity. For option 2, the
costs (or loss of benefits) associated are equal to the required thermal
energy for the AD times the specific cost of gas burnt in the boiler.
Therefore, for a given amount of thermal energy required by the
anaerobic digester, option 1 is less interesting than option 2, if Eq. (27)
is respected.

nORC'CfeBd—in,el > Cretail,gas (27)

With a gas retail price of €4.87/MWh and a feed-in electricity price
of €27.1/MWhe, ORC efficiencies > 18% would be required to make it
economically attractive. This very high ORC efficiency cannot be

1202 kW
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Table 4
Characteristics of the two case studies.

Study-case One Two

Source of waste heat Exhaust Exhaust gases &
gases coolant engine

Total thermal power [kW] 243 243 + 263

Available thermal power after feeding 148 306

the anaerobic digester [kW]
Minimum exhaust gas temperature [°C] 180

Inlet cooling engine temperature [°C] 78
Outlet cooling engine temperature [°C] 88
ORC power system lifetime [years] 20

reached with reasonable investment costs (see Section 4). Therefore,
covering the thermal demand by exploiting the wasted thermal energy
on site is always more convenient than converting it into electricity
through an ORC power system.

4. Results
4.1. Cycle architecture and expander

The inlet temperature of the hot fluid is fixed to 300 °C. As an ex-
ample, the results of the PBP optimization are given for the three dif-
ferent architectures (subcritical, wet expansion and trans-critical) with
working fluid R245fa for the screw expander and the turbine (Table 5).

It can be outlined that subcritical and wet expansion cases using the
screw expander are not feasible since the volume coefficient condition
cannot be reached (Eq. (5)). This is due to the high refrigerant mass
flow rate to power ratio, which is intrinsic of these two architectures.
The volume coefficient constraint (Eq. (5)) severely limits the screw
expander production compared to the turbine (Table 5). It also proves
the interest of having expander constraints limiting the optimization to
realistic cases. In this case (R245fa as working fluid), the trans-critical
architecture outperforms the subcritical architecture in terms of net
power generation, exergy efficiency and Pay-Back Period (PBP).

4.2. Fluids

The optimization has been performed for a wide range of heat
source flows at the evaporator leading to input thermal powers ranging
from 50 kW to 800 kW (see Table 3). The limitation of the condensation
pressure above 1bar to avoid infiltration of air into the system (see
Section 3.1.1) is only restrictive for Pentane and Ethanol.

From an economical point of view (PBP optimization in this ex-
ample), each fluid presents its own specificity whatever the input
thermal power is (Table 6). As for instance, R134a and R1234yf fluids
present a low (system) volume ratio due to its relatively high con-
densation pressure (Table 6), making the use of screw expanders fa-
vourable. However, two screws in series are required to achieve a 75%

4
v i
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el } recovery :
g 88°C (263 KW) exchanger i __ Biogas
2+ I 80°C (200 kW) :
3 1| = \Water
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78°C I
306 KW v !
\7 . l
Air-cooler |4 Y An.aeroblc ___ll
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Fig. 8. Hydraulic scheme of the biogas power plant.
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Table 5
Results of the optimization for the case study 2 with working fluid R245fa (PBP opti-
mization).

Architecture Subcritical Wet expansion — Trans-critical
Expander Screw Turbine Screw Screw  Turbine
Net electrical power [W] 9193 35,022 345 22,809 54,354
Exergy efficiency [-] 0.12 0.26 0.09 0.17 0.29
Evaporation pressure 32 32.8 25 120 62.8
[bar]
Refrigerant flow [kg/s] 0.93 1.02 0.32 1.17 1.04
VC [m®/MJ] 1.21 - 1.64 0.59 -
SP [m] - 0.02 - - 0.02
PBP [years] - 3.36 - 6.2 2.8
Feasibility No Yes No Yes Yes

isentropic efficiency because of volume ratios up to 8 (Section 2.1). The
trans-critical cycle with a turbine represents the optimal solution for
both R245fa, R1233yd(E) and Butane fluids. Regarding the Pentane,
the solver was not able to find any feasible solution because of the high
volume ratio occurring with the turbine constraint (Eq. (4)). Finally, the
only fluid showing a subcritical cycle as optimal cycle is the Ethanol.
After the analysis presented in Table 6, Fig. 10 shows the optimal
performance for each fluid in terms of net electrical production, PBP
and Investments costs for a wide range of thermal power input with a
PBP optimization. The PBP optimization is selected in this example
because of its lower investment costs (see Table 7) which makes it more
interesting for investors. The thermal power input is varied by using the
heat source fluid mass flow rate according to Table 3. The Pentane is

Table 6

not shown in the graphs since no feasible solutions were obtained.
For a given input thermal power, the best fluid in terms of net
electrical production is R1233zd(E) followed by Ethanol, R245fa,
Butane, R134a and R1234yf (Fig. 10a). However, the refrigerant R134a
presents the lowest investment costs (Fig. 10b), thanks to the lower cost
of the screw expander (only allowed with this fluid) compared with the
turbine. The optimal fluid (from a thermo-economic point of view)
should present a large net electrical production with low investment
costs. The PBP optimization results are shown in Fig. 10c. R134a,
R1234yf, R1233zd(E), R245fa and ethanol are the most suitable solu-
tions to minimize the PBP depending on the input thermal power.

4.3. Case studies

In s 4.1 and 4.2, only the PBP optimization was considered to il-
lustrate examples of model application. Both case studies listed in
Table 4 are optimized in four different ways: to reach the lowest PBP,
the highest NPV, the highest IRR and the highest PI (Table 7).

Firstly, it can be noted that the optimal solution is very similar
whatever the objective function to optimize among NPV, IRR and PI.
The PBP optimization presents different results because of its definition
that leads to short term analyses (lower than 3years in the optimal
cases). On the contrary, the NPV, IRR and PI optimizations are based on
the typical lifetime of the plant (20 years), which leads to solutions with
higher investment costs. The optimal solution for all configurations is
with R134a as a working fluid performing a trans-critical cycle and
using two screw expanders. This optimum is confirmed by Fig. 10c, but
it can also be observed that R245fa and Ethanol do lead to close results

Optimal architecture and expander for each working fluid (PBP optimization) for input thermal powers ranging from 50 kW to 800 kW.

Fluid R134a R245fa Butane Pentane R1233zd(E) Ethanol R1234yf
Architecture Transcritical Transcritical Transcritical Transcritical Transcritical Subcritical Transcritical
Vaporization enthalpy at 60% of critical pressure [kJ/kg] 113.420 103.038 209.008 192.623 103.590 444.025 107.620
Expander(s) 2 Screws Turbine Turbine Turbine Turbine Turbine 2 Screws
Volume ratio [-] [7:8] [31:43] [23:37] > 64 [38:49] [33:35] [7.5:8.1]
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Fig. 10. (a) Net electrical production, (b) investment costs and (c) pay-back period for each working fluid.

Table 7

Results a of the optimization for the two case-studies.

Optimization criteria PBP NPV/IRR/PI
Case study 1 2 1 2
Evaporator secondary fluid mass flow rate [kg/ 0.183 0.3799 0.184 0.362
s]
Architecture Trans-critical
Fluid R134a
Expander(s) 2 Screws
Gas heater pressure [bar] 86.4 85.5 105 112
Condensation pressure [bar] 11.1 11 9 9
Approach [K] 65 18 16 20
Evaporator pinch point [K] 9.8 9.7 16 5
Net electrical power [kW] 15 33 18 38
Exergy efficiency [-] 0.23 0.23 0.26 0.26
Energy efficiency [-] 0.101 0.107 0.121 0.124
Investments costs [k€] 71.4 140.4 96.6 200.6
PBP [years] 2.74 2.25 3.00 2.72
NPV (20 years) [M€] 0.367 0.773 0.399 0.846
Profitability Index [-] 6.1 6.4 5 5
Interest Return Rate [-] 0.44 0.46 0.36 0.37
LCOE [€/kWh] 0.045 0.041 0.052 0.051
Primary energy savings [MWh] 253.8 529.2 287.2  606.7

even if slightly disadvantageous.

Comparing these results (Table 7) with the results of fluid R1233zd
(E) (Table 5) it can be noted that: the turbine (resp. the screw expander)
is the optimal solution with R1233zd(E) (resp. R134a), the net elec-
trical production is higher for R1233zd(E) (54 kW) than for R134a
(33 kW), but the lower investment costs required with R134a leads to a
lower PBP of 2.25years against 2.8 years for R1233zd(E). Regarding
the PBP optimization, the first case study leads to a 15 kW net electrical
production while the second one leads to 33 kW. The optimal condi-
tions (pressures and pinch-points) are rather close for each case study.
This leads to similar PBP, IRR, PI, LCOE and exergy efficiency. The NPV
is larger in the second case study due to the larger installed power.

Finally, a cost and exergy decomposition analysis are proposed for
the first case study. The fraction of cost and exergy destruction for each
component is calculated with the results obtained by the PBP optimi-
zation (Screw and R134a - Fig. 11). A general observation is the low
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exergy destruction and cost fraction of the pump, even if its importance
increases with lower power capacities. In the case of the screw ex-
pander, the costs are similar between the condenser, the expander and
the evaporator (i.e. high temperature heat exchanger) while in the
turbine case, the cost of the expander is predominant. The exergy de-
struction is mainly located in the condenser and the evaporator.

Table 8 shows the comparison of the obtained results with the ones
available in the literature. Since WHR-ORC power systems for biogas
application have been investigated scarcely in the past, only 4 papers
have been considered [13-16]. It is possible to note in Table 8 that the
obtained ORC thermal efficiencies are in a realistic range with the va-
lues in the literature. The slightly lower values observed can be ex-
plained by the lower thermal input (it depends on the application) and
the additional realistic constraints considered in this work.

Regarding the economic analysis, since no studies have been carried
out on AD-ORC in the Northern Ireland market, any comparison would
be inappropriate. As just a reference, Table 8 reports the NPV values
calculated by Sung et al. [15] for a biogas micro-turbine system coupled
with a subcritical ORC cycle for the South Korean market.

Costs

Exergy

Fig. 11. Fraction of cost and exergy destruction for each component for case study 2.
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Table 8
Comparison of the optimization results with literature.
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Ref. ORC Architecture Input thermal power Exhaust gas temperature Working fluid ORC efficiency [%] NPV [ME€]
[kw] [r’cl

Mudasar et al. [16]  Sub-critical 1000 450 Toluene 12 -

Yangli et al. [14] Sub-critical & trans-critical 510 450 R245fa 15.5/15.9 -

Sung et al. [15] Sub-critical 513:1200 250:300 N—pentane 10.2:15.9 1.69-3.378

Di Maria et al. [13]  Sub-critical 521 475 Toluene 21.3 -

This paper Sub-critical, wet expansion & trans-  148:306 470 Optimization with 7 fluids 10.7:12.4 0.43:1.0

critical

4.4. Generalization

The optimization procedure was performed for a wide range of heat
source fluid flows at the gas heater leading to input thermal powers
ranging from 50 kW to 800 kW (see Table 3). Fig. 12a compares the
optimization in terms of PBP and in terms of NPV (Fig. 12). The opti-
mization process always leads to the use of R134a as working fluid,
except for the circled point where R1233zd(E) showed to be the best
choice. The NPV (IRR, NPV or PI) optimization (long term analysis)
promotes higher investments with higher PBP and Net Present Value.
Investors should therefore choose between high profits on the long
terms (IRR/PI/NPV optimization) or lower profits with less risk asso-
ciated (PBP optimization). Discontinuities in the plots correspond to
different optimal working fluids.

5. Conclusion

This paper presents an investigation on the technical and economic
suitability of ORC systems for biogas power plant application (AD-
CHP). The investigation was carried out considering different ORC ar-
chitectures (i.e. trans-critical, wet expansion and subcritical archi-
tecture) and different potential AD-ORC configurations. A thermo-
economic tool with an optimization methodology was developed.

The main results obtained are:

— The integration of expander constraints in such thermo-economic
optimization has been demonstrated to be mandatory since it limits

the possible solutions severely.

— Neither the wet expansion cycle nor the Pentane are feasible in this
case study due to the expander constraints. The integration of other
expanders (radial inflow turbine or radial outflow turbine) may
enlarge the panel of solutions.

— Some fluids require higher investments (R1233zd(E), R245fa,
Ethanol) than R134a and R1234yf but they can achieve higher net
electrical production.

— Investors should choose between high profits on the long terms
(IRR/PI/NPV optimization) or lower profits with less risk (PBP op-
timization). This choice is strictly related to the investors’ invest-
ment policy and it can change the final design considerably.

All these observations are only valid with the assumption and in the
range of the parameters considered.

Considering the specific AD-CHP application, for a PBP minimiza-
tion two choices are feasible for investors:

— A low investment (€71.4k) trans-critical ORC power system using
R134a as working fluid and two screw expanders. This solution
gives an output of 15 kWe with a PBP lower than 2.75 years, a PI of
6.1, a NPV of €366.5k and an IRR of 44%.

— A higher investment (€139.9 k) with the same fluid and expander.
This option leads to a 33kWe production, a PBP lower than
2.8years, a PI of 6.4, a NPV of €772.6 k and IRR of 46%.

Form a NPV optimization, two choices are feasible for investors:
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Fig. 12. Comparison of the four economic indicators (PBP, NPV, PI, IRR) based on a PBP optimization (a) and on a NPV optimization (b).
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A low investment (€96.6 k) trans-critical ORC power system using
R134a as working fluid and two screw expanders. This solution
gives an output of 18 kWe with a PBP lower than 3 years, a PI of 5, a
NPV of €398.9k and an IRR of 36%.

A higher investment (€200.6 k) with the same fluid and expander.
This option leads to a 38 kWe production, a PBP lower than
2.8years, a PI of 5, a NPV of €846.2k and IRR of 37%.

Acknowledgments

pro

Authors would like to thank the ASME KCORC foundation which
moted the collaboration between the University of Liege and the

Queen’s University Belfast.

References

[1]
[2]

[3]

[4

=

[5

il

[6]

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

European Union. Energy efficiency directive 2012/27/EU. Off J Eur Union; 2012.
De Rosa M, Douglas R, Glover S. Numerical analysis on a dual-loop waste heat
recovery system coupled with an ORC for vehicle applications. SAE Technical
Paper. 2016-01-0205; 2016.

Campana F, Bianchi M, Brachini L, De Pascale A, Peretto A. ORC waste heat re-
covery in European energy intensive industries: energy and GHG savings. Energy
Convers Manage 2013;76:244-52.

Lecompte S, Lemmens S, Huisseune H, Van den Broek M, De Paepe M. Multi-ob-
jective thermo-economic optimization strategy for ORCs applied to subcritical and
transcritical cycles for waste heat recovery. Energies 2015;8:2714-41. http://dx.
doi.org/10.3390/en8042714.

Heervig J, Sprensen K, Condra T. Guidelines for optimal selection of working fluid
for an organic Rankine cycle in relation to waste heat recovery. Energy
2016;96:592-602.

Yu H, Eason J, Bielger LT, Feng X. Simultaneous heat integration and techno-eco-
nomic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream
recovery. Energy 2017:322-33.

Maraver D, Royo J, Lemort V, Quoilin S. Systematic optimization of subcritical and
transcritical organic Rankine cycles (ORCs) constrained by technical parameters in
multiple applications. Appl Energy 2014;11:11-29.

Glover S, Douglas R, De Rosa M, Zhang X, Glover L. Simulation of a multiple heat
source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery.
Energy 2016;93:1568-80.

Lemmens S. A perspective on costs and cost estimation techniques for Organic
Rankine Cycle systems. In: 3rd International seminar on ORC power systems.
Brussels, Belgium; 2015.

Quoilin S, Declaye S, Legros A, Guillaume L, Lemort V. Working fluid selection and
operating maps for Organic Rankine Cycle expansion machines. In: Proceedings of
the 21st International Compressor Conference at Purdue; 2012.

Bianco V, De Rosa M, Scarpa F, Tagliafico L. Implementation of a cogeneration
plant for a food processing facility. A case of study. Appl Therm Eng
2016;S1359-4311. http://dx.doi.org/10.1016/j.applthermaleng.2016.04.023.
30509-9.

Schuster A, Karellas S, Karakas E, Spliethoff H. Energetic and economic investiga-
tion of Organic Rankine Cycle applications. Appl Therm Eng 2009;29:1809-17.
Di Maria F, Micale C, Sordi A. Electrical energy production from the integrated
aerobic-anaerobic treatment of organic waste by ORC. Renew Energy
2014;66(461):467.

Yangli H, Kog¢ K, Kog A, Georgiilii Adnan, Tandiroglu Ahmet. Parametric optimi-
zation and exergetic analysis comparison of subcritical and supercritical organic
Rankine cycle (ORC) for biogas fueled combined heat and power (CHP) engine
exhaust gas waste heat. Energy 2016;111(923):932.

Sung T, Kim S, Kim K. Thermoeconomic analysis of a biogas-fueled micro-gas tur-
bine with a bottoming organic Rankine cycle for a sewage sludge and food waste
treatment plant in the Republic of Korea. Appl Therm Eng 2017;127:963-74.
Mudasar R, Aziz F, Kim M. Thermodynamic analysis of organic Rankine cycle used
for flue gases from biogas combustion. Energy Convers Manage 2017;153:627-40.
Santosh Y, Sreekrishnan TR, Kohli S, Rana V. Enhancement of biogas production
from solid substrates using different techniques—a review. Bioresour Technol
2004;95:1-10.

Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion
and biogas utilization. Bioresour Technol 2009;100:5478-84.

European Biogas Association, 2015. Biomethane and Biogas Report, Accessible at
www.european-biogas.eu/2015/12/16/biogasreport2015/. [last accessed 15/6/
2017].

Poschl M, Ward S, Owende P. Evaluation of energy efficiency of various biogas
production and utilization pathways. Appl Energy 2010;87:3305-21.

Fischer J. Comparison of trilateral cycles and organic Rankine cycles. Energy
2011;36:6208-19.

Schuster A, Karellas S, Aumann R. Efficiency optimization potential in supercritical
Organic Rankine Cycles. Energy 2010;35:1033-9.

Bronicki L. Organic Rankine cycle (ORC) power systems technologies and appli-
cations In: History of Organic Rankine Cycle systems; 2016.

Smith IK. Development of the trilateral flash cycle system Partl: fundamental
considerations. Proc. Inst. Mech Eng Part A J Power Energy 1993;207:179-94.

306

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

Energy Conversion and Management 157 (2018) 294-306

Lai NA, Fischer J. Efficiencies of power flash cycles. Energy 2012;44:1017-27.
Lecompte S, Huisseune H, Van der Broek M, Vanslambrouck B, De Paepe M. Review
of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew
Sustain Energy Rev 2015;47:448-61.

Zhang S, Wang H, Guo T. Performance comparison and parametric optimization of
subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for
low-temperature geothermal power generation. Appl Energy 2011;88:2740-54.
Astolfi M. Techno-economic optimization of low temperature CSP systems based on
ORC with screw expanders. International Conference on Concentrating Solar Power
and Chemical Energy Systems, SolarPACES, Energy Procedia 2014;69:1100-1112.
Lecompte S, Lemmens S, Verbruggenb A, Van den Broek M, De Paepe M. Thermo-
economic comparison of advanced organic rankine cycles. Energy Procedia
2014;61:71-4.

Blades L, Morgan K, Douglas R, Glover S, De Rosa M, Cromie T, et al. Circular
biogas-based economy in a rural agricultural setting. Energy Procedia
2017;123:89-96.

Questor Centre. Queen’s University Belfast. Northern Ireland Biogas Research
Action Plan 2020; , 2014. Report available online at: www.questor.qub.ac.uk [last
accessed 10/03/2017].

Guercio A, Bini R. Biomass-fired Organic Rankine Cycle combined heat and power
systems, Organic Rankine cycle (ORC) power systems technologies and applica-
tions; 2016.

Anaerobic Digestion Bio-resources Association (ADBA); 2017. www.adbiosources.
org [last accessed, 21/02/2017].

Northern Ireland Renewable Obligation; 2017. Website: www.economy-ni.gov.uk
[last accessed 10/03/2017].

DECC. UK Department of Energy and Climate Changes; 2017.

Bell I, CoolProp version 5.0; 2016. http://www.coolprop.org/ consulted on the 18/
05/2017.

Ohman H, Lundqvist P. Comparison and analysis of performance using low tem-
perature power cycles. Appl Therm Eng 2013;52:160-9.

Quoilin S, van den Broek M, Declaye S, Dewallef P, Lemort V. Techno-economic
survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev
2012;22:168-86.

Astolfi M, Romano MC, Bombarda P, Macchi E. Binary ORC (Organic Rankine
Cycles) power plants for the exploitation of medium-low temperature geothermal
sources—Part B: techno-economic optimization. Energy 2014;66:435-46.

Dai Y, Wang J, Gao L. Parametric optimization and comparative study of organic
Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers Manage
2009;50:576-82.

Branchini L, De Pascale A, Peretto A. Systematic comparison of ORC configurations
by means of comprehensive performance indexes. Appl Therm Eng
2013;61:129-40.

Macchi E. The choice of working fluid: The most important step for a successful
organic Rankine cycle (and an efficient turbine), Keynote lecture. In: Proceedings of
the ASME ORC2013, Rotterdam, The Netherlands, 7-8 October 2013; 2013.
Lemort V, Legros A. Organic Rankine cycle (ORC) power systems technologies and
applications, Positive displacement expanders for Organic Rankine Cycle systems;
2016.

Quoilin S, Declaye S, Tchanche BF, Lemort V. Thermo-economic optimization of
waste heat recovery organic Rankine cycles. Appl Therm Eng 2011;31:2885-93.
Gnielinsky V. New equations for heat and mass transfer in turbulent pipe and
channel flow. Int J Chem Eng 1976;16:359-68.

Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable phy-
sical properties. Irvine TF, Hartnett JP, editors. Adv Heat Transfer, vol. 6. New
York: Academic Press; 1970.

Han D-H, Lee K-J, Kim Y-H. Experiments on the characteristics of evaporation of
R410A in brazed plate heat exchangers with different geometric configurations.
Appl Therm Eng 2003;23:1209-25.

Han D, Lee K, Kim Y. The characteristics of condensation in brazed plate heat and
exchangers with different chevron angles. J Korean Phys Soc 2003;43:66-73.
Pioro IL, Duffey RB. Heat transfer & hydraulic resistance at supercritical pressures
in power engineering applications. ASME publication; 2007. ISBN: 0-7918-0252-3.
Petukhov BS, Krasnoschekov EA, Protopopov VS. An investigation of heat transfer
to fluid flowing in pipes under supercritical conditions. In: Proceedings of the
International Developments in Heat Transfer, University of Colorado, Boulder, CO,
USA, 8-12 January, vol. 67; 1961. p. 569-578.

Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, et al. Development of su-
percritical water heat-transfer correlation for vertical bare tubes. Nucl Eng Des
2011;241:1126-36.

Pucciarelli A, Ambrosini W. Improvements in the prediction of heat transfer to
supercritical pressure fluids by the use of algebraic heat flux models. Ann Nucl
Energy 2017;99:58-67.

Cavalini A. Heat transfer and heat exchangers, Organic Rankine Cycle (ORC) power
systems, Technologies and applications; 2016.

Shah RK, Sekulic DP. Chapter 17-heat exchangers. In: Hartnett JP, Cho YI,
Rohsenow WM, editors. Handbook of heat transfer. New York: McGraw-Hill; 1998.
Esser A, Sensfuss F. Review of the default primary energy factor (PEF) reflecting the
estimated average EU generation efficiency referred to in Annex IV of Directive
2012/27/EU and possible extension of the approach to other energy carriers,
consulted the 01/06/2017 on https://ec.europa.eu/energy/sites/ener/files/
documents/final_report_pef _eed.pdf; 2012.

Turton R, Bailie RC, Whiting WB, Shaeiwitz J, Bhattacharyya D. Analysis, synthesis
and design of chemical processes. 4th ed. Ann Arbor, MI, USA: Pearson Education;
2013.


http://refhub.elsevier.com/S0196-8904(17)31173-1/h0015
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0015
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0015
http://dx.doi.org/10.3390/en8042714
http://dx.doi.org/10.3390/en8042714
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0025
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0025
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0025
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0030
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0030
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0030
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0035
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0035
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0035
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0040
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0040
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0040
http://dx.doi.org/10.1016/j.applthermaleng.2016.04.023
http://dx.doi.org/10.1016/j.applthermaleng.2016.04.023
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0060
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0060
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0065
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0065
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0065
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0070
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0070
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0070
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0070
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0075
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0075
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0075
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0080
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0080
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0085
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0085
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0085
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0090
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0090
http://www.european-biogas.eu/2015/12/16/biogasreport2015/
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0100
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0100
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0105
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0105
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0110
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0110
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0120
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0120
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0125
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0130
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0130
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0130
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0135
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0135
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0135
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0145
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0145
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0145
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0150
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0150
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0150
http://www.questor.qub.ac.uk
http://www.adbiosources.org
http://www.adbiosources.org
http://www.economy-ni.gov.uk
http://www.coolprop.org/
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0185
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0185
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0190
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0190
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0190
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0195
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0195
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0195
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0200
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0200
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0200
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0205
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0205
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0205
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0220
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0220
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0225
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0225
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0230
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0230
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0230
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0235
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0235
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0235
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0240
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0240
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0245
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0245
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0255
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0255
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0255
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0260
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0260
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0260
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0275
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0275
https://ec.europa.eu/energy/sites/ener/files/documents/final_report_pef_eed.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/final_report_pef_eed.pdf
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0285
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0285
http://refhub.elsevier.com/S0196-8904(17)31173-1/h0285

	Technical and economic optimization of subcritical, wet expansion and transcritical Organic Rankine Cycle (ORC) systems coupled with a biogas power plant
	Introduction
	Waste heat recovery for biogas power plant through an ORC power system
	Organic Rankine cycle power system technology
	Anaerobic digester applications
	Local market context


	Methodology
	Thermodynamic model
	Working fluid
	Expanders
	Pump
	Heat exchangers
	Cycle

	Exergy analysis
	Economic model
	Investment costs
	Economic indicators

	Thermo-economic optimization tool
	Case studies

	Results
	Cycle architecture and expander
	Fluids
	Case studies
	Generalization

	Conclusion
	Acknowledgments
	References




