Genetic relationships between methanerelated traits and milk composition in lactating dairy cows

Purna Kandel

Supervisor: Nicolas Gengler Co-Supervisor: Hélène Soyeurt

University of Liège, Gembloux Agro-Bio Tech, Belgium

Background

Background

37% of anthropogenic methane emissions from livestock (FAO, 2010)

- Environmental pollutants
- 2-12 % of dietary energy loss (Johnson and Johnson, 1995)

Respiration chamber

Sulfur hexafluoride measurements

Fourier transformed infrared method

GreenFeed System

Background

37% of anthropogenic methane emissions from livestock (FAO, 2010)

- Environmental pollutants
- 2-12 % of dietary energy loss (Johnson and Johnson, 1995)

Genetic gain

Permanent and adds up every generation

Direct methane measurements

Direct method:

- expensive
- difficult to measure
- low number of phenotypes

→ Indirect measurements through milk composition (fatty acid and mid-infrared spectra)

Milk Mid-Infrared Spectroscopy

e.g., Milk fatty acids

Prediction from milk MIR fatty acids

Original equations Chilliard et al., 2009

602 samples

Prediction	Equation	R ² ref	R ² CV
Methane I g/day	9.97 x (C8:0 to C16:0) - 80	0.88	0.92
Methane2 g/day	-8.72 x C18:0 + 729	0.88	0.91
Methane3 g/day	282 x C8:0 + 11	0.81	0.72
Methane4 g/day	16.8 × C16:0 - 77	0.82	0.92

Milk Mid-Infrared Spectroscopy

Prediction from milk MIR spectra

Original equation Vanlierde et al., 2015

452 samples

Trait	Mean	SD	R ² C	R ² CV	RMSEP
Methane (g/d)	416	126.4	0.76	0.70	81

700,000 records 60,000 cows

Vanlierde et al., 2015

Prediction of methane emissions from milk composition

Milk mid-infrared spectrometry:

- Cheap
- Large number of phenotypes
- Commercial farms

Objectives

Broad objective: genetic evaluation of large scale indirect methane measurements

Specific objectives

- Observations and phenotypic correlations between predicted methane traits and milk production traits
- Genetic parameters of predicted methane traits
- Genetic correlations with production, functional and type traits
- Selection response on methane traits and correlated responses to other traits

Hypotheses

- MIR predicted methane traits
 - Heritable
 - Sufficient genetic variability to rank sires
 - Possible selection without jeopardizing animal production and efficiency

Estimation of genetic parameters

Phenotype (P) = Genotype (G) + Environment (E)

Heritability =
$$\frac{\overline{O_G^2}}{\overline{O_P^2}}$$

Genetic correlation: the proportion of variance that two traits share due to genetic cause

Relative genetic change (r)=b'G

b'=proportional index weight

G=genetic correlation between index traits and goal traits

Statistical Model

Methane (g/d) and Log-transformed methane intensity

$$y=X\beta+Q(Zp+Zu)+e$$
.....(model 1)

$$y=X\beta+Q(Hh+Zp+Zu)+e$$
.....(model 2)

 β = fixed (herd test day, lactation stage, days in milk) effects

h= random within-herd lactation curve effects

p= permanent environment effect

u=additive genetic effect

Statistical Model

Methane (g/d) and Log-transformed methane intensity

$$y=X\beta+Q(Zp+Zu)+e$$
.....(model 1)

β= fixed (herd test day, lactation stage, days in milk) effects h= random within-herd lactation curve effects p= permanent environment effect u=additive genetic effect

Model 2 fits better and 10 percent of variance was attributed to random within-herd lactation curve effects

MIR methane prediction (g/day)

Lactation	First	Second	Third
Methane (g/d)	433 ± 80	453 ± 78	444 ± 76

Comparison with published literature

Gransworthy et al., 2012

MIR methane intensity (g/kg of milk)

Lactation	First	Second	Third
Methane intensity (g/kg of milk)	19.8 ± 6.8	18.8 ± 7.6	17.7 ± 7.1

Heritability and correlations of MIR predicted methane traits with milk traits

Heritability (diagonal), phenotypic correlations (below diagonals) and genetic correlations (above diagonals)

Traits	PME	LMI	Milk yield	Fat yield	Protein yield
PME	0.25	0.71	-0.19	0.11	-0.05
LMI	0.47	0.18	-0.68	-0.21	-0.66
Milk yield	-0.07	-0.68	0.16	0.79	0.92
Fat yield	-0.01	-0.43	0.79	0.13	0.82
Protein yield	-0.02	-0.55	0.92	0.82	0.14

PME=predicted methane emission (g/d), LMI=Log transformed methane intensity (g/kg of milk)

Heritability and correlations of MIR predicted methane traits with milk traits

Heritability (diagonal), phenotypic correlations (below diagonals) and genetic correlations (above diagonals)

Traits	PME	LMI	Milk yield	Fat yield	Protein yield
PME	0.25	0.71	-0.19	0.11	-0.05
LMI	0.47	0.18	-0.68	-0.21	-0.66
Milk yield	-0.07	-0.68	0.16	0.79	0.92
Fat yield	-0.0 l	-0.43	0.79	0.13	0.82
Protein yield	-0.02	-0.55	0.92	0.82	0.14

PME=predicted methane emission (g/d), LMI=Log transformed methane intensity (g/kg of milk)

Heritability throughout lactation (PME)

Dynamic evolution throughout lactation between methane traits and milk yield

Kandel et al., 2017a

Phenotypic corr. between PME and milk yield

Genetic corr. between PME and milk yield

Phenotypic corr. between LMI and milk yield

Genetic corr. between LMI and milk yield

Sire ranking based on estimated breeding values

Current Walloon selection index

Relative genetic change (r)=b'G

b'=proportional index weight

G=genetic correlation between index traits and goal traits

Modified Walloon selection index

Approximate genetic correlations

Calculated from estimated breeding values

Traits	PME	LMI
Fertility	0.17	0.36
Body condition score	-0.02	0.20
Longevity	0.22	0.06
Udder Health	0.22	0.08

PME=predicted methane emission (g/d), LMI=Log transformed methane intensity (g/kg of milk)

Kandel et al., 2017b

Selection scenario	PME	Milk yield	Fat yield	Protein yield
Current Index	1.9%	16.6%	17.2%	22.2%
25% PME	-5.9%	15.0%	5.7%	11.3%

PME= Predicted methane emission (g/d)

Selection scenario	PME	Fertility	BCS	Udder health	Longevity
Current Index	1.9%	-3.3%	-7.9%	15.9%	27.8%
25% PME	-5.9%	-3.8%	-10.9%	13.0%	22.3%

PME= Predicted methane emission (g/d)

BCS= Body condition score

Kandel et al., 2017b

Selection scenario	LMI	Milk yield	Fat yield	Protein yield
Current Index	-14.5%	16.6%	17.2%	22.2%
25% LMI	-23.8%	29.4%	16.2%	28.4%

LMI= Log-transformed methane intensity (g/kg of milk)

Kandel et al., 2017b

Selection scenario	LMI	Fertility	BCS	Udder health	Longevity
Current Index	-14.5%	-3.3%	-7.9%	15.9%	27.8%
25% LMI	-23.8%	-10.2%	-12.8%	12.5%	22.6%

LMI= Log-transformed methane intensity (g/kg of milk)

BCS= Body condition score

Australian Balance Performance Index

Methane intensity decrease by 0.6 percent per year

Reduction of methane was quantified at 1.5 kg/cow/year

(Pryce and Bell, 2017)

Confirmation of hypothesis

- MIR predicted methane traits
 - Heritable
 - Sufficient genetic variability to rank sires
 - Possible selection without jeopardizing animal production and efficiency

Conclusions

- Dynamic relationships between methane traits and milk production, energy balance related traits throughout lactation
- Impacts:
 - PME (g/d) ↑ and LMI (g/kg of milk) ↓ with the current Walloon selection index
 - Based on approximate genetic correlations, potential negative effects on fertility, udder health and longevity

Future research

- Validation of the MIR predicted phenotypes through genetic correlations between predicted and direct traits
- Estimation of direct genetic correlations between MIR methane predictions and functional, type traits
- Some of these animals are also genotyped
 - Genome wide association study to pinpoint the chromosomal regions
 - Prime example of difficult to measure traits in dairy cows and to be benefitted from genomic selection

Acknowledgements

Funding: EU-GreenHouseMilk Project, Walloon Methamilk Project, Optimir, R&D, University of Liège

Supervisors:

H Soyeurt, N Gengler

Thesis Committee Members:

Y Beckers, Y Brostaux, E Froidmont (CRA-W)

Co-authors:

ML Vanrobays, S Vanderick, A Vanlierde, F Dehareng

Jury Members:

L Willems, Y de Haas

Genetic relationships between methanerelated traits and milk composition in lactating dairy cows

Purna Kandel

Supervisor: Nicolas Gengler Co-Supervisor: Hélène Soyeurt

University of Liège, Gembloux Agro-Bio Tech, Belgium