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- Minute addition of polymers can result in significant reduction of 
friction drag

- Drag reduction has an upper limit: Maximum Drag Reduction (MDR)

Polymer Drag Reduction
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Fig. 1 Frict ion-factor plot for m a x i m u m drag-reduct ion asymptote . Entries are ordered as in Table 1 . 

ing ultimate mean veloeitj' profile is inferred. Next, experi-
mental profiles are correlated by an effective slip model, proposed 
earlier [3], and the effective slip is interpreted in terms of the 
ultimate profile. Finally, a simple model for the mean flow struc-
ture prevailing in Toms' phenomenon flows is proposed. 

Correlation of Experimental Data 
f Friction Factors. Maximum drag-reduction data from all avail-
able sources [3-7, 11] as well as some new data from the authors' 
laboratory [12, 13] are shown in a friction factor plot, Fig. 1. 
Corresponding experimental conditions are summarized in Table 
1. The coordinates in Fig. 1 are Fanning friction factor, / , and 
Reynolds number, N R 0 , the latter being formed with solution (as 
opposed to solvent) viscosity. In cases where original results 
were presented in terms of Reynolds numbers based on solvent 
viscosity, the latter have been adjusted, via the well-known 
Flory-Huggins expansion, to account for the viscosity of the 
polymer solutions relative to solvent. N R e ~ 2000 has been 
chosen as a lower limit, in Fig. 1 since attention will be restricted 
to the turbulent flow regime in which drag reduction occurs. In 
viewing the data, the greatest scatter, =1=15 percent, is observed in 
the range 2000 < NR C < 5000 and most likely reflects the sensi-
tivity of such transitional flows to entrance conditions; over the 
remainder of the range, 5000 < N R o < 150,000, the scatter is 
about + 1 0 percent. Despite scatter, the data of several inde-
pendent investigators taken with different polymers, concentra-
tions, solvents, and pipes clearly cluster together. The mean 

curve through the data has distinct curvature on the log-log coor-
dinates in Fig. 1; a power-law expression for the central decade is 

f = 0.59 NH 4000 < NRe < 40,000 (1) 

The negative exponent in equation (1) is intermediate between 
the values, 0.67 and 0.55, respectively, reported by Castro [4] and 
Virk [3] on the basis of their individual measurements. Owing 
to the curvature of the data, the use of equation (1) outside the 
quoted range of Reynolds numbers is not recommended. 

The data are shown plotted on Prandtl-type coordinates, f~ '* 
versus log (NRe/1/2), in Fig. 2. The mean curve is a straight line 

/ - ' / = = (19.0 ± 0.4) log10 (NRe/1/2) - (32.4 ± 1.2) (2) 

The constants in equation (2) differ somewhat from those based 
entirely on the present authors' data [3]. Error limits ( ± ) are 
for 95 percent confidence, the corresponding confidence band 
around the data being indicated by the vertical flags at the ex-
tremes of the solid line representing the correlation (2) in Fig. 2. 
By way of comparison, the well-known Newtonian correlation of 
Prandtl 

f >A 4.00 log10 ( N R , , / / * ) - 0.4 (3) 

is also indicated in Fig. 2. 
Though the data used to arrive at the asymptote span a fail-

range of variables, Table 1, some dominant features are evident. 
Namely, relatively small pipes are involved; essentially a single 
chemical system—polyethylene oxide (PEO) in water—is repre-

•Nomenclature-
A, B = 

c,„ = 

d = 
f = 

M, N 

N„e = 

constants in law of wall 
friction coefficient, local, 

torque coefficient, overall (2m/ 
7r2pwV) 

pipe diameter, cm 
Fanning friction factor, 2(uT/ 

uy 
overall frictional moment on 

disk, dyne-cm 
constants in Prandtl-type fric-

tion law 
Reynolds number, pipe (dU/v) 

N R , , S 

N R 6 „ . 
r 

R + 

S 
S + 

Tm 

uT 

u+ 

U 
U 

Reynolds number, local (xtj/v) 
Reynolds number, disk (farl/v) 
radius, cm 
friction radius (ruT/v) 
effective slip velocity, cm/sec 
(S/uT) 
wall shear stress, dynes/cm2 

friction velocity, V T , / p 
(.U/uT) 
local mean velocity, cm/sec 
bulk average (pipe) or free-

stream (boundary-layer) ve-
locity, cm/sec 

x 
A 
V 

P 

CO 

distance from leading edge, cm 
mixing-length constant 
distance from pipe wall, cm 
friction distance (yuT/v) 
kinematic viscosity, cm2/sec 
density, gm/cm3 

(2lr/d) 
angular velocity, rad/sec 

Subscripts 

n = in solvent or in Newtonian plug 
p = in polymer solution or in interac-

tive zone 
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1. What is the nature of MDR? 

• Is it Newtonian (Graham 2004, Procaccia et al. 2008)? 

• Is it EIT, Elasto-Inertial Turbulence (Samantha, 2012; Dubief et al., 
2013, Terrapon et al, 2014)?

2. What is the mechanism of EIT?

3. What is the relation between EIT and elastic turbulence?

Open Questions



We seek to define the nature of MDR through rigorous numerical 
experiments and verification.

Assumption 1 (Graham 2014, Procaccia et al. 2008):

• MDR’s dynamics intermittently alternates between a laminar edge state and a 
weak turbulent state driven by Newtonian coherent structures

• MDR’s velocity profile is logarithmic

Assumption 2 (Samanta et al. 2013, Dubief et al. 2013, Terrapon et al 2014, Sid et al, 
2017)

• MDR is EIT

Fact: MDR’s velocity profile is not logarithmic (White et al. 2012, Elbing et al.  2013)

Motivation



• Constant pressure-gradient channel 
flow simulation

• FENE-P viscoelastic model

• Numerical experiment consists of 
3D and 2D minimal channel flow 
units with controlled diffusion of 
small-scale polymer dynamics

Method



Viscoelastic Flow Model

FENE-P model for Newtonian flow

polymer molecule

reduced model

Polymer solution parametercontinuum model

C = Cij = q⌦ q = qiqj

q: end-to-end vector

� =
solvent viscosity

zero-shear polymer solution viscosity

L : Polymer maximum extension

Wi⌧ =
polymer relaxation time

viscous flow time scale
=

�u2
⌧

⌫
= ��̇



• Flow field equations

• Polymer field equations

Governing Equations
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• Code 1: (Dubief et al. 2004, 2005, 2013)

• Non-dissipative, energy conserving,                      finite difference flow 
solver

• Polymer advection:               compact upwind with local artificial 
dissipation

• Code 2: (Sid et al, 2017)

• Non-dissipative, energy conserving,                       finite volume flow 
solver

• Polymer advection: 3rd or 5th order WENO scheme

Numerical Methods

O(�t2,�x2)

O(�x3)

O(�t2,�x2)



• Comparison Code 1(red) and 2 (low res. black, high res. blue)

Verification (Sid et al, 2017)

12

TABLE I. Turbulent kinetic energy integral I�k and fluctuating elastic energy integral I�ep
for Re⌧ = 40, Wi⌧ = 310.

nx ⇥ ny Sc I�k I�ep

A 4096⇥768 100 1.53 · 10�2 1.05 · 10�2

B 1280⇥384 1 1.53 · 10�2 0.87 · 10�2

C 2080⇥480 1 1.62 · 10�2 0.88 · 10�2

D 4096⇥768 1 1.68 · 10�2 1.04 · 10�2

thus challenging to estimate a priori. This is further illustrated by comparing global flow statistics obtained with two
codes using di↵erent numerical schemes. The mean profiles of streamwise velocity and polymer elongation are shown
in Figure 9 for Re⌧ = 85, Wi⌧ = 40, Sc = 1. The two codes mainly di↵er in their discretization of the advective
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FIG. 9. Mean profiles of the streamwise velocity (left) and polymer elongation (right) for Re⌧ = 85, Wi⌧ = 40, Sc = 1. The
black profiles are obtained with code A using a mesh with 1024⇥288 grid points whereas the red profiles are obtained with
code B using a mesh with 512⇥128 grid points.

term u ·rC in the conformation tensor transport equation. This term is critical, as it is responsible for the creation
of small elastic scales that are necessary to sustain elasto-inertial turbulence. Code A features a third-order WENO
scalar interpolation [39] on a staggered grid, while code B relies on a fourth-order compact interpolation scheme on a
collocated grid. Because the third-order WENO scheme is more dissipative, code A requires a finer mesh than code
B for converged results, as shown in Figure 9. Nonetheless, if an adequate grid resolution is used, both codes lead to
the same mean profiles.

Overall, this supplementary material demonstrates that:

• the critical Schmidt number below which the flow becomes laminar depends on the flow conditions; in particular,
elasto-inertial turbulence at larger Reynolds number remains turbulent for lower Schmidt numbers;

• the Batchelor length scale ⌘B = ⌘KSc
�1/2 is a good estimation of the smallest elastic scale for finite Schmidt

numbers;

• a poor spatial resolution reduces the turbulence intensity in the flow but does not significantly modify its
dynamical behaviour;

• the flow solution obtained using zero-di↵usion polymers (Sc = 1) converges as the spatial resolution is increased;

• the discretization necessary to obtain an accurate solution for Sc = 1 depends on the flow conditions and on
the numerical schemes.

These conclusions suggest that the important observations described in the main article are not artefacts of the
numerical approach, but indeed represent the actual physics of such flows.

Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40



- In theory, 

- Most polymer simulations use spectral methods, grid resolution same as 
for Newtonian flow and 

- Our simulations use much finer grid resolution and 

Sc = 1

Sc  0.5

Numerical Experiment: Background
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Why does Schmidt Matter? Because Batchelor 1959

The left hand side of the theoretical FENE-P model carries no diffusive process 
and operates on larger time- and length scales than advection (Dubief et al. 
2005)



Grounds for Assumption 1 (MDR=Newtonian)

active state, although the depth and duration of hibernation
are weakly dependent on the start time.

To better understand these results, we examine more
closely the hibernating period shown in Fig. 3. Several
time instants are selected as marked: (i) is just before
turbulence enters hibernation; (ii) is on the path toward
hibernation; (iii) and (iv) are within hibernation; (v) is after
turbulence becomes reactivated. Figure 4(a) shows instan-
taneous area-averaged velocity profiles in the bottom half
of the channel at these instants, plotted in inner units based
on the instantaneous wall shear stress at the bottom wall
(denoted by the superscript ! rather than þ ). By collapsing
the viscous sublayer behavior onto a single curve, this
choice of scaling best exposes the nature of and differences
between the various time instants shown. In active turbu-
lence (i and v), the profiles fluctuate substantially. Profiles
for snapshots completely in hibernation (iii and iv) are
fundamentally different. In particular, in the range 15 &
y! & 40, both profiles show a clear log-law relationship
with a slope very close to (within 10% of) the Virk MDR
asymptotic slope of 11.7 [1]. (The differences between the
intercepts is smaller than the scatter of the available data.)
The figure also shows the time-averaged mean velocity
profiles for the Newtonian flow (which has a log-law region
in good agreement with the classical result Uþ

mean ¼
2:5 ln yþ þ 5:5) and the flow at Wi ¼ 29, which is, as
expected, intermediate between the Newtonian and MDR
profiles. To illustrate that the choice of scaling does not
affect the conclusion that velocity profiles in hibernation
display a log-law slope close to the Virk results, Fig. 4(b)
shows the curves from time instants iii and iv in conven-
tional wall units. Although shifted downward from the Virk
profile (because the instantaneous wall shear stress is less
than the time-averaged wall shear stress), the log-law slope
remains within 20% of the Virk value. The Newtonian
hibernation periods (not shown, for brevity) are very simi-
lar and the Virk slope is observed there as well.

Figure 4(c) shows flow structures corresponding to time
instants iii and v. Within active periods (v), turbulence
shows the expected highly three-dimensional structure of
streamwise vortices and low-speed streaks [13,18,19].

During hibernation (iii), streamwise vortices are signifi-
cantly weaker; low-speed streaks are still observed, but are
weak and only weakly dependent on x. (The low shear
events observed in the Newtonian MFU study of Webber,
Handler, and Sirovich [14] also display weak streamwise
dependence.) Weak streamwise vorticity and three-
dimensionality are distinct characteristics of the MDR
regime [1,3,4,6,7]. The weak effect of viscoelasticity on
hibernating turbulence may lie in its nearly streamwise-
invariant kinematics. In the limiting case of a streamwise-
invariant steady flow, material lines cannot stretch expo-
nentially [20]; accordingly, polymer stretch in such a flow
will not be substantial. Finally, the Reynolds shear stress
during hibernation drops to very low values relative to
active turbulence, where it peaks at about 0.8; the peak
value during hibernation is about 0.3. Again, this result is
consistent with observations in the MDR regime [8–11].
The qualitative picture that emerges from these simula-

tions is thus the following. Active turbulence generates
substantial stretching of polymer molecules. The resulting
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FIG. 3 (color online). A hibernation event. Thick black lines
are the results at Wi ¼ 29 [200 $ t $ 600 in Fig. 1(b)]. The
lighter (colored) lines are from Newtonian simulations started at
the dots, using velocity fields from the Wi ¼ 29 simulation.
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FIG. 4 (color online). (a) Instantaneous mean velocity profiles
of snapshots i–v [lighter (colored) lines], and time-averaged
profiles in the Newtonian and Wi ¼ 29 cases. (The latter are
plotted in terms of conventional wall units.) (b) Instantaneous
mean velocity profiles from time instants iii and iv plotted in
conventional wall units. For comparison, a downward-shifted
plot of the Virk log law is also shown. (c) Flow structures of
typical snapshots in hibernation (iii) and active turbulence (v).
Green sheets are isosurfaces vx ¼ 0:3; pleats correspond to low-
speed streaks; red tubes are isosurfaces of streamwise-vortex
intensity Q 2D ¼ 0:02, calculated by applying the Q criterion of
vortex identification [25] in the yz plane [5,17].
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Wi L+
z Wi L+

z Wi L+
z Wi L+

z

Newt. 140 16 140 21 170 26 200
8 140 17 150 22 180 27 210

10 140 18 150 23 180 28 230
12 140 19 150 24 200 29 250
14 140 20 160 25 210 30 250

TABLE 1. Spanwise box size L+
z for different Wi used in this study.

step size is determined from the CFL stability condition: for the simulations reported
in this study, since the spatial grid spacing is fixed, a constant time step �t = 0.02 is
used. An artificial diffusivity term 1/(Sc Re)r2↵ with Sc = 0.5 is added to the FENE-
P equation to improve its numerical stability; this magnitude of artificial diffusivity is
no larger than most other studies and should not affect the physical interpretation of
the results (Sureshkumar & Beris 1997; Ptasinski et al. 2003; Housiadas et al. 2005;
Li et al. 2006a; Kim et al. 2007). The detailed numerical algorithm used in this study
is documented in Xi (2009). The computer code used in this study is based on the
Newtonian DNS code ChannelFlow written by Gibson (2009).

As stated earlier, we focus on MFUs. A rigorous MFU search would require box-
size minimization in both x and z directions; considering that the MFU box size should
be determined for each parameter combination (Re,Wi, �,Ex), this would result in
an impractical number of simulation runs. Instead, based on the argument that L+

z
is a more important dimension for the self-sustaining process since it directly limits
the size of streamwise vortices, we fix L+

x = 360 (a typical streamwise box size for
Newtonian MFUs (Jiménez & Moin 1991)) and test different L+

z to determine the
minimal spanwise box size where turbulence sustains for each parameter combination.
Values for L+

z used in this study were determined in a previous study (Xi & Graham
2010b), where details on the box-size minimization are also found; these values are
listed in table 1 for all Wi studied here (other parameters are fixed). There is an
overall trend of L+

z increasing with Wi, consistent with the experimental observation
that streak spacing increases for viscoelastic turbulence (Oldaker & Tiederman 1977;
White et al. 2004); however small deviations from this relationship are observed (see
Wi = 24–27), which are inevitable because of the strong initial-condition dependence
of simulations near the laminar–turbulence transition (for a detailed discussion, see Xi
& Graham (2010b)). The highest Wi studied is 30; at higher Wi turbulence does not
persist for more than O(Re) TUs with any L+

z tested (Xi & Graham 2010b), the exact
cause of which has not yet been fully investigated.

Note that the critical Reynolds number for laminar–turbulence transition in the plane
Poiseuille geometry is Recrit ⇡ 1000 (Nishioka & Asai 1985); our Re is fairly close to
this magnitude and lower than almost all other DNS studies. Reasons for this choice
are two-fold. On the practical side, computation cost grows rapidly with increasing Re.
Although box sizes used in this study are smaller than in others, our simulations are
particularly computationally demanding: first, determination of MFU size requires a
large number of independent runs for each parameter combination; secondly, owing to
the time scale and intermittent nature of the transition into hibernating turbulence,
extremely long dynamical trajectories are required for reasonable statistics. The
size of dynamic data reported in this paper is on average ⇠63 000 (⇠20Re) TUs
for each parameter setting. Beyond the issue of computational cost, working at a

reported here are at Re ¼ 3600, ! ¼ 0:97, b ¼ 5000. The
numerical integration procedure is described in [5].

A rigorous search for MFUs would determine the mini-
mal values of both Lþ

x and Lþ
z , a task involving an imprac-

tically large number of simulations. Here we fix Lþ
x ¼ 360

(which is in the range of streamwise sizes of Newtonian
MFU [13,14]) and vary Lþ

z only. Although both length
scales affect the turbulent dynamics, Lþ

z is arguably the
quantity of more interest, as it controls the scale of the
dominant structures of the flow, the streamwise vortices.

Figure 1 shows time series of instantaneous bulk average
velocity Ubulk and area-averaged shear rate h@vx=@yi at the
top and bottom walls for (a) Newtonian flow and
(b) viscoelastic flow at Wi ¼ 29, where DR% ¼ 26 and
Lþ
z has increased from 140 to 250. In the Newtonian case,

Fig. 1(a), one occasionally observes long-lasting periods
when the shear rate at one or both walls is substantially
lower than the average value of 2—for example the time
interval 3200< t < 3400. By momentum conservation,
the bulk velocity increases during these periods. A similar
observation was made in the Newtonian MFU study of
Webber, Handler, and Sirovich [14]. These periods will be
termed ‘‘hibernation,’’ in contrast to the ‘‘active’’ turbu-
lence found outside them. As Wi increases, hibernation
periods become increasingly frequent [Fig. 1(b)]—since
the bulk velocity increases during these periods, they con-
tribute substantially to drag reduction.

To systematically identify hibernation events, two crite-
ria are used: (1) the area-averaged wall shear rate at one or
both walls drops below a cutoff value h@vx=@yijcutoff ¼
1:8; and (2) it stays there for longer than a certain amount
of time !tcutoff ¼ 50. Hibernating periods so identified are
shown in the middle panels of Fig. 1 as rectangular signals,
on the top or bottom of the plot according to the wall(s) on
which the criterion is satisfied.

Based on this identification scheme, Fig. 2(a) shows, as
functions of Wi, the mean duration of the hibernation
periods TH , mean duration of active periods TA, and frac-
tion of time spent in hibernation FH . Corresponding results
for minimal spanwise box size and level of drag reduction
are in Fig. 2(b). Notice that the average duration TH of a
hibernating period is almost completely insensitive to Wi.
In contrast, the average duration TA of an active turbulence
phase decreases substantially after onset of drag reduction.
Therefore, at high Wi, viscoelasticity compresses the life-
time of active turbulence intervals, while having virtually
no effect on hibernation.
The insensitivity of TH to Wi suggests that flow during

hibernation does not strongly stretch polymer molecules.
Indeed, at Wi ¼ 29 the peak value of h"yyi, which is
closely associated with streamwise-vortex suppression
[12,16,17], drops from about 210 in active turbulence to
about 5 during hibernation, a 40-fold reduction. These
results suggest that hibernation should be very similar in
the Newtonian and viscoelastic cases. To test this possibil-
ity, velocity fields from time instants before and during a
hibernation event at Wi ¼ 29 were used as initial condi-
tions for a Newtonian simulation, the trajectories of which
were then compared with those from the original visco-
elastic simulation. Figure 3 illustrates the original visco-
elastic trajectory (thick black line) as well as Newtonian
trajectories [lighter (colored) lines] started at various
times. For the Newtonian run starting before any sign of
hibernation is observed (t ¼ 205), active turbulence is
sustained. However, runs started from later times show
that once the system begins to enter hibernation, removing
the polymer stress does not cause turbulence to revert to an
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top) and bulk velocity Ubulk as functions of time for typical
segments of (a) Newtonian and (b) viscoelastic (Wi ¼ 29)
simulations. Solid and dashed lines show h@vx=@yi ¼ 2 and
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FIG. 2 (color online). (a) Time scales and fraction of time
spent in hibernation (b) level of drag reduction and spanwise
box size, vs Wi. (At the relatively low Reynolds number con-
sidered here, the flow laminarizes for Wi * 31).
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Grounds for Assumption II (MDR=EIT)

• Simulation for the same parameters, flow domain as previous slide

• Iso contours of positive and negative Q

Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40



Grounds for Assumption II (MDR=EIT)
Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40



Grounds for Assumption II (MDR=EIT)
Wi⌧ = 100



Effect of Schmidt Number in 2D simulation

• EIT disappears  for Schmidt  number lower than 9

Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40

⌘✓ =
⌘Kp
Sc

Batchelor scale
(passive scalar)



Visualization of Polymer Stretch in 2D Flows

• Typical sheet like structure

Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40

4

Viscoelastic flows are stable according the the linear stability theory [31]. Thus, an initial perturbation is necessary
to trigger turbulence. The present methodology uses an alternated blowing-suction transervse excitation [4] added to
the laminar viscoelastic Poiseuille flow during a short period of time to perturb the stable solution. After several flow-
through times, the external excitation is turned o↵ and the flow naturally develops towards its turbulent statistically
steady state.

The channel length is chosen as long as possible to minimize possible numerical e↵ects due to short-range interactions
between highly stretched polymers through the periodic boundaries. A length of L+

x = Lxu⌧/⌫ = 720 is selected for
all the simulations and three-dimensional simulations use a span of L+

z = Lxu⌧/⌫ = 255. It should be noted that EIT
exists in domains with half the streamwise dimension of the present computational domain.

The numerical resolution of the system of equations (1) is performed using second order finite di↵erence schemes
with a staggered variable arrangement [32, 33] which ensures the discrete conservation of mass, momentum and
kinetic energy. The continuity equation is enforced through a fractional step method [34] where a Poisson equation
for pressure is solved in the Fourier-physical space. The system is advanced in time using the Crank-Nicholson semi-
implicit scheme. As mentioned before, the choice of the discretization and the adequacy of the numerical methods have
been verified using code comparison and a mesh sensitivity analysis that is reported in the supplementary material
attached to this paper.

III. RESULTS

Figure 1 shows the instantaneous contours of polymer elongation observed in two-dimensional elasto-inertial tur-
bulence at the statistically steady state. After a su�ciently long simulation time, the flow fully develops into a
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FIG. 1. Instantaneous contours of polymer elongation tr (C) /L2 in two-dimensional simulations. Top: Wi⌧ = 40, bottom:
Wi⌧ = 100.

self-sustained chaotic motion. For the two Weissenberg numbers considered, the elastic and turbulent kinetic energies
fluctuate around their mean values and do not show any sign of decay for more than 100 flow-through times (not shown
here). The existence of a sustained turbulent motion in two-dimensional flows demonstrates the ability of FENE-P
fluid flows to generate turbulence for sub-critical (2D) Reynolds number in wall-bounded planar configurations.

The physical mechanism behind the elasto-inertial instability observed is very similar to the one depicted in [4]
for a similar range of Wi number in three-dimensional flows. Thin sheets of large polymer extension arise from the
stretching and the advection of polymer macromolecules by the solvent. The accumulation of anisotropic elastic stress
in the sheets, in turn, induces velocity fluctuations organized as a train of alternating circular regions of rotational and
extensional topology. The flow inertia of this chaotic motion feeds the polymer stretching mechanism and regenerate
polymer sheets, closing the loop of self-sustained EIT. As the flow is confined in a two-dimensional channel and is thus

Wi⌧ = 100
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Energy Transfer between Flow and Polymer in 2D

• EIT disappears  for Schmidt  number lower than 9

Re⌧ = 84.96, � = 0.97, L = 70.7, Wi⌧ = 40

Co-spectra of TijSij as function of distance from the wall
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- EIT is 2D: For elastic solutions, given the right initial conditions, EIT will 
always exist

- EIT is small scale: The smaller the Reynolds number, the smaller the 
polymer dynamics’ scale

- EIT injects energy into the flow: Without this backward cascade, EIT 
cannot exist

- MDR = EIT: For high elasticity, Newtonian vortices disappear

- MDR is state of drag increase (compared to laminar)

Conclusions



Mechanism of Elasto-Inertial Turbulence

Excitation of extensional sheet flow and 
elliptical pressure redistribution of energy

Increase of extensional 
viscosity in sheets

Formation of sheets of C
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Reb=10000. Effect of Weissenberg number
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Overshoot of drag reduction (DR) Dubief, 2010
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Flow topology

Q =
1

2
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Deformation  rate tensor

Rotation rate tensor

Second invariant of 
velocity gradient tensor

Q>Qth>0 = vortex identification 
method (Hunt et al, CTR 1998, Dubief 
& Delcayre, JoT 2000)
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Schematic of elastic contribution to local turbulent kinetic energy
Dubief et al. JFM 2004, Terrapon et al. JFM 2004

Net effect: Polymers apply a negative torque on near-wall vortices by 
extending in regions of biaxial extensions created by the same vortices 

Mechanism of polymer drag reduction
Turbulence and polymers Mechanism of polymer drag reduction

Mechanism of polymer drag reduction Dubief et al., JFM (2004)
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