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- Minute addition of polymers can result in significant reduction of

friction drag

Drag reduction has an upper limit: Maximum Drag Reduction (MDR)



Open Questions

|. What is the nature of MDR!
® |s it Newtonian (Graham 2004, Procaccia et al. 2008)?

® |s it EIT, Elasto-Inertial Turbulence (Samantha, 2012; Dubief et al.,
2013, Terrapon et al, 2014)?

2. What is the mechanism of EIT?

3. What is the relation between EIT and elastic turbulence?



Motivation
We seek to define the nature of MDR through rigorous numerical
experiments and verification.

Assumption | (Graham 2014, Procaccia et al. 2008):

® MDR’s dynamics intermittently alternates between a laminar edge state and a
weak turbulent state driven by Newtonian coherent structures

® MDR’s velocity profile is logarithmic

Assumption 2 (Samanta et al. 201 3, Dubief et al. 2013, Terrapon et al 2014, Sid et al,
2017)

® MDR s EIT

Fact: MDR’s velocity profile is not logarithmic (White et al. 2012, Elbing et al. 2013)



Method

® Constant pressure-gradient channel
flow simulation

® FENE-P viscoelastic model

® Numerical experiment consists of
3D and 2D minimal channel flow
units with controlled diffusion of
small-scale polymer dynamics
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Viscoelastic Flow Model

FENE-P model for Newtonian flow

reduced model ‘N\I\/,N.
—»

o q: end-to-end vector
polymer molecule g
co“‘.\“\)
Polymer solution parameter
C=C; =q®q=qq _ solvent viscosity

zero-shear polymer solution viscosity

L : Polymer maximum extension

olyvmer relaxation time A2 ,
Wi, = boY — =~ =\

viscous flow time scale U




Governing Equations

® Flow field equations
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® Polymer field equations
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Numerical Methods

® Code |:(Dubief et al. 2004, 2005, 201 3)

e Non-dissipative, energy conserving, O(At?, Az?) finite difference flow
solver

® Polymer advection: O(Ax?’) compact upwind with local artificial
dissipation

® Code 2:(Sid et al,2017)

e Non-dissipative, energy conserving, O(At?, Az?) finite volume flow
solver

® Polymer advection: 3rd or 5th order WENO scheme



Comparison Code I(red) and 2 (low res. black, high res. blue)

Of

—0.25 |-

y/o

—0.75 |

—0.5}

Verification (Sid et al, 201 7)

0

—0.25 |-

—0.75 |

10 20 30 40 0% 10% 20% 30%
U/u, tr (C) /L?

Re, = 84.96, 8 =0.97, L = 70.7, Wi, = 40

|
40%

|
50%



Numerical Experiment: Background
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= In theory, Sc = o0

- Most polymer simulations use spectral methods, grid resolution same as
for Newtonian flow and Sc < 0.5

= Our simulations use much finer grid resolution and Sc > 1



Why does Schmidt Matter? Because Batchelor 1959

Spectra of TKE and scalar variance
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The left hand side of the theoretical FENE-P model carries no diffusive process

and operates on larger time- and length scales than advection (Dubief et al.
2005)



Grounds for Assumption | (MDR=Newtonian) = 2.

step size 1s determined from the CFL stability condition: for the simulations reported
in this study, since the spatial grid spacing is fixed, a constant time step 6 = 0.02 is
used. An artificial diffusivity term 1/(Sc Re)V?a with Sc = 0.5 is added to the FENE-
P equation to improve its numerical stability; this magnitude of artificial diffusivity is
no larger than most other studies and should not affect the physical interpretation of
the results (Sureshkumar & Beris 1997; Ptasinski et al. 2003; Housiadas et al. 2005;
L1 et al. 2006a; Kim et al. 2007). The detailed numerical algorithm used in this study
1s documented in Xi (2009). The computer code used in this study is based on the
Newtonian DNS code ChannelFlow written by Gibson (2009).
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FIG. 2 (color online). (a) Time scales and fraction of time
spent in hibernation (b) level of drag reduction and spanwise
box size, vs Wi. (At the relatively low Reynolds number con-
sidered here, the flow laminarizes for W1 = 31).
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FIG. 4 (color online). (a) Instantaneous mean velocity profiles
of snapshots i—v [lighter (colored) lines], and time-averaged
profiles in the Newtonian and Wi = 29 cases. (The latter are
plotted in terms of conventional wall units.) (b) Instantaneous
mean velocity profiles from time instants iii and iv plotted in
conventional wall units. For comparison, a downward-shifted
plot of the Virk log law is also shown. (c¢) Flow structures of
typical snapshots in hibernation (ii1) and active turbulence (v).
Green sheets are isosurfaces v, = 0.3; pleats correspond to low-
speed streaks; red tubes are isosurfaces of streamwise-vortex
intensity Q,p = 0.02, calculated by applying the Q criterion of
vortex identification [25] in the yz plane [5,17].



Grounds for Assumption || (MDR=EIT)
Re, = 84.96, 3 =0.97, L = 70.7, Wi, = 40
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® Simulation for the same parameters, flow domain as previous slide

® |so contours of positive and negative Q



Grounds for Assumption || (MDR=EIT)
Re, = 84.96, 3 =0.97, L = 70.7, Wi, = 40

(riC)L")y": 0 02 24 06 08 1




Grounds for Assumption || (MDR=EIT)
Wi, = 100
m 1
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Effect of Schmidt Number in 2D simulation
Re. = 84.96. 8 =0.97. L = 70.7. Wi. = 40
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® E|T disappears for Schmidt number lower than 9



Visualization of Polymer Stretch in 2D Flows

Re, = 84.96, 8 =0.97, L = 70.7, Wi, = 40
Wi. = 100

y/o

® Typical sheet like structure
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Spectra of Elastic Energy and TKE
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Energy Transfer between Flow and Polymer in 2D
Re, = 84.96, 3=0.97, L =70.7, Wi, = 40

Co-spectra of T;;S5;; as function of distance from the wall
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Energy Transfer between Flow and Polymer in 2D
Re, = 84.96, 3=0.97, L =70.7, Wi, = 40

Co-spectra of T;;S5;; as function of distance from the wall
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Conclusions

EIT is 2D: For elastic solutions, given the right initial conditions, EIT will
always exist

EIT is small scale:The smaller the Reynolds number, the smaller the
polymer dynamics’ scale

EIT injects energy into the flow:Without this backward cascade, EIT
cannot exist

MDR = EIT: For high elasticity, Newtonian vortices disappear

MDR is state of drag increase (compared to laminar)



Mechanism of Elasto-lnertial Turbulence
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tU,/h=20.0 Mean shear + tU,/h=20.0

Formation of sheets of C

— 0
Re

Excitation of extensional sheet flow and
elliptical pressure redistribution of energy

V- (V-T)? ™ C.(Vu)+ (Vu)'-C—-T
Increase of extensional
viscosity in sheets
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Rep=10000. Effect of Weissenberg number
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Overshoot of drag reduction (DR) Dubief, 2010



Deformation rate tensor

1
S=-(V Vvu
> (Vu+ Vu')
Rotation rate tensor
1

() = 5 (Vu— Vut)

Second invariant of
velocity gradient tensor

_1 2 Q2
Q= (0° -5

Q>Q:>0 = vortex identification
method (Hunt et al, CTR 1998, Dubief
& Delcayre, JoT 2000)

Flow topology

Stable Focus Stretching

Q Unstable Focus Compressing
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Mechanism of polymer drag reduction
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D = N+ E k=5uu, Ea=E, or E;

N is the Newtonian contribution, E is the viscoelastic contribution

Schematic of elastic contribution to local turbulent kinetic energy
Dubief et al. JFM 2004, Terrapon et al. JFM 2004

Net effect: Polymers apply a negative torque on near-wall vortices by
extending in regions of biaxial extensions created by the same vortices



