N₂O flux response to meteorological solicitations and farming practices in a sugar beet crop

Margaux Lognoul, Alain Debacq, Tanguy Manise, Anne De Ligne, Bernard Heinesch and Marc Aubinet. University of Liège – Gembloux Agro-BioTech, 8 Avenue de la Faculté, 5030 Gembloux, Belgium – TERRA, Biosystems Dynamics and Exchanges (BIODYNE).

selgium

Ecosystem :

• Production crop - Sugar beet (2016)

Measurements :

- Wind velocity (Gill HS-50)
- N₂O mixing ratio (Aerodyne Research Inc. QCLaser)

EVALUATION OF UNCERTAINTIES

- Total Random Error (TRE)
 - \Rightarrow Estimated by the RMSD from zero of the covariance function at a far away lag (e.g. 200 s) following Langford et al., 2015.

LA LIBERTÉ DE CHERCHER

Contact:

margaux.lognoul@ulg.ac.be

We considered the TRE dependent from half-hour to half-hour and independent from day to day in error propagation.

• Meteorological and soil conditions (half-hourly monitoring) EC data processed with EddyPro® (LI-COR software)

EC DATA TREATMENT / N₂O specifics

- > Quality of timeseries following Vickers & Mahrt, 1997
 - \Rightarrow Most test parameters need to be adjusted specifically for N₂O timeseries
 - The test for skewness and kurtosis was not relevant
- > Timelags assessed by searching for covariance maximum ⇒ Method suitable during peaks *and* periods of background flux
- Stationarity and turbulence by Foken & Wishura (1996)
 - ⇒ Quality classes (Mauder & Foken, 2004), level 2 discarded
 - Stationarity test suitable for our dataset (no moving hotspot)

> Influence of friction velocity

- \Rightarrow Selection of data to minimize the influence of N_2O flux drivers (fertlization, SWC,...)
- Still, difficult to untie the influence of u* and temperature
- Use of CO_2 fluxes to assess the

Period of time	Absolute / Relative TRE
30 min	0.11 [nmol m ⁻² s ⁻¹] / 30 %
Daily integral	9.5 [µmol m⁻²] / 30 %
Crop budget (219 days)	138.3 [μmol m ⁻²] / 2 %

Sensitivity to spectral correction

- \Rightarrow The uncertainty lies in the choice of the method and in the choice of thresholds for "good half-hours".
- \Rightarrow N₂O budget over the crop season varied from 6 to 8%.

Sensitivity to u* filtering

- \Rightarrow Lowest and highest thresholds determined on a past sugar beet crop (Moureaux et al., 2006).
- Variation of 8.2% in the N_2O budget over the crop season.

Sensitivity to gap-filling

- \Rightarrow Gap-filling was performed at a daily scale using a rectangular moving mean if less than 30 half-hours available in a day.
- Changing the 30 half-hours threshold from two reasonable limits changed the crop budget by less than 2.4%.

How to combine such uncertainties?

These uncertainties were estimated separately but need to be combined to give a unique estimate of the error on the crop budget. The question on the combination method remains.

u* threshold.

RESULTS – Dynamics from fertilization (F) to harvest (H)

Influence of weather and farming practices

- > 30 % of N₂O fluxes were emitted between fertilizer and sowing (S)
 - \Rightarrow Favorable conditions for N₂O production with fertilization (136.5 kg N ha⁻¹) and precipitation $(SWC \sim 40\%)$
- > The first emission burst was inhibited after sowing (significant decrease of 70%)
 - \Rightarrow This suggest that the preparation of seedbed, by disturbing the top soil layer, relocated active micro-organisms at a greater depth which decreased N₂O production.

Daily variability of N₂O fluxes

\succ Cumulated emissions from fertilization to harvest : ~ 6500 µmol N₂O m⁻².

- \Rightarrow This represents a 1.4% loss of N inputs via N₂O emissions, which is in agreement with IPCC 2006 estimates of emission factor for managed soils (1%).
- \Rightarrow When converted to CO₂-eq, it corresponds to **30% of the mean annual NBP** of the experimental site (Buysse et al., 2017).