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In 1987, Mitsuaki Yoshida proposed the following model (Yoshida and Seiki, 1987): “...
T-cells activated through the endogenous p40x would express viral antigens including
the envelope glycoproteins which are exposed on the cell surface. These glycoproteins
are targets of host immune surveillance, as is evidenced by the cytotoxic effects of anti-
envelope antibodies or patient sera. Eventually all cells expressing the viral antigens,
that is, all cells driven by the p40x would be rejected by the host. Only those cells that
did not express the viral antigens would survive. Later, these antigen-negative infected
cells would begin again to express viral antigens, including p40x, thus entering into
the second cycle of cell propagation. These cycles would be repeated in so-called
healthy virus carriers for 20 or 30 years or longer....” Three decades later, accumulated
experimental facts particularly on intermittent viral transcription and regulation by the
host immune response appear to prove that Yoshida was right. This Hypothesis and
Theory summarizes the evidences that support this paradigm.
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INTRODUCTION

At least 20 million people worldwide are infected with human T-cell leukemia virus type 1
(HTLV-1) (Gessain and Cassar, 2012; Bangham, 2017; Watanabe, 2017). This retrovirus is
prevalent in southwestern Japan, sub-Saharan Africa, the Caribbean islands, South America, the
Middle East and Austro-Melanesia. Transmission occurs principally from mother to child via
milk or between sexual partners through contaminated blood. Infected individuals are at risk
of developing a rapidly progressive malignancy, adult T-cell leukemia/lymphoma (ATLL), and
a debilitating neurologic condition, HTLV-1 associated myelopathy/tropical spastic paraparesis
(HAM/TSP) (Willems et al., 2017).

Although frequently neglected in the field, bovine leukemia virus (BLV) is a useful model to
address specific questions that cannot be answered in the HTLV-1 system (Rodríguez et al., 2011;
Polat et al., 2017). Both viruses are indeed closely related δ-retroviruses that induce hematological
diseases. In the bovine species, the most prevalent clinical manifestation in about one-third of
infected animals is persistent lymphocytosis, a benign accumulation of infected B-lymphocytes
(Gutierrez et al., 2014). In a minority of cases (about 5–10%), BLV infection can progress to
fatal leukemia/lymphoma whose most dramatic consequence is spleen hypertrophy and disruption
consecutive to tumor formation. BLV typically persists in less than 1% of peripheral blood cells,
leading to an asymptomatic infection in the majority of infected animals. BLV is transmitted
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horizontally by direct contact, iatrogenic procedures or insect
bites upon transfer of infected cells from milk, blood, and body
fluids from heavily infected dams (Barez et al., 2015).

THE PARADOX: HTLV-1 REPLICATION IS
DRIVEN BY ONCOGENIC PROTEINS
THAT EXPOSE THE INFECTED CELL TO
THE HOST IMMUNE RESPONSE

According to currently most accepted model, two viral proteins
(Tax and HBZ, HTLV-1 bZIP) are hypothesized to have the
highest impact on viral replication and cell transformation
(Matsuoka and Jeang, 2007; Carpentier et al., 2015). The modes
of action of Tax and HBZ are remarkably pleiotropic and
involve a variety of cell signaling pathways (CREB, NF-κB,
AKT, and TNF) (Twizere et al., 2003; Boxus et al., 2008).
Tax inhibits tumor suppressors (p53, Bcl11B, and TP53INP1)
and activates cyclin-dependent kinases (CDKs), both of
these mechanisms leading to accelerated cell proliferation.
Experimental evidence further shows that Tax drives tumor
formation in transgenic mouse models, supporting its oncogenic
potential. Through an interaction with the helicase complex
(mcm2-7), Tax accelerates S phase progression by initiating
additional replication origins. By promoting unscheduled cell
growth, Tax also induces genomic instability and generates
somatic alterations. Another viral protein, HBZ also favors
cell proliferation by inhibiting apoptosis/senescence and
modulating the cell cycle (Ma et al., 2016). In fact, the
HBZ protein counteracts a series of Tax-activated viral
and cellular pathways (such as NF-κB, Akt, and CREB).
Transgenic expression of HBZ in CD4 + T cells induced T-cell
lymphomas and systemic inflammation in mice, resembling
diseases observed in HTLV-1 infected individuals (Satou et al.,
2011).

A major issue of expression of viral proteins is initiation
of the host immune response. Indeed, Tax induces a strong
immune response that would be harmful to infected cells
(Nagai et al., 2001; Kannagi et al., 2005; Rowan et al., 2014).
In comparison, HBZ triggers a less efficient immunity that is
consistent with low expression low expression throughout HTLV-
1 infection (MacNamara et al., 2010). How does HTLV-1 persist
despite a strong immune response against viral oncogenes that
promote infected cell replication? The next paragraph lists the
experimental evidence pertaining to this paradox.

EXPERIMENTAL EVIDENCE AND
INTERPRETATIONS

Evidence 1: Infected Cells Proliferate
Faster to Undergo Clonal Expansion
The BLV model has been instrumental to quantify the dynamics
of cell turnover in vivo (Florins et al., 2007). Experiments
based on intravenous injection of bromodeoxyuridine (BrdU)
and carboxyfluorescein diacetate succinimidyl ester (CFSE)

demonstrate that B-lymphocytes are proliferating significantly
faster in BLV-infected sheep than in healthy controls (Debacq
et al., 2002, 2006). Excess of proliferation is compensated by
an increase in cell death, thereby maintaining homeostasis.
Increased cell proliferation is also reported in HTLV-induced
HAM/TSP using a similar strategy based on incorporation of
deuterated glucose (Asquith et al., 2007). In vivo, BLV and HTLV
infection is thus characterized by an increased cell turnover, likely
driven by viral oncogenes such as Tax and HBZ.

Evidence 2: 5′ LTR Directed Transcription
Is Extremely Low in Situ
The amount of viral RNA transcribed from the 5′ LTR promoter
is extremely low in vivo. In primary tumor cells, only very
sensitive techniques such as RT-PCR can identify viral RNA
transcribed from the 5′ LTR promoter (Lagarias and Radke, 1989;
Rovnak and Casey, 1999; Shimizu-Kohno et al., 2011; Demontis
et al., 2015). It was initially concluded that the provirus is silent.
However, in situ experiments showed that rare cells expressed
large amounts of viral transcripts (Lagarias and Radke, 1989).

Evidence 3: Sense Transcription Can Be
Activated by Various Stimuli
The main regulatory element of the 5′ LTR promoter that
is activated by Tax is a 21 bp enhancer that interacts with
CREB/ATF transcription factors (Suzuki et al., 1993; Adam et al.,
1996). This complex activates sense transcription when cells are
isolated ex vivo from HTLV-1 carriers or BLV-infected sheep.
This reactivation can further be increased by various stimuli such
as polyclonal activators, HDAC inhibitors or oxygen deprivation
(Kerkhofs et al., 1996; Achachi et al., 2005; Tajima and Aida, 2005;
Lezin et al., 2007; Olindo et al., 2011; Kulkarni et al., 2017).

Evidence 4: Immunity against Most Viral
Antigens Is Extremely Efficient While
HBZ Is Poorly Immunogenic
Persistent infection by BLV and HTLV-1 is characterized by
a permanent and vigorous immunity against viral antigens
(Kannagi et al., 2005; Burbelo et al., 2008; Bangham et al.,
2009; Kattan et al., 2009). This immune response efficiently
controls viral replication in vivo as demonstrated in the
BLV model (Florins et al., 2006, 2009, 2011; Gillet et al.,
2013). Among viral proteins, Tax is the immunodominant
HTLV-1 antigen in the T-cell response (Kannagi et al., 1991;
Goon et al., 2004). In contrast, the HBZ protein is very
poorly immunogenic and expressed at very low levels in
infected cells (Suemori et al., 2009; Enose-Akahata et al.,
2013; Rowan et al., 2014; Raval et al., 2015; Baratella et al.,
2017). Humoral immunity against HBZ protein is indeed
particularly weak (Raval et al., 2015; Shiohama et al., 2016).
However, cytotoxic T cells specific to HBZ but not to the
immunodominant Tax are the most effective in the control
of HTLV-1 (MacNamara et al., 2010). These results thus
focus attention on the extremely low expression and low
immunogenicity of HBZ.
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Evidence 5: Antisense Transcripts and
microRNAs Are Abundantly and
Permanently Expressed in Tumors
In contrast to 5′ LTR directed transcription, antisense RNA
synthesis initiating at the 3′ LTR is consistently identified in
primary ATL cells and BLV tumors (Usui et al., 2008; Saito
et al., 2009; Durkin et al., 2016). In contrast to HTLV-1, BLV
also abundantly transcribes a cluster of microRNAs from internal
pol III promoters (Kincaid et al., 2012; Rosewick et al., 2013;
Van Driessche et al., 2016). These microRNAs are required for
efficient viral replication and induction of pathogenesis (Gillet
et al., 2016).

Evidence 6: HBZ and AS RNAs Are
Mainly Localized in the Nucleus
Suggesting a Role in Epigenetics
The HBZ RNA is mainly localized in the nucleus, consistent
with a low rate of translation (Hivin et al., 2005; Rende et al.,
2011; Shimizu-Kohno et al., 2011; Li et al., 2012; Raval et al.,
2015). Although the function of the HBZ protein has been
clearly evidenced, the dominant nuclear localization of the HBZ
RNA thus suggests other regulatory roles such as for example
epigenetic modulation of gene expression. In BLV, the antisense
transcripts are not predicted to be translated but are rather
primarily retained in the nucleus, hinting at a lncRNA-like role
(Durkin et al., 2016).

Evidence 7: Untranslated HBZ RNA Has
a Function
The oncogenic role of the HBZ RNA was revealed by an
untranslatable HBZ RNA (i.e., devoid of initiation codon) able
to induce the proliferation of a human IL-2-dependent T-cell
line (Kit225) (Satou et al., 2006). Microarray expression analysis
reveals that HBZ RNA and protein differentially modulate the
transcription of host genes. HBZ RNA activates the transcription
of survivin and cell-cycle related genes (Mitobe et al., 2015).
Thus, the HBZ gene has bimodal functions in two different
molecular forms as a polypeptide and a ribonucleic acid.
Notwithstanding important activities as protein, the scarcity of
the HBZ polypeptide in tumor cells contrasts with the expression
of the HBZ RNA. Therefore, main functions of HBZ are exerted
by its RNA form. Although the level of expression of HBZ protein
is unquestionably very low, the protein must nevertheless play
an essential role in the life-cycle of the virus because the coding
sequence has been conserved during evolution in presence of a
protective host immune response.

Evidence 8: Alternate Transcription of
Sense and Antisense Transcription
Single cell analysis shows that the Tax RNA is expressed
in bursts and is exported from the nucleus, whereas the
majority of hbz RNA is retained (Billman et al., 2017).
Time-lapse imaging of destabilized enhanced green fluorescent
protein indicates that Tax expression is transient, fluctuates
between on/off states and is detected only in HBZ-negative

FIGURE 1 | Hypothetical model combining temporal regulation of viral
expression allowing escape from host immunity. Sense transcription (red
arrow) directed by the 5′ LTR promoter allows translation of the TAX protein
(red ellipse) and synthesis of the viral particle (red hexagon). The antisense
strand is transcribed in a HBZ (HTLV-1) and (AS) BLV RNA (green arrow) and
protein (ellipse hatched in red). BLV, but not HTLV, also encodes RNA
polymerase III driven microRNAs (hatched green arrow). Burst of sense
transcription (red line on the time graph at the left) transiently exposes infected
cells to the immune response: cytotoxic T cells (CTL), antibodies from
B-lymphocytes (B) and macrophages (mφ). Silencing of sense transcription,
for example by initiating antisense RNA synthesis (graph on the right) allows
further cell proliferation.

cells (Jasunaga and Matsuoka, 2017; Mahgoub et al., 2017).
Viral persistence is thus characterized by successive cycles of
sense/antisense transcription. Evidence from single-molecular
RNA-FISH nevertheless indicates a more complex relationship
between expression of the two strands that are not transcribed
in strict alternation (Billman et al., 2017).

A MODEL FOR VIRAL PERSISTENCE
UNDER IMMUNE CONTROL

These experimental evidences are consistent with the model
presented in Figure 1 and support Yoshida’s paradigm.

BLV/HTLV proviruses are transcribed in both orientations.
Sense transcription from the 5′ LTR (red arrow) generates
genomic and spliced subgenomic RNAs (e.g., Tax). Translation
of these RNAs into oncogenic proteins (Tax) triggers cell
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proliferation, mitosis, and clonal expansion of the infected cell.
Synthesis of structural (gag, env) and enzymatic (protease,
reverse transcriptase, and integrase) proteins are required
for assembly of the viral particle (red hexagon) that will
further colonize new target cells. The provirus is also
transcribed in the antisense orientation from the 3′ LTR
(green arrow) yielding HBZ and AS RNAs for HTLV and
BLV, respectively. HBZ is very poorly translated while the
coding potential of AS is ambiguous (hatched in red).
Furthermore, the immunogenicity of HBZ is weak compared
to all other viral antigens. BLV, but not HTLV, also encodes
RNA polymerase III driven microRNAs (hatched green
arrow). RNA synthesis from the 5′ LTR is mostly silent but
burst of sense transcription (red line on the time graph)
transiently exposes infected cells to the immune response
(e.g., cytotoxic, humoral, and innate). The only option that
allows survival is to silence sense transcription, for example
by initiating antisense RNA synthesis (graph on the right).
This simplified model is nevertheless incomplete because
the infected cell is also exposed to the CTL response to
HBZ providing that the protein is expressed. Experimental
evidence indicates that the HBZ RNA is mostly nuclear
and is therefore not translated. Single cell kinetics of RNA
and protein expression would answer to this still unsolved
question. Another issue is the role of the intrinsic immunity
operating within virus-infected cells, i.e., restriction factors
(RFs) inhibiting Tax function or reverse transcription of viral
genome (Tosi et al., 2011; Bai and Nicot, 2015; Forlani et al.,
2016).

CONCLUSION

Yoshida predicted that the Tax oncogene should be expressed
in cycles to allow cell survival. Recent reports describing
bursts between sense and antisense transcriptions are consistent
with this hypothesis. Regular switches between 5′ and 3′

transcription indeed allows transient Tax expression and fast

silencing of viral expression. This mechanism would allow
Tax-driven cell proliferation and synthesis of viral particles in
presence of the host immunity. This model thus illustrates
the dynamic equilibrium between a virus attempting to
proliferate under a tight control exerted by the immune
response.
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