The role of sediment resuspension in biogeochemical cycling across continental shelves A modelling study of the Black Sea system

Arthur Capet,^{1,3} Filip J. R. Meysman ,² Karline Soetaert , ² and Marilaure Grégoire ³

¹CNR, OGS, Trieste, Italy

²NIOZ, Yerseke, The Netherlands

³Oceanology Laboratory, University of Liège, Belgium

TURBINTERMARS, Trieste, February 2015

Context The Black Sea Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion

Northwestern shelf

- ► < 120 m
- Large freshwater and nutrient inputs

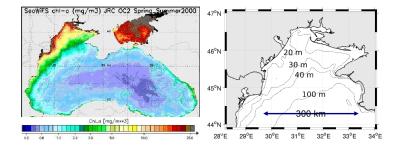
Central basin

- 120 2000 m
- Strong stratification

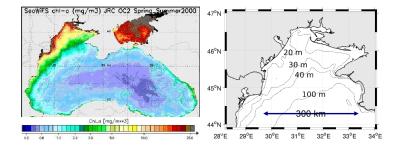


Northwestern shelf

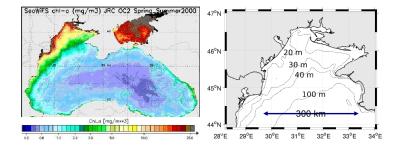
- ► < 120 m
- Large freshwater and nutrient inputs


Central basin

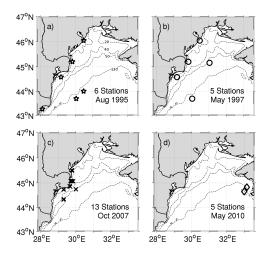
- 120 2000 m
- Strong stratification

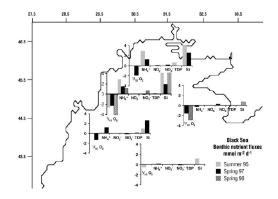


Objectives:

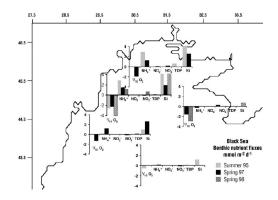

Resolve biogeochemical budgets across River-Shelf-Basin continuum.

 Dunne et al., 2007 : 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).


- Dunne et al., 2007 : 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).
- Grégoire and Friedrich, 2004: ~ 50% of N inputs removed by benthic denitrification and burial.


- Dunne et al., 2007 : 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).
- Grégoire and Friedrich, 2004: ~ 50% of N inputs removed by benthic denitrification and burial.

 \rightarrow Importance of benthic-pelagic coupling to represent the shelf biogeochemistry


- Benthic-dissolved fluxes are expensive measurements.
- Few available data

- Benthic-dissolved fluxes are expensive measurements.
- Few available data
- Large variability

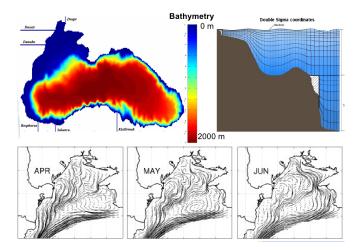
- Benthic-dissolved fluxes are expensive measurements.
- Few available data
- Large variability

Technical requirement: set up a bentic-pelagic coupled model resolving the variability of benthic solutes fluxes

Context

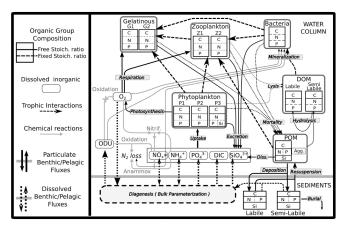
The Black Sec Objectives

Model(s)

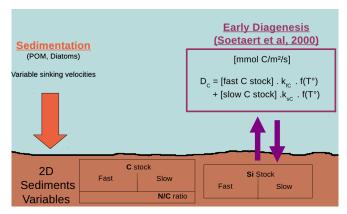

Diagenetic variability

The role of sediments resuspension

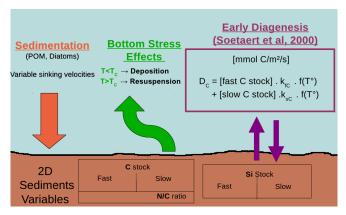
Conclusion


GHER 3D Hydrodynamic Model

Hydrostatic model, Double Sigma coordinates, Real time forcings (ECMWF) Provides : T, S, TKE, U, V, η


GHER 3D Biogeochemical Model

Provides : C, N, P, Si, O2 cycling through various forms.


Benthic-Pelagic coupling

Provides : Fluxes at the sediment water interface.

Benthic-Pelagic coupling

Provides : Fluxes at the sediment water interface.

Benthic-Pelagic coupling

 $\begin{aligned} \tau &= \tau_{currents} + \tau_{waves} \\ \tau_{currents} &\leftarrow \text{(GHER model)} \\ \tau_{waves} &\leftarrow \text{(WAM model, offline)} \end{aligned}$

Kandilarov and Stanev, 2012

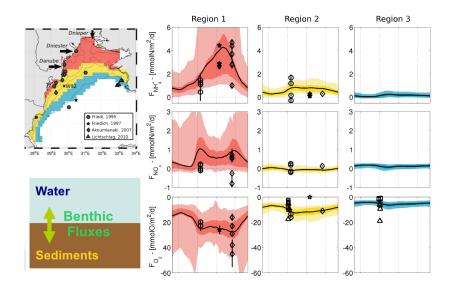
 τ^{f} : Critical stress for deposition and erosion of S^{f} . τ^{s} : Critical stress for erosion of S^{s} .

Deposition	Resusp. S ^f	Resusp. S ^s
$ au < au^{f}$	$\tau^f < \tau$	$\tau^{\mathfrak{s}} < \tau$

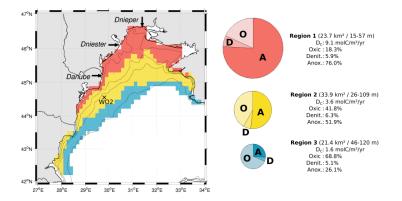
 $P = (1 - \frac{\tau}{\tau^{f}}).w_{POM}.[POM] \quad P^{f} = (\frac{\tau}{\tau^{f}} - 1).Me^{f} \quad P^{s} = (\frac{\tau}{\tau^{s}} - 1).Me^{s}$

Context

The Black Sea Objectives


Model(s)

Diagenetic variability


The role of sediments resuspension

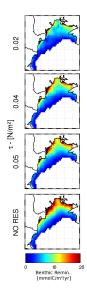
Conclusion

Fluxes Validation

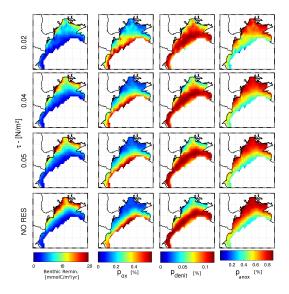
Diagenetic variability

Context

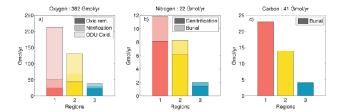
The Black Sea Objectives

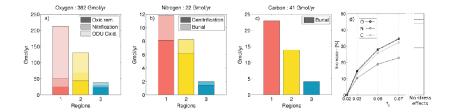

Model(s)

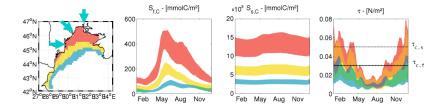
Diagenetic variability

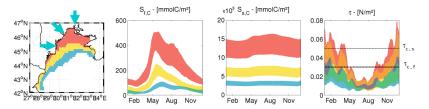

The role of sediments resuspension

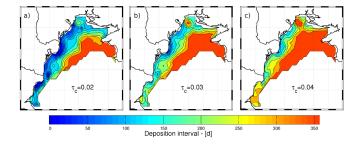
Conclusion


Bottom stress effects impact on spatial variability

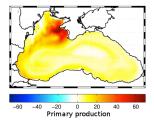

Bottom stress effects impact on spatial variability


Bottom stress effects impact on shelf budgets


Bottom stress effects impact on shelf budgets

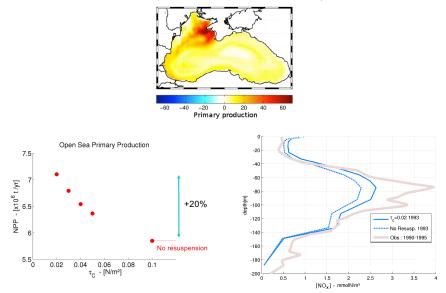


Bottom stress effects impact on seasonal variability


Bottom stress effects impact on seasonal variability

Bottom stress effects impact on basin budgets

Relative increase: $au_{dep} = 0.02$ compared to $au_{dep} = 0.05$ N/m^2


Bottom stress effects impact on basin budgets

Relative increase: $au_{dep} = 0.02$ compared to $au_{dep} = 0.05$ N/m^2

Bottom stress effects impact on basin budgets

Relative increase: $\tau_{dep} = 0.02$ compared to $\tau_{dep} = 0.05$ N/m²

Context

The Black Sea Objectives

Model(s)

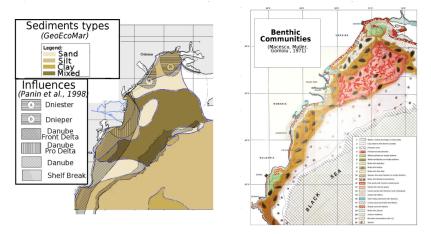
Diagenetic variability

The role of sediments resuspension

Conclusion

 Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- > The calibration of bottom stress effects at shelf scale ...
 - .. is difficult AND bears large scale impacts,


- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- > The calibration of bottom stress effects at shelf scale ...
 - .. is difficult AND bears large scale impacts,
 - affects the biogeochemical "filtering" capacity of the shelf

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- The calibration of bottom stress effects at shelf scale ...
 - .. is difficult AND bears large scale impacts,
 - affects the biogeochemical "filtering" capacity of the shelf
 - .. and, consequently, basin scale budgets.

What's next?

Big gaps in this study :

- Fixed roughness length
- Fixed critical resuspension thresold and erodability constant

Thank you for your attention