The role of sediment resuspension in biogeochemical cycling across continental shelves
A modelling study of the Black Sea system

Arthur Capet,1,3 Filip J. R. Meysman,2 Karline Soetaert,2 and Marilaure Grégoire3

1CNR, OGS, Trieste, Italy
2NIOZ, Yerseke, The Netherlands
3Oceanology Laboratory, University of Liège, Belgium

TURBINTERMARS, Trieste, February 2015
Context
The Black Sea
Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion
Northwestern shelf
- < 120 m
- Large freshwater and nutrient inputs

Central basin
- 120 - 2000 m
- Strong stratification

Objectives:
Resolve biogeochemical budgets across River-Shelf-Basin continuum.
Northwestern shelf
- < 120 m
- Large freshwater and nutrient inputs

Central basin
- 120 - 2000 m
- Strong stratification

Objectives:
Resolve biogeochemical budgets across River-Shelf-Basin continuum.
Dunne et al., 2007: 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).
Dunne et al., 2007: 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).

Grégoire and Friedrich, 2004: ~50% of N inputs removed by benthic denitrification and burial.
Dunne et al., 2007: 30% of NPP reach the sediments in region <50 m (18% for 50-200 m).

Grégoire and Friedrich, 2004: ~50% of N inputs removed by benthic denitrification and burial.

→ Importance of benthic-pelagic coupling to represent the shelf biogeochemistry
- Benthic-dissolved fluxes are expensive measurements.
- Few available data
- Benthic-dissolved fluxes are expensive measurements.
- Few available data
- Large variability
- Benthic-dissolved fluxes are expensive measurements.
- Few available data
- Large variability

Technical requirement: set up a bentic-pelagic coupled model resolving the variability of benthic solutes fluxes
Context
The Black Sea
Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion
GHER 3D Hydrodynamic Model

Hydrostatic model, Double Sigma coordinates, Real time forcings (ECMWF)
Provides: T, S, TKE, U, V, \(\eta \)
GHER 3D Biogeochemical Model

Provides: C, N, P, Si, O2 cycling through various forms.
Benthic-Pelagic coupling

Provides: Fluxes at the sediment water interface.
Benthic-Pelagic coupling

Provides: Fluxes at the sediment water interface.

Sedimentation (POM, Diatoms)

Variable sinking velocities

Bottom Stress Effects

$T < T_c \rightarrow$ Deposition

$T > T_c \rightarrow$ Resuspension

Early Diagenesis (Soetaert et al, 2000)

[mmol C/m²/s]

$D_c = [\text{fast C stock}] \cdot k_{tc} \cdot f(T^o)$

$+ [\text{slow C stock}] \cdot k_{sc} \cdot f(T^o)$

2D Sediments Variables

C stock

Fast

Slow

N/C ratio

Si Stock

Fast

Slow
Benthic-Pelagic coupling

\[\tau = \tau_{\text{currents}} + \tau_{\text{waves}} \]

\(\tau_{\text{currents}} \leftarrow (\text{GHER model}) \)

\(\tau_{\text{waves}} \leftarrow (\text{WAM model, offline}) \)

Kandilarov and Stanev, 2012

\(\tau^f \): Critical stress for deposition and erosion of \(S^f \).

\(\tau^s \): Critical stress for erosion of \(S^s \).

<table>
<thead>
<tr>
<th></th>
<th>Deposition</th>
<th>Resusp. (S^f)</th>
<th>Resusp. (S^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau < \tau^f)</td>
<td>(\tau^f < \tau)</td>
<td>(\tau^s < \tau)</td>
<td></td>
</tr>
</tbody>
</table>

\[P = (1 - \frac{\tau}{\tau^f}).w_{\text{POM}}.[\text{POM}] \]

\[P^f = (\frac{\tau}{\tau^f} - 1).M_{\text{f}} \]

\[P^s = (\frac{\tau}{\tau^s} - 1).M_{\text{s}} \]
Context
The Black Sea
Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion
Fluxes Validation

Water

Benthic Fluxes

Sediments
Diagenetic variability

Region 1 (23.7 km² / 15-57 m)
- D_C: 9.1 molC/m²/yr
- Oxic: 18.3%
- Denit.: 5.9%
- Anox.: 76.0%

Region 2 (33.9 km² / 26-109 m)
- D_C: 3.6 molC/m²/yr
- Oxic: 41.8%
- Denit.: 6.3%
- Anox.: 51.9%

Region 3 (21.4 km² / 46-120 m)
- D_C: 1.6 molC/m²/yr
- Oxic: 68.8%
- Denit.: 5.1%
- Anox.: 26.1%
Context
The Black Sea
Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion
Bottom stress effects impact on spatial variability
Bottom stress effects impact on spatial variability
Bottom stress effects impact on shelf budgets
Bottom stress effects impact on shelf budgets
Bottom stress effects impact on seasonal variability
Bottom stress effects impact on seasonal variability
Bottom stress effects impact on basin budgets

Relative increase: \(\tau_{dep} = 0.02 \) compared to \(\tau_{dep} = 0.05 \text{ N/m}^2 \)
Bottom stress effects impact on basin budgets

Relative increase: $\tau_{\text{dep}} = 0.02$ compared to $\tau_{\text{dep}} = 0.05 \text{ N/m}^2$
Bottom stress effects impact on basin budgets

Relative increase: $\tau_{dep} = 0.02$ compared to $\tau_{dep} = 0.05$ N/m2
Context
The Black Sea
Objectives

Model(s)

Diagenetic variability

The role of sediments resuspension

Conclusion
Conclusions

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
Conclusions

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- The calibration of bottom stress effects at shelf scale...
 - .. is difficult AND bears large scale impacts,
Conclusions

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- The calibration of bottom stress effects at shelf scale...
 - Is difficult AND bears large scale impacts,
 - Affects the biogeochemical “filtering” capacity of the shelf.
Conclusions

- Considering sediment resuspension is necessary to reproduce the variability of benthic dissolved fluxes.
- The calibration of bottom stress effects at shelf scale is difficult AND bears large scale impacts,
 - affects the biogeochemical “filtering” capacity of the shelf
 - and, consequently, basin scale budgets.
What’s next?

Big gaps in this study:
- Fixed roughness length
- Fixed critical resuspension threshold and erodability constant
Thank you for your attention