### Benthox Kick-Off Meeting

Liège, November 2015

### Context & Previous works

The Black Sea The Model(s) Diagenetic variability Hypoxia

Benthox

### Context & Previous works The Black Sea

The Model(s) Diagenetic variability Hypoxia

Benthox

### The Black Sea

- Enclosed
- Large river discharge
- stratification







To understand biogeochemical cycling in the Black Sea basin, one should understand

the shelf "filtering" of terrestrial inputs.



To understand biogeochemical cycling in the Black Sea basin, one should understand

- ► the shelf "filtering" of terrestrial inputs.
- the exchanges between coastal and central basin.



### Context & Previous works

### The Black Sea The Model(s) Diagenetic variabilit Hypoxia

Benthox

## GHER 3D Hydrodynamic Model

Hydrostatic model, Double Sigma coordinates, Real time forcings (ECMWF) Provides : T, S, TKE, U, V,  $\eta$ 



### GHER 3D Biogeochemical Model

Provides : C, N, P, Si, O2 cycling through various forms.



Provides : Fluxes at the sediment water interface.



### Context & Previous works

The Black Sea The Model(s) Diagenetic variability Hypoxia

Benthox

### Diagenetic variability



### Fluxes Validation



### Context & Previous works

The Black Sea The Model(s) Diagenetic variability Hypoxia

Benthox



#### Oxygen records (World ocean atlas, Seadatanet, Black Sea Comission data)

Hypoxic records (<62 mmol O/m<sup>3</sup>)











## Missing !





### Context & Previous works

The Black Sea The Model(s) Diagenetic variability Hypoxia

### Benthox

## Key Questions

- 1. What is the impact of bottom hypoxia on benthic nutrient cycling, benthic-pelagic fluxes and the activity of benthic organisms?
- 2. Which (paleo)-proxies can be used to reconstruct the long term history of hypoxia?
- 3. Which tools can be used to provide management strategies that will control the level of bottom hypoxia and preserve the Good Environmental Status (GES) of marine waters?
- 4. Which tools can be used to investigate and differentiate the drivers of bottom hypoxia?

### Flows between Work Packages

## Gantt

### Benthos $\rightarrow$ Hypoxia I

Mediation of diagenesis

### $\text{Benthos} \to \text{Hypoxia} \ \text{II}$

Which formalism for bioirrigation ?

## 1D Diagenetic Model Calibration

- Porosity : impacts on diffusion (tortuosity), interpretation of solid/dissolved transfer, Adsoprtion
- DIC, OC, O2 and DIC flux : Mineralization rates, lability distribution
- Radio Tracers: sedimentation rate, mixed layer depth
- DIC, NOx, NH3 : Nitr/Denitr
- Incubation Fluxes : Bio-Irrigation
- Macrobenthos : Bioturbation, Bio-irrigation
- Phosphate and Metals : P-cycling

## **Community Bioturbation Potential**

Trait-based approach intending to set a tractable link between benthic biology, and biogeochemical studies.

$$BP_c = \sum_{i=1}^{n} \sqrt{B_i / A_i} . A_i . M_i . R_i$$
<sup>(1)</sup>

- B<sub>i</sub> biomass of species/taxon i
- A<sub>i</sub> abundance of species/taxon i
- *M<sub>i</sub>* Mobility (1) Fixed tube ; (2) Limited movements; (3) Slow, free movements through sediment matrix, (4) free movement through burrow system
- *R*<sub>i</sub> Reworking: (1) Epifauna ; (2) Surficial modifiers; (3) Upwards and downwards conveyor (4) Biodiffusor (5) Regenerators

Not quantitatively related to  $D_b$  but innovative tool to exploit historical datasets.

# P Cycling I

- Mineralization(I,II) ( $k_G, G_\infty$ )
- Reversible Eq. P adsorp. (I,II) (K<sub>eq,I,eq,II</sub>)
- Reversible kin. P adsorp. on Fe-O
   (I) (k<sub>s</sub>, C<sub>s</sub>)

- ► Dissolut. of Fe-O (II)  $\rightarrow$  release of Fe-bound P ( $k_M, M_\infty$ )
- Precipitation of Ca-P (e.g Apatithe) (II)  $(k_A, A_\infty)$

# P Cycling II