

Benthox Kick-Off Meeting

Liège, November 2015

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

The Black Sea

- ▶ Enclosed
- ▶ Large river discharge
- ▶ stratification

North Western Shelf

87 % of the
BS Riverine
Discharge

Open Sea : Production driven by the
Shelf-Open Sea Export

To understand biogeochemical cycling in the Black Sea basin, one should understand

- ▶ the shelf “filtering” of terrestrial inputs.

To understand biogeochemical cycling in the Black Sea basin, one should understand

- ▶ the **shelf “filtering”** of terrestrial inputs.
- ▶ the **exchanges** between coastal and central basin.

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

GHER 3D Hydrodynamic Model

Hydrostatic model, Double Sigma coordinates, Real time forcings (ECMWF)
Provides : T, S, TKE, U, V, η

GHER 3D Biogeochemical Model

Provides : C, N, P, Si, O₂ cycling through various forms.

Benthic-Pelagic coupling

Provides : Fluxes at the sediment water interface.

Benthic-Pelagic coupling

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

Diagenetic variability

Region 1 ($23.7 \text{ km}^2 / 15-57 \text{ m}$)
 $D_c: 9.1 \text{ molC/m}^2/\text{yr}$
Oxic : 18.3%
Denit.: 5.9%
Anox.: 76.0%

Region 2 ($33.9 \text{ km}^2 / 26-109 \text{ m}$)
 $D_c: 3.6 \text{ molC/m}^2/\text{yr}$
Oxic : 41.8%
Denit.: 6.3%
Anox.: 51.9%

Region 3 ($21.4 \text{ km}^2 / 46-120 \text{ m}$)
 $D_c: 1.6 \text{ molC/m}^2/\text{yr}$
Oxic : 68.8%
Denit.: 5.1%
Anox.: 26.1%

Fluxes Validation

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

Hypoxia

Oxygen records
(*World ocean atlas, Seadatanet, Black Sea Commission data*)

Hypoxic records
($<62 \text{ mmol O}/\text{m}^3$)

Hypoxia

Hypoxia

- (1) High nitrogen riverine discharge enhance the influx of organic matter to bottom waters
- (2) High sedimentary organic carbon content enhances the benthic oxygen consumption.
- (3) Warm springs reduce the ventilation and set summer bottom temperature.
- (4) Warm summers extend the duration of the stratified period.

Hypoxia

1980-1987

1988-1995

1996-2002

2003-2009

Hypoxia

Missing !

Context & Previous works

The Black Sea

The Model(s)

Diagenetic variability

Hypoxia

Benthox

Key Questions

1. What is the impact of bottom hypoxia on benthic nutrient cycling, benthic-pelagic fluxes and the activity of benthic organisms?
2. Which (paleo)-proxies can be used to reconstruct the long term history of hypoxia?
3. Which tools can be used to provide management strategies that will control the level of bottom hypoxia and preserve the Good Environmental Status (GES) of marine waters?
4. Which tools can be used to investigate and differentiate the drivers of bottom hypoxia?

Flows between Work Packages

Gantt

Benthos → Hypoxia I

Mediation of diagenesis

Benthos → Hypoxia II

Which formalism for bioirrigation ?

1D Diagenetic Model Calibration

- ▶ Porosity : impacts on diffusion (tortuosity), interpretation of solid/dissolved transfer, Adsorption
- ▶ DIC, OC, O₂ and DIC flux : Mineralization rates, lability distribution
- ▶ Radio Tracers: sedimentation rate, mixed layer depth
- ▶ DIC, NO_x, NH₃ : Nitr/Denitr
- ▶ Incubation Fluxes : Bio-Irrigation
- ▶ Macrobenthos : Bioturbation, Bio-irrigation
- ▶ Phosphate and Metals : P-cycling

Community Bioturbation Potential

Trait-based approach intending to set a tractable link between benthic biology, and biogeochemical studies.

$$BP_C = \sum_{i=1}^n \sqrt{B_i/A_i} \cdot A_i \cdot M_i \cdot R_i \quad (1)$$

B_i biomass of species/taxon i

A_i abundance of species/taxon i

M_i Mobility (1) Fixed tube ; (2) Limited movements; (3) Slow, free movements through sediment matrix, (4) free movement through burrow system

R_i Reworking: (1) Epifauna ; (2) Surficial modifiers; (3) Upwards and downwards conveyor (4) Biodiffusor (5) Regenerators

Not quantitatively related to D_b but innovative tool to exploit historical datasets.

P Cycling I

- ▶ Mineralization(I,II) (k_G, G_∞)
- ▶ Reversible Eq. P adsorp. (I,II)
($K_{eq,I,eq,II}$)
- ▶ Reversible kin. P adsorp. on Fe-O (I) (k_s, C_s)
- ▶ Dissolut. of Fe-O (II) → release of Fe-bound P (k_M, M_∞)
- ▶ Precipitation of Ca-P (e.g Apatithe) (II) (k_A, A_∞)

P Cycling II

