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Manufacturing of fiber glass for composite materials 

 

• Manufacturing process consists in drawing a 

glass melt into fibers  

 

• Main challenge:   fiber breakage 

 Shut down of forming position 

 Unrecyclable glass waste 

 Barrier to optimization 
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Goal:  Understand the underlying physics of the break 
 Physical modelling of the fiber 

 Experimental investigation  
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Manufacturing process 
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Glass melt 

𝑻 ≈ 𝟏𝟑𝟎𝟎°𝐂 

𝑻 ≈ 𝟐𝟎°𝐂 

𝒅 ≈ 𝟏 𝐦𝐦 

𝒅 ≈ 𝟏𝟎 𝛍𝐦 

𝟐𝟎 𝐦/𝐬 



MTFC 
RESEARCH GROUP 

MTFC 
RESEARCH GROUP 

Manufacturing process 
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Bushing plate 

Glass melt 

𝑻 ≈ 𝟏𝟑𝟎𝟎°𝐂 

𝑻 ≈ 𝟐𝟎°𝐂 

𝒅 ≈ 𝟏 𝐦𝐦 

𝒅 ≈ 𝟏𝟎 𝛍𝐦 

𝟐𝟎 𝐦/𝐬 
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Manufacturing process 
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Bushing plate Tip 

Glass melt 

𝑻 ≈ 𝟏𝟑𝟎𝟎°𝐂 

𝑻 ≈ 𝟐𝟎°𝐂 

𝒅 ≈ 𝟏 𝐦𝐦 

𝒅 ≈ 𝟏𝟎 𝛍𝐦 

𝟐𝟎 𝐦/𝐬 
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Physics of the forming of a single fiber 
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Newtonian  

viscous flow 

Viscoelastic flow 

Elastic solid 

Rheology 

Glass melt 

𝑻 > 𝑻𝐠 

Glass  

transition 

𝑻 ≈ 𝑻𝐠 

Glassy state 

𝑻 < 𝑻𝐠 

Glass state 

𝑻 ≈ 𝟏𝟑𝟎𝟎°𝐂 

𝑻 ≈ 𝟐𝟎°𝐂 

𝑻𝐠 ≈ 𝟕𝟓𝟎°𝐂 
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Physics of the forming of a single fiber 
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Newtonian  

viscous flow 
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Elastic solid 
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Governing equations 

Mass conservation:      

 

 

 

 

Momentum conservation:   

 

  

 

 

Energy conservation:  
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𝐷 𝜌𝐶𝑝𝑇

𝐷𝑡
=  𝜎: 𝛻𝒗 −  𝛻. 𝒒𝒄𝒐𝒏𝒅 

 
𝐷𝜌

𝐷𝑡
= 0 

𝐷 𝜌𝒗

𝐷𝑡
= 𝛻. 𝝈 + 𝒇 
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Energy conservation:  
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𝐷𝜌

𝐷𝑡
= 0 

𝐷 𝜌𝒗

𝐷𝑡
= 𝛻. 𝝈 + 𝒇 

 Newtonian flow   

 𝝈 = −𝑝𝐈 + 2𝜂𝐃 

𝐷 𝜌𝐶𝑝𝑇

𝐷𝑡
=  𝜎: 𝛻𝒗 −  𝛻. 𝒒𝒄𝒐𝒏𝒅 
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Governing equations 

Mass conservation:      

 

 

 

 

Momentum conservation:   

 

  

 

 

Energy conservation:  
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𝐷𝜌

𝐷𝑡
= 0 

𝐷 𝜌𝒗

𝐷𝑡
= 𝛻. 𝝈 + 𝒇 

Coupled 

mainly through  

viscosity 

 Newtonian flow   

 𝝈 = −𝑝𝐈 + 2𝜼𝐃 

𝐷 𝜌𝐶𝑝𝑇

𝐷𝑡
=  𝜎: 𝛻𝒗 −  𝛻. 𝒒𝒄𝒐𝒏𝒅 

Fulcher law 

 𝜂 = 10
−𝐴+ 

𝐵

𝑇−𝑇0 



MTFC 
RESEARCH GROUP 

MTFC 
RESEARCH GROUP 

Boundary conditions 
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𝑸𝟎 

𝑻𝟎 

• At tip:    

 - Flow rate (Poiseuille law) 𝑄0 𝑇  

 - Constant temperature 𝑇0 

 

• At surface:   

 - Free surface & surface tension 
  - Heat fluxes: 

 
𝑞 = 𝜀𝜎 𝑇4 − 𝑇𝑒𝑛𝑣,𝑟𝑎𝑑

4 + ℎ 𝑧 𝑇 − 𝑇𝑒𝑥𝑡 𝑧  

           

 

 

• At outlet:    

 - Drawing velocity 𝑣𝑓 
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Boundary conditions 

ESG 2014 

• At tip:    

 - Flow rate (Poiseuille law) 𝑄0 𝑇  

 - Constant temperature 𝑇0 

 

• At surface:   

 - Free surface & surface tension 
  - Heat fluxes: 

 
𝑞 = 𝜀𝜎 𝑇4 − 𝑇env,rad

4 + ℎ 𝑧 𝑇 − 𝑇ext 𝑧  

           

 

 

• At outlet:    

 - Drawing velocity 𝑣𝑓 

 

Convection1 Radiation 

𝑸𝟎 

𝑻𝟎 

13 

𝒒𝐫𝐚𝐝 + 𝒒𝐜𝐨𝐧𝐯 

1 Empirical coefficient of Kase-Matsuo (1965) 
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Boundary conditions 

ESG 2014 
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 - Free surface & surface tension 
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𝑞 = 𝜀𝜎 𝑇4 − 𝑇env,rad

4 + ℎ 𝑧 𝑇 − 𝑇ext 𝑧  

           

 

 

• At outlet:    

 - Drawing velocity 𝑣f 

 

Convection1 Radiation 

𝑸𝟎 

𝑻𝟎 

14 

𝒒𝐫𝐚𝐝 + 𝒒𝐜𝐨𝐧𝐯 

1 Empirical coefficient of Kase-Matsuo (1965) 𝒗𝐟 
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Solution of the physical model 
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1D 

elongational 

model 

2D 

axisymmetric 

model 

Solved with   

Finite Elements 

Semi-analytic solution  

(ODE solved with Finite 

Differences) 

Physical model  

• Improved convergence 

• Less accurate 

• Global information 

• More accurate 

• Global and local  

     information 
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1D 

elongational 

model 

2D 

axisymmetric 

model 

Solved with   

Finite Elements 

Semi-analytic solution  

(ODE solved with Finite 

Differences) 

Physical model  

• Improved convergence 

• Less accurate 

• Global information 

• More accurate 

• Global and local  

     information 
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Our quantity of interest: final axial stress 𝝉𝒛𝒛,𝐟 
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Axial stress plays a key role in the fiber breaking 
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Our quantity of interest: final axial stress 𝝉𝒛𝒛,𝐟 
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𝝉𝒛𝒛,𝐟 

𝝉
𝒛
𝒛
 [

M
p

a]
 

𝒛 [m] 
0 0.02 0.04 0.06 

0 

5 

10 

15 

Axial stress plays a key role in the fiber breaking 

Free surface 

Sym 

𝒛 
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Our quantity of interest: final axial stress 𝝉𝒛𝒛,𝐟 
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𝜏𝑧𝑧,f =
3

𝜑g
 𝑣f 𝑙𝑛

𝑟0
2

𝑟f
2  

Final axial stress depends on: 

• Diameter ratio    

• Drawing velocity   

• Cooling history    

Axial stress plays a key role in the fiber breaking 

𝝉𝒛𝒛,𝐟 
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Our quantity of interest: final axial stress 𝝉𝒛𝒛,𝐟 
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𝜏𝑧𝑧,f =
3

𝜑g
 𝑣f 𝑙𝑛

𝑟0
2

𝑟f
2  

Final axial stress depends on: 

• Diameter ratio    

• Drawing velocity   

• Cooling history    

Axial stress plays a key role in the fiber breaking 
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How do heat transfers 

impact the stress? 
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Fluidity 𝝋 

Final axial stress 

𝜏𝑧𝑧,f =
3

𝝋𝐠
𝑣f ln

𝑟0
2

𝑟f
2  

 

Fluidity 

𝜑 𝑧 =  
1

𝜂 𝑧
𝑑𝑧

𝑧

0

 

   

                     =  
1

𝑐 

1

𝜂 𝑇
𝑑𝑇

𝑇 𝑧f

𝑇0

 

 

with 𝜂 = 10
−𝐴+ 

𝐵

𝑇−𝑇0 
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Fluidity 𝝋 
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𝝋𝐠,𝟐 

𝝋𝐠,𝟏 

Cooling 

rate 𝒄  

• 𝜑(𝑧) reaches a constant final value 𝜑g 

 

• 𝜑g depends on the cooling rate  

 

• 𝜏𝑧𝑧,f  increases with higher cooling rate 
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Fluidity 𝝋 
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𝝋𝐠,𝟐 

𝝋𝐠,𝟏 

Cooling 

rate 𝒄  
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How is the fluidity impacted by the 

heat fluxes at the surface?  
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Heat fluxes along the surface 

• Radiation dominates near the tip 

where the majority of attenuation 

occurs 

 

• Convection dominates after  the 

attenuation  
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Convective flux 

Radiative flux 
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Heat fluxes along the surface 
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• Radiative and convective heat 

fluxes are varied within a physically-

defined range 

 

• Increase of the radiative flux 

through the emissivity 𝜀  

 

𝑞rad = 𝜀𝜎 𝑇s
4 − 𝑇env,rad

4  

 

• Increase of the convective flux 

through the coefficient ℎ 

 

𝑞conv = ℎ 𝑇s − 𝑇ext  

 

   with   ℎ =
0.42𝑘a

2𝑟
 Re0.334 

 

 

Sensitivity study 
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Sensitivity study 

Increase in 

convection 

Increase in  

radiation 
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Sensitivity study 
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Increase in 

convection 

Increase in  

radiation 

Increase in  

radiation 

Increase in 

convection 

• 𝝋𝐠 is more impacted by an increase in radiation than in convection  

 

• 𝝋𝐠 is very sensitive to lower value of viscosity (i.e. at high temperature) 
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Sensitivity study 
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Radiation 

𝜺 = 𝟎. 𝟐𝟓 

𝜺 = 𝟎. 𝟒 

• Increasing the heat fluxes at the 

surface (i.e. increasing the cooling 

rate) increases the final axial 

stress 

 

• Radiation has a higher impact due 

to the high sensitivity of the fluidity 

on low values of viscosity  

 

𝜏𝑧𝑧,f =
3
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The heat transfer in the attenuation region (i.e. radiation) is the most important 
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Control process parameters 
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The control process parameters: 

 

• Tip temperature 𝑻𝟎 impacting 𝜑𝑔 and 𝑣0 

• Tip radius 𝒓𝟎  impacting 𝑣0  

• Drawing velocity 𝒗𝒇 

• Glass height above the bushing plate 

impacting 𝑣0 

How is the stress affected by these 

parameters? 

𝒓𝟎 

𝒓𝒇 

Free surface 

𝑻𝟎 
Sym 

𝒗𝒇 

𝜏𝑧𝑧,f =
3

𝜑g
 𝑣f 𝑙𝑛

𝑟0
2

𝑟f
2  Axial stress 
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Sensitivity study 
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• Each parameter is varied 

independently, while keeping 

the others constant 

 

• Range of variation is set to 

have the final radius between 

7 and 17 µm 

• Stress increases when 

the diameter decreases 

 

• Glass height and tip 

radius have almost the 

same effect 

 

• Tip temperature is the 

most critical parameter 

(due to the fluidity) 

Tip temperature 

Drawing velocity 

Tip radius 

Glass height 

Sensitivity study 
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Bushing: problem statement 
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• Temperature inhomogeneity leads to a distribution of fiber radius  

• And leads to a large variation in stress 

• Mean stress is larger than the stress corresponding to the mean temperature 

+𝜎 −𝜎 µ𝜏 
µ𝑻 

+𝜎 −𝜎 µ𝑇 

Temperature inhomogeneity on a 6000 tips bushing plate 



MTFC 
RESEARCH GROUP 

MTFC 
RESEARCH GROUP 

Conclusion & future work 
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Conclusion 

• Cooling history is a key factor  in the 

stress characterization 

 

• Increasing the cooling rate increases 

the final axial stress 

 

• Tip temperature is critical 

Reduction of the stress in the 

industrial process: 

• Radiative properties of the 

glass  

• Fin shields/HVAC adjustment 

• Higher tip temperature 

• Lower winder velocity 
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Conclusion & future work 

• Investigate the unsteady state 

• Link the breaking rate to the stress 
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Future work 

Conclusion 

• Cooling history is a key factor  in the 

stress characterization 

 

• Increasing the cooling rate increases 

the final axial stress 

 

• Tip temperature is critical 

Reduction of the stress in the 

industrial process: 

• Radiative properties of the 

glass  

• Fin shields/HVAC adjustment 

• Higher tip temperature 

• Lower winder velocity 
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