MTFC RESEARCH GROUP

NUMERICAL INVESTIGATION OF FIBER GLASS PROCESS

Q. Chouffart and V. E. Terrapon

Multiphysics and Turbulent Flow Computation Research Group University of Liège, Belgium Université de Liège

P. Simon 3B The fibreglass company – Binani Group, Belgium

12th ESG Conference Parma – 24 September 2014

Manufacturing of fiber glass for composite materials

- Manufacturing process consists in drawing a glass melt into fibers
- Main challenge: fiber breakage
 - Shut down of forming position
 - Unrecyclable glass waste
 - Barrier to optimization

Manufacturing of fiber glass for composite materials

- Manufacturing process consists in drawing a glass melt into fibers
- Main challenge: fiber breakage
 - Shut down of forming position
 - Unrecyclable glass waste
 - Barrier to optimization

Goal: Understand the underlying physics of the break

- \rightarrow Physical modelling of the fiber
- → Experimental investigation

Manufacturing process

Manufacturing process

Manufacturing process

Physics of the forming of a single fiber

Physics of the forming of a single fiber

Governing equations

Mass conservation:

$$\frac{D\rho}{Dt} = 0$$

Momentum conservation:

$$\overline{\frac{D(\rho \boldsymbol{v})}{Dt}} = \nabla . \, \boldsymbol{\sigma} + \boldsymbol{f}$$

Energy conservation:

$$\frac{D(\rho C_p T)}{Dt} = \sigma: \nabla \boldsymbol{v} - \nabla \boldsymbol{Q}_{cond}$$

Governing equations

Energy conservation:

$$\frac{D(\rho C_p T)}{Dt} = \sigma: \nabla \boldsymbol{v} - \nabla. \boldsymbol{q_{cond}}$$

Governing equations

Momentum conservation:

Boundary conditions

At tip:

٠

Boundary conditions

- Flow rate (Poiseuille law) $Q_0(T)$
- Constant temperature T₀
- At surface:
 - Free surface & surface tension
 - Heat fluxes:

¹ Empirical coefficient of Kase-Matsuo (1965)

Boundary conditions

Solution of the physical model

Solution of the physical model

Fluidity φ

Final axial stress

$$\tau_{zz,f} = \frac{3}{\boldsymbol{\varphi}_{g}} v_{f} \ln\left(\frac{r_{0}^{2}}{r_{f}^{2}}\right)$$

Fluidity

$$\varphi(z) = \int_0^z \frac{1}{\eta(z)} dz$$

$$= \int_{T_0}^{T(z_{\rm f})} \frac{1}{\dot{c}} \frac{1}{\eta(T)} dT$$

with $\eta = 10^{-A + \frac{B}{T - T_0}}$

Fluidity φ

Final axial stress

$$\tau_{zz,f} = \frac{3}{\boldsymbol{\varphi}_{g}} v_{f} \ln\left(\frac{r_{0}^{2}}{r_{f}^{2}}\right)$$

Fluidity

$$\varphi(z) = \int_0^z \frac{1}{\eta(z)} dz$$

$$= \int_{T_0}^{T(z_{\rm f})} \frac{1}{\dot{c}} \frac{1}{\eta(T)} dT$$

with $\eta = 10^{-A + \frac{B}{T - T_0}}$

- $\varphi(z)$ reaches a constant final value φ_{g}
- $\varphi_{\rm g}$ depends on the cooling rate
- $\tau_{zz,f}$ increases with higher cooling rate

ESG 2014

 $\varphi(z) = \int_0^z \frac{1}{\eta(z)} dz$

 $\tau_{zz,f} = \frac{3}{\boldsymbol{\varphi}_{g}} v_{f} \ln\left(\frac{r_{0}^{2}}{r_{f}^{2}}\right)$

Final axial stress

with $\eta = 10^{-A + \frac{B}{T - T_0}}$

Fluidity

Fluidity ϕ

How is the fluidity impacted by the heat fluxes at the surface?

Heat fluxes along the surface

- Radiation dominates near the tip where the majority of attenuation occurs
- Convection dominates after the attenuation

Heat fluxes along the surface

Sensitivity study

- Radiative and convective heat fluxes are varied within a physically-defined range
- Increase of the radiative flux through the emissivity ε

 $q_{\rm rad} = \varepsilon \sigma \left(T_{\rm s}^4 - T_{\rm env, rad}^4 \right)$

• Increase of the convective flux through the coefficient *h*

$$q_{\rm conv} = h(T_{\rm s} - T_{\rm ext})$$

with $h = \frac{0.42k_{\rm a}}{2r} \operatorname{Re}^{0.334}$

Heat fluxes along the surface

Sensitivity study

- Radiative and convective heat fluxes are varied within a physicallydefined range
- Increase of the radiative flux through the emissivity *ε*

 $q_{\rm rad} = \varepsilon \sigma (T_{\rm s}^4 - T_{\rm env, rad}^4)$

• Increase of the convective flux through the coefficient *h*

$$q_{\rm conv} = h(T_{\rm s} - T_{\rm ext})$$

with
$$h = \frac{0.42k_a}{2r} \text{ Re}^{0.334}$$

Sensitivity study

- $\varphi_{\rm g}$ is more impacted by an increase in radiation than in convection
- $\varphi_{\rm g}$ is very sensitive to lower value of viscosity (i.e. at high temperature)

Sensitivity study

Final axial stress

$$\tau_{zz,f} = \frac{3}{\varphi_{g}} v_{f} ln \left(\frac{r_{0}^{2}}{r_{f}^{2}}\right)$$

- Increasing the heat fluxes at the surface (i.e. increasing the cooling rate) increases the final axial stress
- Radiation has a higher impact due to the high sensitivity of the fluidity on low values of viscosity

The heat transfer in the attenuation region (i.e. radiation) is the most important

Control process parameters

Axial stress

$$\tau_{zz,f} = \frac{3}{\varphi_{g}} v_{f} ln \left(\frac{r_{0}^{2}}{r_{f}^{2}}\right)$$

The control process parameters:

- **Tip temperature** T_0 impacting φ_g and v_0
- Tip radius r_0 impacting v_0
- Drawing velocity v_f
- Glass height above the bushing plate impacting v₀

How is the stress affected by these parameters?

Sensitivity study

Sensitivity study

- Each parameter is varied independently, while keeping the others constant
- Range of variation is set to have the final radius between 7 and 17 µm

- Stress increases when the diameter decreases
- Glass height and tip radius have almost the same effect
- **Tip temperature** is the most **critical** parameter (due to the **fluidity**)

Bushing: problem statement

Temperature inhomogeneity on a 6000 tips bushing plate

- Temperature inhomogeneity leads to a distribution of fiber radius
- And leads to a large variation in stress
- Mean stress is larger than the stress corresponding to the mean temperature

Conclusion & future work

Conclusion

- Cooling history is a key factor in the stress characterization
- Increasing the cooling rate increases the final axial stress
- Tip temperature is critical

Reduction of the stress in the industrial process:

- Radiative properties of the glass
- Fin shields/HVAC adjustment
- Higher tip temperature
- Lower winder velocity

Conclusion & future work

Conclusion

- Cooling history is a key factor in the stress characterization
- Increasing the cooling rate increases the final axial stress
- Tip temperature is critical

Reduction of the stress in the industrial process:

- Radiative properties of the glass
- Fin shields/HVAC adjustment
- Higher tip temperature
- Lower winder velocity

Future work

- Investigate the **unsteady** state
- Link the breaking rate to the stress

Acknowledgements

- **Our industrial partner**: 3B the fibreglass company, Binani group
- Financial support: 3B the fibreglass company & Walloon region
- **R&D team from 3B**: D. Laurent, Y. Houet, B. Roekens, V. Kempenaer and technicians

