NUMERICAL INVESTIGATION OF THE CONTINUOUS FIBER GLASS DRAWING PROCESS

Q. Chouffart and V. E. Terrapon
Multiphysics and Turbulent Flow Computation Research Group
University of Liège, Belgium

P. Simon
3B The fibreglass company – Binani Group, Belgium

2nd International Glass Fiber Symposium
Aachen - 30 May 2014
Outline

- Motivation
- Physical model
- Numerical investigation
- Conclusion & future work
Motivation & objectives

Main challenge of the process: fiber breakage

- Shut down of forming position
- Unrecyclable glass waste
- Barrier to optimization

Overall goal:
→ Understand the fiber breaking

Step 1
Physical modeling of forming glass

Step 2
Characterization of breaking mechanisms
Fiberglass drawing process

General steps

Four main steps

1. **Flow of glass melt through > 1000 holes**
 - Glass melt
 - Flow: T ~ 1300°C

2. **Cooling by fins and water spray**
 - Cooling: T cooling

3. **Coating**

4. **Drawing by a winder**
 - Drawing: (20 m/s → ~10 µm fibers diameter)

- **Bushing**
- **Finshield**
- **Water spray**
- **Winder**

Q. Chouffart et al. - Numerical investigation of the continuous fiber glass drawing process
• Motivation

• Physical model

• Numerical investigation

• Conclusion & future work
Physics of the forming of a single fiber

Glass state

Rheology

Heat transfer

Coupling
Physics of the forming of a single fiber

<table>
<thead>
<tr>
<th>Glass state</th>
<th>Rheology</th>
<th>Heat transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass melt</td>
<td></td>
<td>Inside the fiber:</td>
</tr>
<tr>
<td>$T > T_g$</td>
<td>Newtonian viscous flow</td>
<td>Conduction & Radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Around the fiber:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convection & Radiation</td>
</tr>
<tr>
<td>Glass transition</td>
<td>Viscoelastic flow</td>
<td>Inside the fiber:</td>
</tr>
<tr>
<td>$T \approx T_g$</td>
<td></td>
<td>Conduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Around the fiber:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convection</td>
</tr>
<tr>
<td>Glassy state</td>
<td>Elastic solid</td>
<td>Inside the fiber:</td>
</tr>
<tr>
<td>$T < T_g$</td>
<td></td>
<td>Conduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Around the fiber:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convection</td>
</tr>
</tbody>
</table>
Physics of the forming of a single fiber

Glass state

Glass melt

\[T > T_g \]

Newtonian viscous flow

Inside the fiber: *Conduction & Radiation*

Around the fiber: *Convection & Radiation*

Rheology

Heat transfer

Glass transition

\[T \approx T_g \]

Viscoelastic flow

Inside the fiber: *Conduction*

Around the fiber: *Convection*

Glassy state

\[T < T_g \]

Elastic solid

Inside the fiber: *Conduction*

Around the fiber: *Convection*
Physical model
Governing equations

Mass conservation:
\[
\frac{D \rho}{D t} = 0
\]

Momentum conservation:
\[
\frac{D (\rho \mathbf{v})}{D t} = \nabla \cdot \mathbf{\sigma} + f
\]

Energy conservation:
\[
\frac{D (\rho C_p T)}{D t} = \mathbf{\sigma} : \nabla \mathbf{v} - \nabla \cdot (\mathbf{q}_{\text{cond}} + \mathbf{q}_{\text{rad}})
\]

Assumption: Internal radiation \(\rightarrow\) neglected
Physical model

Governing equations

Mass conservation:
\[
\frac{D \rho}{Dt} = 0
\]

Momentum conservation:
\[
\frac{D (\rho \nu)}{Dt} = \nabla \cdot \sigma + f
\]

Energy conservation:
\[
\frac{D (\rho C_p T)}{Dt} = \sigma : \nabla \nu - \nabla \cdot (q_{\text{cond}} + q_{\text{rad}})
\]

Assumption: Internal radiation \rightarrow neglected

Newtonian flow:
\[
\sigma = -pI + 2\eta D
\]
Physical model
Governing equations

Mass conservation:
\[\frac{D\rho}{Dt} = 0 \]

Momentum conservation:
\[\frac{D(\rho\mathbf{v})}{Dt} = \nabla \cdot \mathbf{\sigma} + f \]

Energy conservation:
\[\frac{D(\rho C_p T)}{Dt} = \mathbf{\sigma} : \nabla \mathbf{v} - \nabla \cdot (\mathbf{q}_{\text{cond}} + \mathbf{q}_{\text{rad}}) \]

Newtonian flow:
\[\mathbf{\sigma} = -p\mathbf{I} + 2\eta \mathbf{D} \]

Assumption: Internal radiation \(\rightarrow\) neglected

Fulcher law
\[\eta = 10^{-A + \frac{B}{T-T_0}} \]
\((\eta = \text{dynamic viscosity}) \)
Physical model

Boundary conditions

- **At tip:**
 - Volumetric flow rate (Poiseuille law)
 - T_0 constant

- **At surface:**
 - Free surface conditions & surface tension
 - $q = \varepsilon\sigma(T^4 - T_{ext}^4(z)) + h(z)(T - T_{ext}(z))$

- **At outlet:** Drawing velocity

Q. Chouffart et al. - Numerical investigation of the continuous fiber glass drawing process
Outline

• Motivation
• Physical model
• Numerical investigation
• Conclusion & future work
Solution of the physical model

Physical Model

1D
Elongational
model

Analytic and ODE solved with
the Finite Difference Method

• Improve convergence
• Less accurate
• Global information

2D
Axisymmetric
model

Solved with the
Finite Element Method

• More accurate
• Local information
Numerical investigation

3. Axial stress

\[\tau_{zz,f} = \frac{3}{\varphi_g} \nu_f \ln \left(\frac{\nu_f}{\nu_0} \right) \]

Stress depends on:

- Diameter ratio
- Drawing velocity
- Fiber cooling

Stress is a good indicator of the robustness
Numerical investigation

3. Axial stress

\[\tau_{zz}, f \]

Key questions

- What are the key process parameters controlling the stress?
- How can the operating window be adjusted in order to reduce the stress?

Stress is a good indicator of the robustness
Numerical investigation

The control process parameters:

- **Tip temperature** T_0 impacting φ_g and v_0
- **Tip radius** r_0 impacting v_0
- **Drawing velocity** v_f
- **Glass height above the bushing plate** impacting v_0

How is the stress affected by these parameters?
4. Stress sensitivity due to the variation of the control parameters

Stress sensitivity study

- Each parameter is varied independently, while keeping the others constant.
- Range of variation is set to have the final radius between 7 and 17 µm.

- **Stress increases** when the diameter decreases.
- **Glass height and tip radius** have almost the same effect.
- **Tip temperature** is the most critical parameter.

Graph:
- **Stress** vs. **Final diameter**
- Parameters: Tip temperature, Drawing velocity, Tip radius, Glass height.

Equation:

\[\tau_{zz, f} [\text{MPa}] \]

\[2r_f [\mu\text{m}] \]

Q. Chouffart et al. - Numerical investigation of the continuous fiber glass drawing process
4. Stress sensitivity due to the variation of the control parameters

- Decrease in temperature leads to a large stress increase
- The opposite is observed when the temperature increases
4. Stress sensitivity due to the variation of the control parameters

- Decrease temperature leads to a large stress increase
- The opposite is observed when the temperature increases

Given a target radius, what are the velocity and temperature leading to a lower stress?
Numerical investigation

5. What is the optimal choice for the velocity and the temperature?

Stress

- Smaller radius amplifies the impact of the temperature on the stress.
- Increasing the tip temperature decreases the stress, even if the drawing velocity increases.

Drawing velocity

\[Q_0(T_0) = \pi r_f^2 v_f \]

\[v_f = \frac{1}{\pi r_f^2} Q_0(T_0) \]
Bushing: problem statement

6. Temperature inhomogeneity on a 6000 tips bushing plate

- Temperature inhomogeneity leads to a distribution of fiber radius
- And leads to a large variation in stress
- Mean stress is larger than the stress corresponding to the mean temperature

\[
\sigma < \mu_T \quad \text{and} \quad \mu_T < \mu_T + \sigma
\]
Bushing: problem statement

6. Temperature inhomogeneity on a 6000 tips bushing plate

→ Heat pattern on the bushing plate is critical
Outline

• Motivation
• Physical model
• Numerical investigation
• Conclusion & future work
Conclusion

- **Physical model** of single fiber drawing has been developed
- **Numerical solutions** help to understand the process
- **Fiber** forming is strongly affected by the **temperature at the tip**
- **Stress** is a good indicator to understand the **robustness** of the process
- **Temperature inhomogeneity** across the bushing plate leads to a **large distribution** of stress

Further work

- Add a **radiation model** for the heat transfer inside the glass
- Investigate the **glass transition** region
- Link the **breaking rate** with the stress
Acknowledgements

• **Our industrial partner:** 3B – the fibreglass company, Binani group

• **Financial support:** 3B – the fibreglass company & Walloon region

• **R&D team from 3B:** D. Laurent, Y. Houet, B. Roekens, V. Kempenaer and technicians