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Aims Recent advancements in echocardiographic technology allow to analyse myocardial strain in multiple layers. Little is
known about the impact of age on layer-specific longitudinal strain in healthy subjects. The aim of this study was to
analyse the influence of age on multilayer longitudinal strain and establish normal reference values of layer-specific
strain according to age decades in a healthy population referring to our echo laboratory using 2D speckle-tracking
echocardiography with layer-specific software.

...................................................................................................................................................................................................
Methods
and results

Two-hundred sixty-six healthy, consecutive subjects (mean age = 39.2 ± 17.5 years, women/men = 137/129), free of
cardiovascular risk factors, were enrolled. Subjects were divided according to six age decades: 10–19, 20–29, 30–
39, 40–49, 50–59, >60 years. All subjects underwent a complete echo Doppler examination including quantitation
of 2D global longitudinal strain (GLS). Subendocardial longitudinal strain (LSsubendo), subepicardial longitudinal
strain (LSsubepi), and strain gradient (LSsubendo - LSsubepi) were also determined. GLS (P < 0.001), LSsubendo,
and LSsubepi (both P < 0.0001) were all progressively reduced with increasing age decades, but post hoc intra-group
analyses demonstrated that the decline of GLS, LSsubendo, and LSsubepi was significant in the decades 50–60 and
>_60 years. In separate multiple linear regression analyses, the effect of age on GLS, LSsubendo, and LSsubepi
remained significant even after adjusting for clinical and echocardiographic confounders. Strain gradient remained
unchanged in age decades.

...................................................................................................................................................................................................
Conclusion Ageing shows an independent effect on GLS, LSsubendo, and, particularly on, LSsubepi. Our data also provide nor-

mal reference values of layer-specific longitudinal strain for age decades.
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Introduction

Global longitudinal strain (GLS), a comprehensive parameter of left
ventricular (LV) systolic function, obtainable by 2D speckle-tracking
echocardiography, has gained growing importance in the clinical prac-
tice. GLS results impaired in early, subclinical stages of the majority of
cardiac diseases, when LV ejection fraction (EF) is still normal.1,2 GLS

has also shown an important prognostic power in patients with heart
failure, coronary artery disease, valvular heart disease, and cardio-
myopathies.3 Its use is even promoted to drive management of
patients developing anticancer drug-related cardiotoxicity.4

Technological progression of 2D speckle-tracking software has
recently enabled the estimation of layer-specific strain, thus allowing
to differentiate subendocardial and subepicardial longitudinal strain
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(LSsubendo an LSsubepi, respectively). This differentiation has clinical
implications as the longitudinal fibers of subendocardial layer could
be firstly involved in the progression of myocardial dysfunction in the
majority of cardiac pathologies. Accordingly, the clinical usefulness of
the multilayer strain software has already been successfully tested in
some clinical settings, including coronary artery disease, myocardial
infarction, arterial hypertension, and heart failure.5–9

The purpose of using strain imaging in pathological conditions
implies the need of considering normal reference values derived
from the healthy population. This goal has been achieved for trans-
mural GLS,10,11 for which normal ranges have also been promoted in
the 2016 American Society of Echocardiography (ASE)/European
Association of Cardiovascular Imaging (EACVI) chamber quantifica-
tion recommendations.12 Conversely, little information is available
on normal values of layer-specific strain.13,14 This prospective study
was designed to define normal values of both LSsubendo and
LSsubepi and myocardial transmural gradient in a healthy population
with a wide age range, in relation with demographic and echocardio-
graphic variables and to propose reference values according to age
decades.

Methods

Study population
We prospectively studied 266 consecutive healthy subjects (137 women
and 129 men, mean age 39.2 ± 17.5 years, age range = 10–86 years) refer-
ring to our echo lab in the period between January 2017 and July 2017,
who were recruited from the staff and relatives of our department in a
screening of cardiovascular prevention. No subject had cardiovascular risk
factors including arterial hypertension [blood pressure (BP) > 140/
90 mmHg], diabetes mellitus (fasting glycaemia > 100mg/dL), obesity
(body mass index > 29.9 kg/m2), dyslipidaemia (total cholester-
ol > 190 mg/dL and/or triglycerides > 150 mg/dL), and smoke habit. Other
exclusion criteria were history of coronary artery disease and previous
acute myocardial infarction, stroke, and transient ischaemic events, mild-
to-severe valvular heart diseases, congestive heart failure, primary cardio-
myopathies, congenital heart diseases, systemic diseases, pharmacological
therapies, age < 10 years, any kind of resting electrocardiographic abnor-
malities and echocardiograms of poor imaging quality. All subjects gave
their written informed consent.

Echocardiographic procedures
Standard Doppler echocardiography and speckle-tracking
echocardiography were performed by Vivid E95 (GE Healthcare, Horten,
Norway) machine. A 2.5-MHz phased array transducer was used accord-
ing to standardized procedures of our laboratory.15,16 At the end of the
examination, a physician blinded to the examination estimated cuff BP
(mean of three measurements).

LV quantitative analysis was performed in agreement with 2015 ASE/
EACVI recommendations.12 2D LVEF was computed from LV end-
diastolic and end-systolic volumes calculated according to the modified
Simpson rule in apical four- and two-chamber views. Left atrial volume
and LV mass were normalized for body surface area.12 The cut-off points
for diagnosing LV hypertrophy were 95 g/m2 in women and 115 g/m2 in
men.17 Transmitral pulsed Doppler and pulsed tissue Doppler of septal
and lateral mitral annulus were recorded in apical four-chamber view and
diastolic parameters determined and grades of LV diastolic dysfunction
established according to the current ASE/EACVI recommendations.18

Speckle-tracking echocardiography procedures were performed accord-
ing to standardized procedures of our laboratory15,16 by an experienced
operator blinded to the subject’s clinical information. The acquisitions
were performed in apical long-axis, four-chamber and two-chamber
views, using a frame rate ranging between 70 and 90, as recommended.1

Strain analysis was performed by a vendor-specific software (EchoPAC
PC, version 201, GE Healthcare). Left ventricle was divided into six myo-
cardial segments in each view, and GLS calculated as the average longitu-
dinal strain (LS) at end systole. For measuring layer-specific strain,
attention was taken to cover the entire myocardial wall thickness by the
region of interest (ROI) of each segment. Calculation of transmural varia-
tion of LS across the entire myocardium was based on the assumption of
a linear distribution. LSsubendo an LSsubepi were measured on the endo-
cardial and epicardial ROI border, respectively, whereas the MID (centre
line) of the ROI represents the average values of the transmural wall
thickness (Figure 1). LS gradient was calculated as the difference between
LSsubendo and LSsubepi.

Statistical analysis
Data were presented as mean value ± standard deviation. Normal distri-
bution of data was checked using the Kolmogorov–Smirnov test. The
study population was divided in six decades of age: 10–19 years, 20–
29 years, 30–39 years, 40–49 years, 50–59 years, >60 years and intra-
group differences analyzed by one-factor ANOVA. Post hoc test analyses
(Bonferroni test) were also done to analyse inter-group differences. Least
squares linear regression was used to evaluate univariable and multivari-
able correlates of strain measurements. For multiple linear regression
models, multicollinearity was also examined by computation of in-model
tolerance. Collinearity was considered acceptable for tolerance >0.70.
Intra- and inter-observer variability of multilayer strain was assessed by
calculating intra-class correlation coefficient (ICC) and 95% confidence
intervals (CIs) of the strain components. The null hypothesis was rejected
for P <_ 0.05.

Results
On a population of 281 normal subjects, originally evaluated for longitudi-
nal strain analyses, 15 were excluded for inadequate imaging. The remain-
ing 266 (94.7%) subjects represented our study population. Table 1

Figure 1 Methodology for obtaining layer-specific longitudinal
strain. Left panel shows schematic representation of myocardial
layers and the right panel shows depiction of ROI and position of
the measured LSsubendo, mid, and subepi. 1, myocardial wall thick-
ness; 2, epicardial layer; 3, endocardial layer; 4, myocardium; 5, inner
tracked ROI line (subendocardial measurement); 6, mid wall (trans-
mural measurement); 7, outer-tracked ROI line (subepicardial
measurement).

2 G.M. Alcidi et al.
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reports the clinical characteristics and the main echo Doppler measure-
ments of the study population, including the strain analysis. Subjects had
normal LV geometry and LVEF. No subject had LV hypertrophy. The
prevalence of Grade I of LV diastolic dysfunction was 7.9% (n = 21)
according to the ASE/EACVI criteria (transmitral E/A ratio <_0.8þ E
velocity < 50 cm/s), whereas no subjects had Grade II or III of diastolic
dysfunction. Transmural GLS was 22.7 ± 1.7%. LSsubendo was higher
than LSsubepi (P < 0.0001), whereas no significant difference of GLS,
LSsubendo, and LSsubepi was found among the three different apical
chambers (three-, two-, and four; data not shown in table).

By gender-specific analyses, no difference of GLS, LSsubendo,
LSsubepi, and LS gradient was found between men and women
(P = 0.149) in the pooled population. However, restricting the analysis to
subjects with age ranging between 20 and 50 years (n = 134), GLS
(23.2 ± 1.9 in women and 22.5 ± 1.6%, P < 0.01), LSsubendo (26.0 ± 2.r vs.

25.2 ± 1.8%, P < 0.02), and LSsubepi (21.6 ± 2.0 vs. 20.9 ± 1.6%, P < 0.02)
were significantly higher in women.

Figure 2 depicts regional layer-specific and transmural LS as well as
bull’s eye of LSsubendo, LSsubepi, and transmural GLS in a young man.
Table 2 lists the results of GLS, LSsubendo, LSsubepi, and LS gradient
according to the age decades. GLS (P < 0.001), LSsubendo, and LSSubepi
(both P < 0.0001) were all significantly reduced with increasing age,
whereas LS gradient remained unchanged in the different age decades.
Post hoc analyses demonstrated a significant reduction of GLS in the group
>_60 years in comparison with the age decades 10–19 and 20–29 and in
the decade 50–59 vs. decade 10–19, a significant reduction of LSsubendo
in subjects >_60 years vs. decades 10–19, 20–29, and 30–39 and of decade
50–59 vs. 10–19, and a significant reduction of LSsubepi in the group
>_60 years vs. decades 10–19 and 20–29 and of decade 50–59 vs. 10–19.
LSsubendo was significantly higher than LSsubepi (LS gradient) in each of
the age decades (all P < 0.0001), without significant changes among the
different decades.

Figure 3 depicts univariable correlations of age with GLS, LSsubendo,
and LSsubepi (all P < 0.001) in the pooled population. GLS, LSsubendo,
and LSsubepi were all inversely related with age, but a discrete number of
subjects were above the upper and the lower limits of the 95% CI of the
normal relation in the age ranging 30–60 years. GLS, LSsubendo, and
LSsubepi were also significantly related with body mass index (r = -0.26,
r = -0.28, r = -0.28 respectively, all P < 0.0001), diastolic BP (r = -0.19,
P < 0.002; r = -0.18, P = 0.004; r = 0.13, P = 0.04) and, among the echo vari-
ables, with LVEF (r = 0.17, P = 0.007; r = 0.12, P < 0.05; r = 0.13, P = 0.03),
relative wall thickness (r = -0, 21, P < 0.001; r = -0.15, P < 0.01; r = -0.17,
P� 0.005), LV mass index (r = -0.14, P < 0.02; r = -0.15, P < 0.01; and
r = -0.17, P < 0.005), and E/e0 (r = -0.12, P = 0.04; r = -0.12, P = 0.04;
r = -0.16, P < 0.01). Heart rate was not related to GLS (r = 0.03,
P = 0.665), LSsubendo (r = 0.073, P = 0.238), and LSsubepi (r = 0.078,
P = 0.205). Also stroke volume was not significantly related with GLS,
LSsubendo, and LSsubepi.

Separate multiple linear regression analyses were performed sepa-
rately for the three strain components, adjusting for demographic and
echocardiographic confounders (Table 3). By these analyses, age was
independently associated with GLS (P = 0.004) and more significantly
with LSsubendo and LSsubepi (both P < 0.0001). Among the other corre-
lates, only LVEF was independently associated with GLS (P = 0.006),
LSsubendo (P = 0.039), and LSsubepi (P = 0.025).

Reproducibility analyses performed on the same set of images (i.e.
same apical three, four-, and two-chamber views) as well as on two differ-
ent sets of images (i.e. on different apical views acquired during the echo
examination) in 20 of our healthy subjects are summarized in Table 4. The
intra-observer and the inter-observer variability of GLS, LSsubendo, and
LSsubepi were excellent and also the intra-observer variability on two dif-
ferent set of images remained optimal for GLS, LSsubendo, and LSsubepi.

Discussion

This study demonstrates that in normal subjects (i) LSsubendo is
always higher than LSsubepi, independent on the effect of age; (ii)
ageing exerts an independent influence on transmural, subendocar-
dial, and subepicardial longitudinal strain, but not on strain gradient,
whereas the effect of gender appears to be restricted to the age rang-
ing between 20 and 50 years; (iii) the effect of age is marginal between
30 and 50 years, whereas the decline of GLS, LSsubendo, and, in par-
ticular, LSsubepi appears to be clinically relevant after the age of
50 years.

.................................................................................................

Table 1 Demographic and echocardiographic charac-
teristics of the study population

Parameters Mean 6 SD Range

Age (years) 39.2 ± 17.5 10–86

Height (cm) 168 ± 9.7 135–201

Weight (kg) 66.2 ± 11.5 30–95

BSA (m2) 1.75 ± 0.19 1.14–2.23

BMI (kg/m2) 23.2 ± 2.7 13.6–29.3

Systolic BP (mmHg) 119.5 ± 16.5 85–140

Diastolic BP (mmHg) 75.0 ± 8.5 50–90

Heart rate (bpm) 71.5 ± 10.9 46–116

LV mass index (g/m2) 68.4 ± 16.3 26.9–114.7

Relative wall thickness 0.31 ± 0.05 0.15–0.40

LV EDV (mL) 88.2 ± 18.1 56–161

LV ESV (mL) 32.7 ± 8.6 23–65

LV EF (%) 63.3 ± 4.7 53–76

SV (mL) 60.2 ± 11.1 48–105

LAVi (mL/m2) 24.1 ± 5.8 11–41

Transmitral E/A ratio 1.38 ± 0.45 0.54–2.92

E velocity DT (ms) 197.5 ± 33.3 107–266

E/e0 ratio 6.67 ± 1.8 2.0–13.8

Transmural GLS, average (%) 22.7 ± 1.8 18.3–28

Transmural GLS, 3-ch (%) 22.7 ± 2.0 18.1–27.1

Transmural GLS, 4-ch (%) 22.6 ± 1.8 20.2–27.4

Transmural GLS, 2-ch (%) 22.6 ± 1.9 19.7–28.1

LSsubendo, average (%) 25.4 ± 2.1 20.1–32.5

LSsubendo, 3-ch (%) 25.3 ± 2.0 21.1–31.3

LSsubendo, 4-ch (%) 25.4 ± 2.4 19.9–31.8

LSsubendo, 2-ch (%) 25.3 ± 2.1 21.9–32.5

LSsubepi, average (%) 21.1 ± 1.8 17.0–26.9

LSsubepi, 3-ch (%) 20.9 ± 2.1 16.7–26.6

LSsubepi, 4-ch (%) 21.3 ± 2.1 16.6–27.5

LSsubepi, 2-ch (%) 21.0 ± 1.9 17.8–21.0

LS gradient 4.3 ± 1.2 1.6–7.4

BMI, body mass index; BP, blood pressure; DT, deceleration time; EDV, end-dia-
stolic volume; EF, ejection fraction; ESV, end-systolic volume; GLS, global longitu-
dinal strain; LAVi, left atrial volume index; LS, longitudinal strain; LV, left
ventricular; subendo, subendocardial; subepi, subepicardial; SV, stroke volume;
2-ch, apical 2-chamber view; 3-ch, apical 3-chamber view; 4-ch, apical 4-chamber
view.
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Figure 2 Sample of layer-specific LS in a 19-year-old man. Upper panel shows layer-specific and transmural LS (in the middle) of an apical four-
chamber view, with the curves of regional strain values (dotted line corresponds to average strain) and qualitative colour M-mode strain. Lower panel
shows bull’s eye of regional LSsubendo, LSsubepi, and transmural GLS. GLS, global longitudinal strain; LSsubendo, subendocardial longitudinal strain;
LS subepi, subepicardial longitudinal strain.

....................................................................................................................................................................................................................

Table 2 Components of longitudinal strain according to age decades

Parameter 10–19 years

(n 5 45)

20–29 years

(n5 45)

30–39 years

(n 5 45)

40–49 years

(n 5 45)

50–59 years

(n 5 46)

�60 years

(n 5 40)

Cumulative

P value

GLS (%) 23.5 ± 1.3

(23.1–23.9)

23.1 ± 1.8

(22.6–23.7)

22.6 ± 1.7

(22.1–23.1)

22.7 ± 1.7

(22.3–23.3)

22.3 ± 1.7**

(21.8–22.8)

22.0 ± 1.8***,¶

(21.5–22.7)

<0.001

LSsubendo (%) 26.2 ± 1.5

(25.7–26.7)

25.9 ± 2.3

(25.2–26.6)

25.5 ± 1.9

(24.9–26.1)

25.3 ± 2.0

(24.7–25.9)

24.9 ± 2.2*

(24.2–25.6)

24.2 ± 1.8****,¶¶¶,§,

(23.6–24.8)

<0.0001

LSsubepi (%) 21.7 ± 1.4

(21.2–22.1)

21.5 ± 2.1

(20.9–22.2)

21.2 ± 1.7

(20.6–21.7)

21.0 ± 1.6

(20.6–21.6)

20.6 ± 1.6*

(20.1–21.0)

20.2 ± 1.5***,¶¶¶

(19.7–20.7)

<0.0001

LS gradient 4.5 ± 0.8

(4.3–4.7)

4.4 ± 1.2

(4.0–4.8)

4.3 ± 1.4

(3.9–4.8)

4.3 ± 1.1

(3.9–4.6)

4.4 ± 1.3

(4.0–4.8)

4.0 ± 1.3

(3.6–4.5)

0.648

Values are expressed as mean ± standard deviation (95% confidence interval). LSsubendo is significantly higher than LSsubepi (LS gradient) in each of the age decades
(all P < 0.0001).
Abbreviations as in Table 1. Values of GLS, LSsubendo and LSsubepi considered as ‘positive’ (signþ).
****P < 0.0001: vs. decade 10–19.
***P < 0.001: vs. decade 10–19.
**P < 0.01: vs. decade 10–19.
*P < 0.05: vs. decade 10–19.
¶¶¶P < 0.001: vs. decade 20–29.
¶P < 0.05: vs. decade 20–29.
§P < 0.05: vs. decade 30–39.
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..To the best of our knowledge, only two studies proposed normal
reference values of layer-specific strain.13,14 In the first study, pro-
spectively performed on 119 healthy volunteers (age range = 22–
76 years, 50% women), LSsubendo was substantially higher than
LSsubepi, they being both influenced by gender, heart rate, and
stroke volume but not by age.13 In the second one, Nagata et al.14 ret-
rospectively collected data on 235 healthy subjects and presented
normal reference values according to four age decades (from
20 years to 59 years). Layer-specific strain was not age, but gender
dependent (GLS, LSsubendo, and LSsubepi were all higher in
women), in agreement with the NORRE study in which GLS was
higher in women than in men.10 Our prospective investigation
extends the results of these two studies, collecting data on 266
healthy subjects, consecutively recruited. The choice of analysing
layer-specific strain according to six age decades (by including sub-
jects between 10 and 19 and over than 60 years)—i.e. the greater dis-
persion of age values—is the likely reason of the age dependency
which was not observed by Nagata et al. Conversely, we did not dis-
close a gender-specific difference of GLS and layer-specific strain in
the overall population (age range = 10–86 years), but the subgroup
with an age ranging between 20 and 50 years showed marginally
higher values of GLS, LSsubendo, and LSsubepi in women. These

results are only apparently discordant with the two previous studies
dealing with this issue. In the NORRE study, GLS was higher in
women than in men in a population that included mainly age groups
20–40 and 40–60, and only few subjects >60 years.10 GLS and layer-
specific strain of Nagata et al.14 were higher in women in the age dec-
ades 20–29, 30–39, 40.49, and 50–59 but subjects <20 and >_60 were
not assessed. Hormonal effects in women of childbearing age could
be postulated to explain our findings but this hypothesis needs fur-
ther investigation. The absence of changes in LS gradient (we meas-
ured as the difference between LSsubendo and LSsubepi) with ageing
confirms the data of Nagata et al. (who calculated LS gradient as the
ratio of LSsubendo to LSsubepi).

In this study, additional insights were provided by the combination
of univariable relations and multivariable models. The highly signifi-
cant inverse linear relations of GLS, LSsubendo, and LSsubepi with
age were substantially confirmed after adjusting for demographic and
echocardiographic confounders. These variables were chosen on the
grounds of univariable correlations, taking also into account inter-
variable collinearity and their physiopathological value. Body mass
index and diastolic BP are in fact raw indicators of preload and after-
load respectively, both acting effectively on LS. Relative wall thickness
is an accurate marker of LV concentric geometry, i.e. an important

Figure 3 Relations of age (horizontal axis) with transmural GLS, LSsubendo, and LSsubepi (vertical axes) in the pooled population. Inverse rela-
tions are seen with all the strain components, with data points for a discrete number of subjects above the upper limit and the lower limit of the 95%
confidence interval of the normal relation (parallel dotted lines). SEE, standard error estimate, other abbreviations as in Figure 1.
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determinant of GLS in the presence of normal LV systolic function.19

LVEF is a recognized indicator of chamber systolic function.12

However, by observing the 95% CI of the univariable relations (see
Figure 3), it appears clear that a certain number of subjects were
above the upper or the lower limits of the relations between age and

GLS, LSsubendo, and LSsubepi, in the age range between 20 and
60 years. This finding reinforces the age decades analyses, where the
reduction of GLS and layer-specific strain was significant in the deca-
des 50–60 and >_60. It is therefore conceivable that the age-
dependent effect on longitudinal strain could became clinically

....................................................................................................................................................................................................................

Table 3 Multiple linear regression analyses in the pooled population

Dependent variable Correlate Standardized b coefficient P-value Collinearity tolerance

Transmural GLS Male gender 0.025 0.688 0.925

Age -0.204 0.004 0.738

BMI -0.119 0.084 0.775

Diastolic BP -0.084 0.183 0.912

Relative wall thickness -0.099 0.785 0.922

LV EF 0.167 0.006 0.976

Cumulative R2 = 0.15, SEE = 1.62%, P < 0.0001

LSsubendo Male gender 0.083 0.189 0.925

Age -0.281 <0.0001 0.738

BMI -0.078 0.260 0.775

Diastolic BP -0.069 0.276 0.912

Relative wall thickness -0.904 0.904 0.922

LV EF 0.128 0.039 0.976

Cumulative R2 = 0.14, SEE = 1.94%, P < 0.0001

LSsubepi Male gender 0.110 0.083 0.925

Age -0.286 <0.0001 0.738

BMI -0.074 0.280 0.775

Diastolic BP -0.023 0.722 0.912

Relative wall thickness -0.042 0.510 0.922

LV EF 0.139 0.025 0.976

Cumulative R2 = 0.14, SEE = 1.67%, P < 0.0001

Cumulative R2 = 0.14, SEE = 1.67%, P < 0.0001.
SEE, standard error estimate. Other abbreviations as in Table 1.
Values of GLS, LSsubendo, and LSsubepi considered as ‘positive’ (signþ) to build the univariate relations to homogenize the results of analyses and strengthen their clinical
meaning: the higher the values, the better the strain deformation independent on the plus/minus sign.

....................................................................................................................................................................................................................

Table 4 Reproducibility of multilayer-specific longitudinal strain

Variables Intra-class correlation (rho) 95% confidence interval P-value

Intra-observer variability on the same set of images

Transmural GLS, average (%) 0.978 0.954–0.990 <0.0001

LSsubendo, average (%) 0.977 0.951–0.989 <0.0001

LSsubepi GLS, average (%) 0.969 0.934–0.985 <0.0001

Inter-observer variability on the same set of images

Transmural GLS, average (%) 0.958 0.912–0.980 <0.0001

LSsubendo, average (%) 0.938 0.870–0.980 <0.0001

LSsubepi GLS, average (%) 0.883 0.753–0.994 <0.0001

Intra-observer variability on two different sets of images

Transmural GLS, average (%) 0.955 0.908–0.977 <0.0001

LSsubendo, average (%) 0.934 0.861–0.972 <0.0001

LSsubepi GLS, average (%) 0.877 0.750–0.989 <0.0001

6 G.M. Alcidi et al.
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.
relevant in healthy subjects only in the old ages, starting from the 50th
year, this being applicable to GLS and layer-specific strain as well.

Study limitations
Limitations of this study include the lack of validation of layer-specific
strain against the gold standard, represented by cardiac magnetic res-
onance imaging,20,21 and the application of single vendor-specific soft-
ware. Although a good concordance of GLS between the two major
vendors has been found in reference echocardiographic laborato-
ries22 and recently confirmed in the large sample size of the NORRE
study,10 the software dependence of 2D speckle-tracking echocar-
diography is recognized23,24 and appears to be applicable also to
layer-specific strain. Another limitation includes the lack of decades
70–79 and >80, which was shared with the Nagata et al.’s study,
whereas the NORRE study combined 95 subjects of different ages in
the group >_60 years. The relatively small sample size of our
Caucasian population, which was collected in a single centre, cannot
be therefore generalized to the entire population. A large multi-
centre population could allow to deal more comprehensively with
this issue. However, our healthy subjects were rigidly selected and
represent therefore a reasonable sample in a single centre. The effort
to create normal reference values of echo parameters, including
strain, should be pursued in each laboratory.

Implications
The need for considering age-specific normal reference values is well
established in the echocardiographic community when dealing with
Doppler-derived measurements of LV diastolic function18,25 and
parameters obtainable by pulsed tissue Doppler of the mitral annu-
lus.18,26,27 This needs to be applied less restrictively to GLS and layer-
specific longitudinal strain. The impact of ageing on GLS as well as on
LSsubendo and LSsubepi should be in fact carefully taken into
account only after the 50th year. These findings can have clinical
implications when evaluating cardiac patients to differentiate with
accuracy normalcy from pathology.

Conflict of interest: None declared.
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