Post-contingency corrective control failure: a risk to neglect or a risk to control? Supplementary material

Efthymios Karangelos and Louis Wehenkel
Montefiore Institute - Department of EE \& CS, University of Liège, Belgium, \{e.karangelos-1.wehenkel\}@uliege.be

January 2018

Nomenclature

The main mathematical symbols used in this document are defined as follows. Others may be defined as needed within the text.

Indices

$c \quad$ Index of contingencies.
d Index of demands.
$g \quad$ Index of dispatchable generating units.
$k \quad$ Index of piece-wise linear dispatchable generation cost curve segments.
$\ell \quad$ Index of transmission elements (i.e. lines, cables and transformers).
$n \quad$ Index of nodes.

Sets

$\mathcal{C}_{N 1} \quad$ Set of contingencies.
$\mathcal{D} \quad$ Set of demands.
$\mathcal{D}_{n} \subseteq \mathcal{D}$ Subset of demands connected at node n.
$\mathcal{G} \quad$ Set of dispatchable generating units.
$\mathcal{G}_{n} \subseteq \mathcal{G}$ Subset of dispatchable generating units connected at node n.
$\mathcal{L} \quad$ Set of transmission elements.
$\mathcal{N} \quad$ Set of nodes.

Parameters

$a_{\ell, c} \quad$ Binary parameter taking a zero value if transmission element $\{\ell \in \mathcal{L}\}$ is unavailable under contingency c.
$c_{g} \quad$ Marginal running cost of generating unit g.
$P_{g}^{\max } \quad$ Capacity of generating unit g.
$\Delta P_{g}^{-} \quad$ Ramp-down limit of generating unit g in corrective mode.
$\Delta P_{g}^{+} \quad$ Ramp-up limit of generating unit g in corrective mode.
$P_{d} \quad$ Active power demand of load d.
voll $_{d} \quad$ Value of lost load of d.
$f_{\ell}^{\max }$ Long-term thermal rating of transmission element ℓ.
$r_{\ell} \quad$ Ratio of the short-term thermal rating to the long-term thermal rating of transmission element $\ell\left(r_{\ell} \geq 1\right)$.
$X_{\ell} \quad$ Reactance of transmission element ℓ.
$\beta_{n, \ell} \quad$ Element of the flow incidence matrix, taking a value of one if node n is the sending node of element ℓ, a value of minus one if node n is the receiving node of element ℓ, and a zero value otherwise.
$\pi_{c} \quad$ Probability of occurrence of contingency c.
pen A large penalty parameter.

Continuous Variables

$P_{g, 0} \quad$ Preventive dispatch of generating unit g.
$P_{g, c}^{+} \quad$ Corrective ramp-up of generating unit g following contingency c.
$P_{g, c}^{-} \quad$ Corrective ramp-down of generating unit g following contingency c.
$f_{\ell, 0} \quad$ Power flowing through transmission element ℓ under the pre-contingency state and scenario.
$f_{\ell, c}^{p c} \quad$ Power flowing through transmission element ℓ following contingency c and prior to the application of corrective control.
$f_{\ell, c} \quad$ Power flowing through transmission element ℓ following contingency c and the successful application of corrective control.
$\theta_{n, 0} \quad$ Voltage angle at node n under the pre-contingency state.
$\theta_{n, c}^{p c} \quad$ Voltage angle at node n following contingency c and prior to the application of corrective control control.
$\theta_{n, c} \quad$ Voltage angle at node n following contingency c and the successful application of corrective control.
$l s_{d} \quad$ Preventive involuntary shedding of load d.
$l s_{d, c} \quad$ Corrective involuntary shedding of load d following contingency c.
$N b$: All continuous variables are non-negative with the exception of the transmission element flow variables, and voltage angle variables.

Preventive N-1 SCOPF

$\min \left(\sum_{g \in \mathcal{G}} c_{g} \cdot P_{g, 0}+\right.$ pen $\left.\cdot \sum_{d \in \mathcal{D}} l s_{d}\right)$
subject to,
for all nodes $n \in \mathcal{N}$:

$$
\begin{equation*}
\sum_{g \in \mathcal{G}_{n}} P_{g, 0}-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, 0}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}\right) \tag{2}
\end{equation*}
$$

for all transmission elements $\ell \in \mathcal{L}$:

$$
\begin{align*}
& f_{\ell, 0}-\frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n, 0}=0 \tag{3}\\
& f_{\ell, 0} \leq f_{\ell}^{\max } \tag{4}\\
& -f_{\ell, 0} \leq f_{\ell}^{\max } \tag{5}
\end{align*}
$$

for all generating units $g \in \mathcal{G}$

$$
\begin{equation*}
0 \leq P_{g, 0} \leq P_{g}^{\max } \tag{6}
\end{equation*}
$$

for all loads $d \in \mathcal{D}$:

$$
\begin{equation*}
0 \leq l s_{d} \leq P_{d} \tag{7}
\end{equation*}
$$

for all nodes $n \in \mathcal{N} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{equation*}
\sum_{g \in \mathcal{G}_{n}} P_{g, 0}-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, c}^{p c}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}\right) \tag{8}
\end{equation*}
$$

for all transmission elements $\ell \in \mathcal{L} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{align*}
& f_{\ell, c}^{p c}-a_{\ell, c} \cdot \frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n, c}^{p c}=0 \tag{9}\\
& f_{\ell, c}^{p c} \leq a_{\ell, c} \cdot f_{\ell}^{\max } \tag{10}\\
& -f_{\ell, c}^{p c} \leq a_{\ell, c} \cdot f_{\ell}^{\max } \tag{11}
\end{align*}
$$

Corrective N-1 SCOPF

$\min \left[\sum_{g \in \mathcal{G}} c_{g} \cdot\left(P_{g, 0}+\sum_{c \in \mathcal{C}_{N 1}} \pi_{c} \cdot P_{g, c}^{+}\right)+\right.$pen $\left.\cdot \sum_{d \in \mathcal{D}}\left(\left|\mathcal{C}_{N 1}\right| \cdot l s_{d}+\sum_{c \in \mathcal{C}_{N 1}} l s_{d, c}\right)\right]$
subject to,
for all nodes $n \in \mathcal{N}$:

$$
\begin{equation*}
\sum_{g \in \mathcal{G}_{n}} P_{g, 0}-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, 0}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}\right) \tag{13}
\end{equation*}
$$

for all transmission elements $\ell \in \mathcal{L}$:

$$
\begin{align*}
& f_{\ell, 0}-\frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n, 0}=0 \tag{14}\\
& f_{\ell, 0} \leq f_{\ell}^{\max } \tag{15}\\
& -f_{\ell, 0} \leq f_{\ell}^{\max } \tag{16}
\end{align*}
$$

for all generating units $g \in \mathcal{G}$

$$
\begin{equation*}
0 \leq P_{g, 0} \leq P_{g}^{\max } \tag{17}
\end{equation*}
$$

for all generating units $g \in \mathcal{G} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{align*}
& 0 \leq P_{g, 0}+\left(P_{g, c}^{+}-P_{g, c}^{-}\right) \leq P_{g}^{\max } \tag{18}\\
& 0 \leq P_{g, c}^{+} \leq \Delta P_{g}^{+} \tag{19}\\
& 0 \leq P_{g, c}^{-} \leq_{c} \Delta P_{g}^{-} \tag{20}
\end{align*}
$$

for all loads $d \in \mathcal{D} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{equation*}
0 \leq l s_{d}+l s_{d, c} \leq P_{d} \tag{21}
\end{equation*}
$$

for all nodes $n \in \mathcal{N} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{align*}
& \sum_{g \in \mathcal{G}_{n}} P_{g, 0}-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, c}^{p c}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}\right) \tag{22}\\
& \sum_{g \in \mathcal{G}_{n}}\left(P_{g, 0}+P_{g, c}^{+}-P_{g, c}^{-}\right)-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, c}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}-l s_{d, c}\right) \tag{23}
\end{align*}
$$

for all transmission elements $\ell \in \mathcal{L} \mathcal{E}$ contingencies $c \in \mathcal{C}_{N 1}$:

$$
\begin{align*}
& f_{\ell, c}^{p c}-a_{\ell, c} \cdot \frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n, c}^{p c}=0 \tag{24}\\
& f_{\ell, c}^{p c} \leq a_{\ell, c} \cdot r_{\ell} \cdot f_{\ell}^{\max } \tag{25}\\
& -f_{\ell, c}^{p c} \leq a_{\ell, c} \cdot r_{\ell} \cdot f_{\ell}^{\max } \tag{26}\\
& f_{\ell, c}-a_{\ell, c} \cdot \frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n, c}=0 \tag{27}\\
& f_{\ell, c} \leq a_{\ell, c} \cdot f_{\ell}^{\max } \tag{28}\\
& -f_{\ell, c} \leq a_{\ell, c} \cdot f_{\ell}^{\max } \tag{29}
\end{align*}
$$

Emergency Stage OPF

$\min \sum_{d \in \mathcal{D}} l s_{d}^{e}$
subject to,
for all nodes $n \in \mathcal{N}$:

$$
\begin{equation*}
\sum_{g \in \mathcal{G}_{n}}\left(P_{g, 0}^{\star}-e_{g} \cdot \sum_{d \in \mathcal{D}} l s_{d}^{e}\right)-\sum_{\ell \in \mathcal{L}} \beta_{n, \ell} \cdot f_{\ell, 0}=\sum_{d \in \mathcal{D}_{n}}\left(P_{d}-l s_{d}^{\star}-l s_{d}^{e}\right), \tag{31}
\end{equation*}
$$

for all loads $d \in \mathcal{D}$:

$$
\begin{equation*}
0 \leq l s_{d}^{*}+l s_{d}^{e} \leq P_{d}, \tag{32}
\end{equation*}
$$

for all transmission elements $\ell \in \mathcal{L}$:

$$
\begin{align*}
& f_{\ell}^{e}-\gamma_{\ell} \frac{1}{X_{\ell}} \sum_{n \in \mathcal{N}_{n}} \beta_{n, \ell} \cdot \theta_{n}^{e}=0, \tag{33}\\
& f_{\ell}^{e} \leq f_{\ell}^{\max } \tag{34}\\
& -f_{\ell}^{e} \leq f_{\ell}^{\max } \tag{35}
\end{align*}
$$

where superscript (*) denotes the optimal values of the respective variables as per the corrective N-1 SCOPF, generation participation factors are set as $e_{g}=P_{g, 0}^{\star} / \sum g \in \mathcal{G} P_{g, 0}^{\star}$ and binary parameter γ_{ℓ} takes a value of zero to denote the tripping of the respective transmission element following any contingency and the failure of the respective corrective controls.

Socio-economic cost function

$$
\begin{align*}
C_{S E}\left(u^{\star}(t), x(t)\right)= & \left\{\sum_{g \in \mathcal{G}} c_{g} \cdot\left[P_{g, 0}^{\star}+\sum_{c \in \mathcal{C}_{N 1}} \pi_{c} \cdot\left(P_{g, c}^{+, \star}-P g, c^{-, \star}\right)\right]\right. \\
& \left.+\sum_{d \in \mathcal{D}} \text { voll }_{d} \cdot\left(l s_{d}^{\star}+\sum_{c \in \mathcal{C}_{N 1}} \pi_{c} \cdot l s_{d, c}^{\star}\right)\right\} \tag{36}
\end{align*}
$$

where superscript ${ }^{\star}$) denotes the optimal values of the respective variables as per the solution of an OPF/SCOPF problem.

Severity function

$S\left(u_{E}^{\star}(t), x(t)\right)=\sum_{d \in \mathcal{D}}$ voll $_{d} \cdot l s_{d}^{e, \star}$,
where superscript ${ }^{\star}$) denotes the optimal values of the respective variables as per the solution of an OPF problem.

Corrective control failure probability function

$\phi\left(p, u_{N 1 c}^{\star}(t), c\right)=\sum_{k \in\left[1, n_{c}\right]}(-1)^{k} \cdot p^{k} \cdot \frac{n_{c}!}{\left(n_{c}-k\right)!k!}$,
where n_{c} denotes the number of elementary control operations following correctively secured contingency c.

