Multimodality imaging evaluation of Chagas disease: an expert consensus of Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI)

Maria Carmo P. Nunes1*, Luigi Paolo Badano2, J. Antonio Marin-Neto3, Thor Edvardsen4, Covadonga Fernández-Golfín5, Chiara Bucciarelli-Ducci6, Bogdan A. Popescu7, Richard Underwood8, Gilbert Habib9, Jose Luís Zamorano10, Roberto Magalhães Saraiva11, Ester Cerdeira Sabino12, Fernando A. Botoni1, Márcia Melo Barbosa1, Marcio Vinicius L. Barros1, Eduardo Falquetoo, Marcus Vinicius Simões3, André Schmidt3, Carlos Eduardo Rochitte14, Manoel Otávio Costa Rocha1, Antonio Luiz Pinho Ribeiro1, and Patrizio Lancellotti15,16

1Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, MG, Brazil; 2Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy; 3Department of Internal Medicine, School of Medicine of Ribeirão Preto of the University de Sao Paulo (USP), Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; 4Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway; 5Department of Cardiology, Hospital Universitario Ramón y Cajal, Madrid, Spain; 6Cardiovascular Biomedical Research Unit, Bristol Heart Institute, Bristol NIHR Biomedical Research Unit, University of Bristol, Bristol, UK; 7Department of Cardiology, University of Medicine and Pharmacy ‘Carol Davila’—Eureocolab, Institute of Cardiovascular Diseases 'Prof. Dr. C. C. Ilieșcu', Bucharest, Romania; 8Department of non-invasive cardiac imaging, Royal Brompton Hospital and Harefield Hospital, London, UK; 9Department of Cardiology, La Timone Hospital, Marseille, France; 10Department of Cardiology, University Alcalá Hospital Ramón y Cajal, Madrid, Spain; 11Department of Cardiology; Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-360, Brazil; 12Department of Infectious Disease, School of Medicine of the University de Sao Paulo (USP), Av. Dr. Arnaldo, 455 Cerqueira César 01246903, Sao Paulo, Brazil; 13Department of Cardiology, Hospital Felício Rocho, Belo Horizonte, MG, Av. do Contorno, 9530 Prado, Belo Horizonte 21040-360, Brazil; 14Department of Radiology, Instituto do Coração (InCor), School of Medicine of USP & Hospital do Coração, HCor, Heart Hospital, Associação do Sanatório Sírio, Av. Dr. Edés de Carvalho Aguiar, 44 - Pinheiros, São Paulo 05403-900, Brazil; 15Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, University of Liège Hospital, GIGA Cardiovascular Sciences, Liège, Belgium; and 16Department of Cardiology, Grupo Villa Maria Care and Research, Anthea Hospital, Bari, Italy

Received 11 May 2017; editorial decision 14 May 2017; accepted 16 May 2017

Aims
To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making.

Methods and results
Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients’ prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with

* Corresponding author. Tel: +55 31 34099746; Fax: +55 31 34099437. E-mail: mcarmo@waymail.com.br
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients’ risk stratification remains to be addressed using different images modalities.

Conclusion

Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients’ risk stratification remains to be addressed using different images modalities.

Keywords

Chagas disease • Chagas cardiomyopathy • echocardiography • three-dimensional echocardiography • speckle tracking echocardiography • cardiac magnetic resonance • nuclear cardiology • radionuclide ventriculography • myocardial sympathetic innervation

Table of Contents

Introduction
Epidemiology, diagnosis, clinical manifestations and prognosis
Left ventricular systolic function
Echocardiography
Cardiac magnetic resonance

- Nuclear cardiology
- Left ventricular diastolic function
- Right ventricular function
- Echocardiography
- Cardiac magnetic resonance
- Nuclear cardiology
- Coronary circulation
Myocardial sympathetic innervation
Patient risk stratification
Conclusion and future research

Introduction

Chagas disease, caused by the protozoan Trypanosoma cruzi, remains one of the most prevalent infectious diseases in Latin America and has become a health problem in non-endemic countries. Although public health programs have significantly reduced the prevalence of Chagas disease in Latin America in recent decades, awareness of the number of infections in the USA and non-endemic countries in Europe continues to rise.

Dilated cardiomyopathy is the most severe manifestation of Chagas disease and is characterized by heart failure, ventricular aneurysms, conduction disturbances, ventricular arrhythmias, thromboembolism, and sudden death. The early mortality and substantial disability caused by this disease, which often manifests in the socially most productive population (i.e., young adults), results in a significant economical burden. Chagas cardiomyopathy (CCM) usually requires long-term treatment, and can include specialized care, with pacemaker and cardioverter defibrillator implantation, and heart transplantation, with further increase of the costs related to the disease.

The pathogenesis of chronic CCM has not been completely elucidated. Most investigators believe that the main pathogenetic mechanisms of CCM are dependent on the parasite driven inflammatory reaction and the adverse host immune response. Autoimmunity mechanisms, probably related to the parasite persistence, involving polyclonal activation, molecular self-mimicry by parasite antigens or cryptic epitopes may also be implicated in the development of CCM. Two other mechanisms are thought to contribute to the pathogenesis of CCM: neurogenic disturbances and microvascular derangements.

Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management.

Accordingly, Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) developed this document to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized and efficient use of cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making.

Epidemiology, diagnosis, clinical manifestations, and prognosis

Chagas disease is endemic in Latin American countries, where nearly 6 million people are currently estimated to be infected with T. cruzi. Argentina, Brazil, Mexico, and Bolivia were the countries with higher estimated number of infected people (1.5, 1.2, 0.9, and 0.6 million, respectively). These numbers, much lower than previous estimates, seem to reflect the good result of coordinated multi-country initiatives, supported by Pan American Health Organization and World Health Organization, for vectorial and blood-borne transmission control.

Due to migration flows from Latin American endemic countries to the USA, Europe, and other developed countries, Chagas disease patients can now be found in alarming numbers outside the endemic countries. In Europe, the prevalence of Chagas disease in Latin American immigrants is high (4.2%), particularly in migrants from Bolivia and Paraguay, although a reliable estimate on how many infected persons are living in Europe is still lacking.

Chagas disease is transmitted to humans by infected triatomine bugs, through blood transfusion, organ transplantation, congenital transmission, oral ingestion of contaminated materials, or accidental contamination during laboratory work. The natural history of Chagas disease is characterized by two well-established phases (Figure 1). The acute phase, with high-grade parasitaemia and proliferation of amastigote forms in various organs, lasts from 4 to 8 weeks, is usually oligosymptomatic and is diagnosed in only 1–2% of the cases. The mortality rate is around 1% in the acute period, usually due to severe myocarditis and meningoencephalitis tissues. Given the high rates of pericardial effusion, echocardiography is indicated in patients present with acute Chagas disease.

The chronic phase is characterized by two distinct clinical forms. The indeterminate form, which is usually installed 4–10 weeks after infection, is defined by seropositivity, and lack of radiologic, electrocardiographic and clinical manifestations of cardiac and digestive disease. However, cardiovascular abnormalities can be detected using specific non-invasive tests, such as echocardiogram, cardiac magnetic resonance (CMR) and autonomic tests. Although most patients remain with the indeterminate form throughout life, others evolve to a determined form of the disease 10–30 years after the acute infection, affecting specific organs, such as the heart, oesophagus and colon, which characterize distinct chronic cardiac, digestive, or mixed forms. The progression from indeterminate to cardiac form occurs at an average rate of around 2% per year.

The cardiac form is usually initially defined by the presence of typical electrocardiographic abnormalities that encompass a wide spectrum of presentations, from minor electrocardiographic alterations with normal left ventricular (LV) systolic function, to various forms of arrhythmia, and to diluted cardiomyopathy with heart failure.

The CCM, which constitutes the most serious complication of the disease, occurs in 20–40% of those individuals tested serologically positive. Up to 15–20% of patients with indeterminate form develop digestive alterations in some endemic areas, but the prevalence seems to vary among countries possibly due to different inoculated strains.

The chronic cardiac form manifests itself by one of the three main syndromes, which can occur in association: heart failure, cardiac arrhythmias, and pulmonary or systemic thromboembolism. The initial manifestations of CCM are generally mild and most patients have asymptomatic electrocardiogram (ECG) alterations, such as right bundle branch block and bradycardia, and minor echocardiographic abnormalities, e.g. regional wall motion abnormalities (Table 1). Ventricular arrhythmias are important manifestations of CCM and non-sustained ventricular tachycardia is an established marker of higher risk of death.
Patients with more advanced disease frequently have heart failure, which is associated with an ominous prognosis and seems to be carrying higher mortality risk than ischaemic or idiopathic dilated cardiomyopathies.32,33

Stroke is also a cause of death in association with advanced heart disease,34 but could also be the first sign of CCM in asymptomatic patients and those with mild LV systolic dysfunction.35 LV aneurysm, mural thrombus, and atrial fibrillation are risk factors for stroke related to CCM.36

The aetiologic diagnosis of chronic Chagas disease is based on serological assays because the direct detection of parasites is difficult due to very low levels or even absence of parasitaemia.37 There are several techniques used for detection of antibodies against the \textit{T. cruzi} including indirect immunofluorescence, enzyme immunoassays (ELISAs), haemaglutination and rapid test provided by different manufacturers.38 Their sensitivity may vary significantly and Chagas disease should be screened by 2 different parallel assays.39 However, as the ELISA tests were more broadly used in the blood bank setting, the sensitivity of the assays improved and the current predominant consensus is that a single highly sensitive assay can be used for the initial \textit{T. cruzi} screening, so that, if negative, it would rule out this aetiology.38

Regarding the prognosis of the disease, several risk markers have been recognized, and a systematic review identified that impaired LV function, New York Heart Association class III/IV, cardiomegaly, and non-sustained ventricular tachycardia are the most important predictors of poor prognosis in patients with chronic CCM.30 Using a validated prognostic scoring system, based on clinical, radiological, echocardiographic and Holter monitoring/stress testing, Chagas disease patients can be stratified into three risk groups: low, intermediate, and high.30 For those at low risk, 90% will still be alive after 10 years, in comparison with only 16% of those at high risk. Prognostic factors have been used to build a risk score for death that is helpful for clinical decision making30 (Table 2).

Key points

- 20–40% of patients with Chagas disease will evolve to chronic Chagas cardiomyopathy, which can be asymptomatic or manifest by heart failure, cardiac arrhythmias, and/or thromboembolism
- Brady or tachyarrhythmias or stroke may be the first manifestation of Chagas cardiomyopathy

Table 1 Stages in the development of heart failure due to Chagas disease

<table>
<thead>
<tr>
<th>Stages</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Patients present no symptoms of heart failure, and no structural heart disease (normal ECG and chest X-ray)</td>
</tr>
<tr>
<td>B1</td>
<td>Asymptomatic patients with ECG changes (arrhythmias or conduction disorders); mild echocardiographic contractile abnormalities with normal global ventricular function can also be present</td>
</tr>
<tr>
<td>B2</td>
<td>Patients with impaired left ventricular ejection fraction who have never had any signs or symptoms of heart failure</td>
</tr>
<tr>
<td>C</td>
<td>Patients with left ventricular dysfunction and prior or current symptoms of heart failure</td>
</tr>
<tr>
<td>D</td>
<td>Patients with symptoms of heart failure at rest, refractory to maximized medical therapy (NYHA IV) that require specialized and intensive interventions</td>
</tr>
</tbody>
</table>

ECG, electrocardiogram; NYHA, New York Heart Association.
• Chronic form of Chagas cardiomyopathy evolving to heart failure carries higher mortality
• Impaired LV systolic function, New York Heart Association class III/IV, cardiomegaly, and non-sustained ventricular tachycardia are important predictors of poor prognosis in patients with chronic Chagas disease

LV systolic function

Echocardiography

Echocardiography is the most commonly used imaging modality for assessment and follow-up of patients with Chagas disease. Echocardiography allows to stage patients (A, B, C, and D) according to international recommendations adapted to the Chagas disease (Table 1). In early stages of cardiac involvement, echocardiography may demonstrate segmental LV wall motion abnormalities and diastolic dysfunction. The most commonly involved LV regions are the basal inferior and inferolateral walls (Figure 2; Supplementary Videos 1 and 2), and the apex, which cannot be attributed to obstructive coronary artery. Wall motion abnormalities can be detected in more than one wall in the same patient. The extent of regional wall motion abnormality varies from hypokinesis to akinesis and aneurysm. The presence of segmental abnormalities identifies individuals at risk of further LV function global deterioration.

Wall motion abnormalities can be found in around 10% of patients in the early stages of cardiac involvement and they can be associated with ventricular arrhythmias. As the disease progresses to LV dilatation and dysfunction, the prevalence of segmental wall motion abnormalities increases to about 50% of patients.

Detection of regional wall motion abnormalities by visual assessment is subjective and highly dependent on the skills of the interpreter. Moreover, subtle changes in segmental contractility may be missed by visual assessment. Strain measurement using speckle tracking echocardiography is a new method that allows a more precise and quantitative measurement of the regional myocardial function, overcoming the subjective evaluation by conventional echocardiography (Figures 3 and 4). Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. A study including 125 patients with Chagas disease found that global longitudinal, circumferential, and radial LV strain were reduced in the patients who had cardiac fibrosis on CMR despite normal global and segmental LV systolic function by echocardiography. Specifically, the patients with fibrosis had lower radial LV strain in the basal inferoseptal wall than patients without cardiac fibrosis (27 ± 17% vs. 60 ± 15%).

Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. A recent study showed that mechanical dispersion was associated with malignant ventricular arrhythmias in patients with CCM independent of LV ejection fraction (Figure 5).

LV apical aneurysms are a typical finding in patients with CCM and can be helpful in making the etiologic diagnosis in dilated cardiomyopathy (Figure 6; Supplementary Videos 3 and 4). This abnormality may be missed if only conventional apical views are acquired.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York Heart Association class III or IV</td>
<td>5</td>
</tr>
<tr>
<td>Cardiomegaly (chest X-ray)</td>
<td>5</td>
</tr>
<tr>
<td>Segmental or global wall motion abnormality (echo)</td>
<td>3</td>
</tr>
<tr>
<td>Non-sustained ventricular tachycardia (24 h Holter)</td>
<td>3</td>
</tr>
<tr>
<td>Low QRS voltage (ECG)</td>
<td>2</td>
</tr>
<tr>
<td>Male sex</td>
<td>2</td>
</tr>
<tr>
<td>Risk category</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>5-years mortality</td>
</tr>
<tr>
<td>2%</td>
<td>10%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>18%</td>
</tr>
<tr>
<td>18%</td>
<td>44%</td>
</tr>
<tr>
<td>High</td>
<td>63%</td>
</tr>
</tbody>
</table>

Table 2 Score for predicting all-cause mortality in Chagas disease (Rassi’s score)

ECG, electrocardiogram.

Figure 2 (A) Apical two-chamber view 2D echocardiographic image showing akinesis of the basal segment of the inferior wall. (B) Apical long-axis view showing akinesis of the basal segment of the inferolateral wall.
Figure 3 Left ventricular longitudinal strain at apical two-chamber view (left, upper panel) in an asymptomatic patient with Chagas disease and normal global left ventricular ejection fraction. The regional strain values are displayed both as regional strain (left, lower panel) and time curves (right, upper panel) as well as in an M-mode parametric colourization (right, lower panel). AVC, aortic valve closure.

Figure 4 Computation of peak LV global longitudinal strain by using the speckle tracking technique on three conventional apical views: four-chamber (left, upper panel), two-chamber (right, upper panel), and apical long axis (left, lower panel). LV segmental values of longitudinal strain are displayed both as numbers and as parametric colorization on a bull’s eye display (right, lower panel). There is an apical aneurism that is seen in each view.
In order to identify aneurysms, a careful examination requires not only standard views but also angulated apical views. Frequently, a modified four- and two-chambers views aiming posteriorly may be necessary to detect apical aneurysms and thrombus. The size of the aneurysm may range from small (like a ‘hollow punch’) to large with extensive wall thinning, similar to ischaemic aneurysms.\(^{44,47}\) Aneurysms are not limited to the apex or to the inferolateral wall,\(^{49}\) they can also be found in interventricular septum and anterolateral walls, being more prevalent in patients with global LV systolic dysfunction.\(^{44,47,48}\) Right ventricular (RV) aneurysms are uncommon, but some patients have apical aneurysms affecting both ventricles (Figure 6; Supplementary Video 4). Intraventricular mural thrombi can be associated with aneurysms and are important risk factors for the occurrence of systemic embolisms including stroke\(^ {35,36,53,54}\) (Figure 7; Supplementary movies 5 and 6).

Contrast echocardiography has the advantage to enhancement of LV endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease.\(^ {44}\) With the apical four-chamber view, using contrast echo, it should be usually possible to clearly visualize the RV and LV cavities.

Figure 5 2D LV longitudinal strain in Chagas disease. Note the progressive decrease in LV longitudinal strain from patient in indeterminate form (A) to the patients with cardiac form of Chagas disease (B and C). Each figure depicts the LV longitudinal strain curves for each of 6 segments analysed at the four-chamber view.

Figure 6 Apical four-chamber views showing left ventricular apical aneurysm (thin arrow, on the left), and right ventricular aneurysm (broad arrows, on the right) with a relatively normal left ventricle.

Figure 7 Echocardiographic images showing different locations of thrombus inside of the left ventricle.
In Chagas disease, 3D echocardiography is superior to 2D echo for assessing more accurately the LV apex and to detect apical aneurysms/thrombus in patients in whom LV foreshortening is suspected by 2D echo (Figure 8). In addition, 3D echo is more accurate than 2D Simpson’s biplane rule for assessing LV volumes and EF in patients with significant wall motion abnormalities, including aneurysms with distorted LV geometry.

Although segmental wall motion abnormalities are among the most characteristic findings of cardiac involvement in Chagas disease, their pathogenesis has not been defined. Since the epicardial coronary arteries are angiographically normal it has been hypothesized that microvascular involvement leads to ischaemia and necrosis in distal watershed areas of the coronary territories. This could explain the prevalence of fibrotic lesions and perfusion defects in inferior, inferolateral and apical segments. Accordingly, the regions of late gadolinium enhancement (LGE) (signifying myocardial fibrosis/scarring) in the post-contrast CMR images are predominantly localized in the apex, inferior and inferolateral walls.

More advanced disease is characterized by global LV dilatation and diffuse hypokinesis. LV systolic dysfunction is the strongest predictor of death in CCM.

Key points

- Echocardiography is the most common imaging modality used to assess, stage, and follow-up of patients with Chagas disease
- In early stages of cardiac involvement, echocardiography may demonstrate segmental LV wall motion abnormalities
- Segmental wall motion abnormalities are more frequent in inferior and inferior-lateral walls and at the apex and may range from hypokinesis to aneurysms
- Apical aneurysms are the landmark lesions in Chagas disease, but they can be missed in conventional 2D apical views due to apical foreshortening, dropout or near-field artefacts
- The use of contrast is highly recommended whenever the image quality is suboptimal (>2 LV segments not visible, as recommended by guidelines) and when apical involvement is either suspected or unclear
- Speckle tracking longitudinal strain and 3D echocardiography appear to be accurate and reproducible methods to assess LV systolic function in Chagas disease and should be used when available and feasible

Cardiac magnetic resonance

Due to its unique ability to differentiate tissue characteristics, CMR allows non-invasive tissue characterization in CCM. CMR can demonstrate all the typical features of the cardiac involvement in Chagas disease such as the presence of myocardial oedema, and altered myocardial perfusion in the early stages, as well as global and segmental wall motion abnormalities, aneurysm formation, intracardiac thrombi and myocardial fibrosis areas detected by the LGE sequence in the most advanced stages (Figure 9).

A study showed that 20% of patients in the indeterminate form of Chagas disease have evidence of myocardial fibrosis, without any associated wall motion abnormality. In CCM, CMR highlights the structural derangement associated with intense collagen formation. Moreover, the apical aneurysms can be easily demonstrated by CMR (Figure 10). In advanced stages, the cine sequences show decreased global contractility and ejection fraction with diffuse parietal thinning.

Regions of LGE with a heterogeneous pattern at delayed enhancement CMR images have been reported in 68.6% of patients at different stages of Chagas disease. The extension of myocardial fibrosis correlated with the severity of the LV systolic dysfunction, which was also present in all patients with previously documented episodes of ventricular tachycardia.

Another study reported that, in patients with Chagas disease, the prevalence of LGE was 24% in the overall study population. Particularly, in patients with only electrocardiographic abnormalities, LGE was found in 16% of patients and 3% had segmental dyskinesia (aneurysm) not detected with echocardiography. Conversely 52% of the patients with CCM had LGE indicating myocardial fibrosis and/or necrosis. The LGE appearance was heterogeneous: subendocardial in 26.8%, midwall in 14.0%, subepicardial in 22.6%, and transmural in 36.0% of the patients. The presence of LGE was significantly associated with lower LV ejection fraction and was more commonly located at the apex and inferolateral walls. In this study, a correlation between LGE and arrhythmic events was identified. Thus, early detection of oedema and/or myocardial fibrosis by CMR may potentially identify patients at risk of disease progression.

In 41 patients with Chagas disease and cardiac involvement, myocardial fibrosis was detected in all the 26 patients (63%) who had ventricular tachycardia. The presence of two or more LV segments containing transmural LGE constituted a predictor of the occurrence of arrhythmia after adjustment for LV ejection fraction, age, gender and the area of LGE. Patients without previous ventricular tachycardia, or transmural LGE, and those with less than 6% of fibrosis in the myocardium showed no new arrhythmic events. Furthermore, three patients died of sudden death, and all of them had at least one segment with transmural LGE at CMR and no previous history of ventricular tachycardia.

Figure 8 3D echocardiography of a patient with chronic Chagas disease showing apical aneurysm with preserved contractility at basal segments of the left ventricle. Semi-automatic endocardial border detection is shown by yellow line and the lower right panel shows regional-ventricular analysis.

Figure 9 3D echocardiography showing apical anterior/anterior view with a dilated left ventricle and an apical aneurysm. CMR images have been reported in 68.6% of patients at different stages of Chagas disease. CMR can demonstrate all the typical features of the cardiac involvement in Chagas disease such as the presence of myocardial oedema, and altered myocardial perfusion in the early stages, as well as global and segmental wall motion abnormalities, aneurysm formation, intracardiac thrombi and myocardial fibrosis areas detected by the LGE sequence.
Key points

- CMR should be indicated in selected patients with severe ventricular arrhythmias to quantify the extension of myocardial fibrosis and risk of sudden death with potential impact on indication of implantable cardioverter-defibrillator.
- CMR should be indicated for LV ejection fraction evaluation when contrast echocardiography/3D echo is not available or unsatisfactory.
- It remains to be clarified whether in the patients with the indeterminate form of the disease, evidence of oedema or fibrosis at CMR can predict future progression to the cardiomyopathy.

Radionuclide ventriculography

Planar ECG-gated radionuclide ventriculography (RNV) is an alternative method for LV systolic function assessment in patients with suspected or definite cardiac involvement in Chagas disease when CMR is not feasible or available. RNV was used to assess global LV function, and also allows the adequate evaluation of regional ventricular wall motion, particularly the characterization of the apical aneurysm. Moreover, data about LV function are robust and reproducible.

Key points

- RNV is used for LV systolic function assessment in those patients in whom CMR is not feasible or available.
- RNV should be indicated for LV ejection fraction measurement and regional wall motion evaluation when contrast echocardiography/3D echo is not available or unsatisfactory.

LV diastolic function

Chagas disease may also lead to impairment of diastolic function, which can occur early in the disease. Usually, the first abnormality is impaired LV relaxation with prolonged E-wave deceleration time. Further progression of the disease leads to decreased LV compliance and results in increased filling pressures.

In some studies, prevalence of diastolic abnormality ranges from 10% of patients with indeterminate form to almost 100% in patients with CCM and heart failure. Other studies enrolling patients with the indeterminate form did not show any impairment of diastolic function. Differences regarding patient population sampling, controls selection and echocardiographic diastolic parameters used to define diastolic dysfunction, may explain discrepant results.

More recently, key variables to assess LV diastolic function including tissue Doppler imaging have been used that allow comparison among the studies. In particular, ’velocity at tissue Doppler echocardiography appeared to be the best parameter to identify the progressive worsening of the LV diastolic dysfunction.

Echocardiographic parameters of diastolic function in CCM are also correlated with brain natriuretic peptide levels. A previous study including 59 patients with dilated CCM showed a strong...
correlation between LA volume and BNP levels. In another study, BNP levels correlated with diastolic function patterns regardless of systolic function. The E/e’ ratio was the only parameter of diastolic function that was independently associated with BNP levels.

Key points
- Isolated LV diastolic dysfunction is uncommon but may appear early in the natural history of chronic Chagas cardiomyopathy, and has been described in patients with the indeterminate form of the disease
- Diastolic and systolic dysfunction coexist in most patients with more advanced stages of the disease
- Left atrial volume and E/e’ ratio correlate with brain natriuretic peptide levels in Chagas cardiomyopathy

RV function
RV systolic dysfunction may be an early finding in the natural history of Chagas disease and has been detected in patients with the indeterminate and digestive forms. Several indexes and methods have been used to describe RV dysfunction in patients with Chagas disease showing somewhat discrepant results. These mixed data may be attributed to the different methods used to assess RV function as well as to the composition of the various groups of patients included in each study.

Isolated right-sided heart failure is not frequent and usually RV dysfunction is associated with LV dysfunction at advanced stages of CCM. However, direct damage to the RV myocardium due to Chagas disease itself can also contribute to RV dysfunction. It is important to emphasize that RV dysfunction may occur without symptoms or signs of heart failure, but may be aggravated by the burden generated by chronic pulmonary hypertension secondary to LV systolic dysfunction. In such circumstances RV dysfunction carries an adverse prognostic meaning. Also, the concomitance of RV dysfunction explains why systemic congestion can predominate over pulmonary congestion in some patients with heart failure due to CCM.

Echocardiography for RV function assessment
RV dysfunction has been reported in all stages of Chagas disease, most commonly associated with LV dysfunction. Several echocardiographic parameters have been used to assess RV function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain.

Cardiac magnetic resonance
Previous studies in Chagas disease using CMR have focused on the LV and there are limited data on RV function. A study including 158 patients with Chagas disease showed that RV systolic dysfunction assessed by CMR was more commonly associated with reduced LV ejection fraction. Isolated RV dysfunction was not frequent, which was identified in only 4.4% of the patients.

Radionuclide ventriculography
Previous studies using RNV to assess quantitatively RV function have documented early and predominant RV dysfunction in patients with the indeterminate and gastrointestinal forms of Chagas disease. This particular feature explains why heart failure syndrome in some CCM patients may present more prominent systemic than pulmonary congestion.

Key points
- Early and predominant RV dysfunction may be present in some patients with Chagas disease, and in some those with the isolated gastrointestinal or the indeterminate forms of Chagas disease
- It remains to be clarified whether RV dysfunction is predominantly secondary to chronic pulmonary hypertension induced by LV systolic dysfunction or reflects primarily a direct myocardial damage
- Although RNV is a well validated and reproducible technique to evaluate the RV, limited data are available in Chagas disease.

Disturbances of the coronary circulation
Although the epicardial coronary arteries are angiographically normal in the vast majority of patients with Chagas disease studied because of atypical angina, there is limited evidence of abnormal regulation at the macrovascular level. Moreover, much more evidence has been gathered from several studies pointing to functional and structural microvascular derangements likely to contribute to ventricular dysfunction in Chagas disease.

On the basis of sporadic cases of myocardial infarction occurring in Chagas patients with non-obstructed epicardial coronary arteries, coronary vasospasm has been postulated to cause such events. However, controlled studies aiming at detection of abnormal macrovascular coronary regulation in Chagas patients produced mixed results, using various endothelium dependent and endothelium independent stimuli such as hyperventilation, nitrates, acetylcholine and adenosine.

Wall motion abnormalities have been detected during standard dobutamine stress echocardiography in patients with Chagas disease, despite absence of haemodynamically significant obstructions of epicardial coronary arteries. Abnormal flow regulation at the microvascular level has been demonstrated by several investigators using myocardial perfusion scintigraphy (Figure 11). Myocardial perfusion defects occur at early stages of Chagas disease at a microvascular level and precede the appearance of regional systolic wall motion abnormalities. These data further support the hypothesis that coronary microvascular disturbances may cause ischaemic myocardial damage in CCM.

Key points
- Wall motion abnormalities may be induced during stress echocardiography in Chagas disease patients despite angiographically normal coronary arteries
- Myocardial perfusion defects occur at early stages of cardiac involvement in Chagas disease, before the appearance of regional wall motion abnormalities
- Perfusion defect locations are correlated with subsequent development of regional myocardial fibrosis
Detection of reversible ischaemic defects predicts further deterioration of LV systolic function

Myocardial sympathetic innervation

Necropsy studies documented severe cardiac autonomic denervation in CCM, more severe than in other cardiomyopathies. Moreover, functional abnormalities of the reflex autonomic control of the heart rate have been demonstrated using several methods of investigation. More recently, studies using myocardial scintigraphy with iodine-123-metaiodobenzylguanidine (123I-MIBG) have shown that defects of 123I-MIBG uptake can be documented in the majority (68%) of the patients with Chagas disease. Of note, 123I-MIBG defects were detected in 33% of the patients without any other evidence of cardiac involvement. Patients with more severe LV dysfunction presented a higher prevalence of 123I-MIBG defects (92%). The areas of myocardial sympathetic denervation were topographically correlated with the regions also exhibiting fixed and reversible myocardial perfusion defects and abnormal segmental LV wall motion. These areas were predominantly the inferior, postero-lateral and apical LV walls (Figure 12). These findings suggested that myocardial sympathetic denervation is an early phenomenon in the pathophysiology of Chagas disease, preceding the development of regional LV wall motion abnormalities. This concept was corroborated by an independent study showing abnormal 123I-MIBG uptake even in patients with Chagas disease and no apparent cardiac involvement. One investigation in 26 patients with Chagas disease and normal or mildly reduced LV ejection fraction showed that patients with sustained ventricular tachycardia had higher 123I-MIBG summed score and a higher number of mismatch defects (sympathetic denervation with preserved perfusion) per patient than patients with no arrhythmias. Both groups had similar 99mTc-Sestamibi-SPECT summed score. The presence of ≥ 3 mismatch defects was strongly associated with the occurrence of sustained ventricular tachycardia (93% sensitivity, 82% specificity). These findings suggest a possibly relevant role of myocardial sympathetic denervation as a triggering mechanism of malignant ventricular arrhythmias, and that 123I-MIBG imaging may be useful to stratify the risk of sudden cardiac death in Chagas disease.

Key points

- Myocardial sympathetic denervation is an early occurrence in patients with Chagas disease and can be detected using myocardial scintigraphy with iodine-123-metaiodobenzylguanidine
- The extension of myocardial sympathetic denervation correlates with the severity of LV dysfunction
- Extent of cardiac sympathetic denervation may be a marker of ventricular arrhythmias with potential for risk stratification of sudden death in Chagas disease
Imaging modalities for risk stratification

Echocardiography can provide key data to guide therapy and prognosis. Several echocardiographic variables have been described as predictors of mortality in Chagas disease. Early studies have identified LV dysfunction and specially low-ejection fraction obtained by echocardiography as the strongest predictor of death. Subsequently, echocardiographic parameters to assess LV filling pressure have been reported to have additive value for risk stratification of patients with impaired LV systolic function.

Table 3 Echocardiographic predictors of outcomes in Chagas disease

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Number of patients</th>
<th>Characteristics of Chagas disease patients</th>
<th>Follow-up duration</th>
<th>Outcomes</th>
<th>Echocardiography predictive variables</th>
<th>Other prognostic factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viotti et al. (2005)</td>
<td>856</td>
<td>Indeterminate form and heart disease, without heart failure</td>
<td>8 y</td>
<td>Progression of the disease or cardiovascular death</td>
<td>LV end-systolic diameter</td>
<td>Age, ICD, SVT, and benznidazole treatment</td>
</tr>
<tr>
<td>Rassi Jr et al. (2006)</td>
<td>424</td>
<td>Heart disease</td>
<td>7.9 ± 3.2 y</td>
<td>All cause-mortality</td>
<td>LV systolic dysfunction subjectively estimated</td>
<td>NYHA class, cardio megaly, NSVT, QRS voltage and male Isolated PVC count</td>
</tr>
<tr>
<td>Benchimol Barbosa (2007)</td>
<td>50</td>
<td>Indeterminate form and heart disease</td>
<td>84.2 ± 39 m</td>
<td>Cardiac death or documented ventricular tachycardia</td>
<td>Apical aneurysm and LVEF</td>
<td></td>
</tr>
<tr>
<td>Theodoropoulos et al. (2008)</td>
<td>127</td>
<td>Heart failure with LV systolic dysfunction</td>
<td>25 ± 19 m</td>
<td>All cause-mortality</td>
<td>LVEF</td>
<td>NYHA class IV, no BB therapy, digoxine use, low serum sodium levels</td>
</tr>
<tr>
<td>Issa et al. (2010)</td>
<td>68</td>
<td>Irreversible chronic heart failure</td>
<td>1326 ± 39 d</td>
<td>Death or heart transplant</td>
<td>LV end-diastolic diameter</td>
<td>BB therapy</td>
</tr>
<tr>
<td>Sarabanda and Marin-Neto (2011)</td>
<td>56</td>
<td>Heart disease with either sustained VT or NSVT</td>
<td>38 ± 16 m</td>
<td>All cause-mortality and sudden death</td>
<td>LVEF < 40%</td>
<td>None</td>
</tr>
<tr>
<td>Ribeiro et al. (2011)</td>
<td>113</td>
<td>Indeterminate form and heart disease</td>
<td>106 ± 28 m</td>
<td>Cardiovascular death</td>
<td>LVEF</td>
<td>T-wave variability, NSVT and QRS > 130 ms</td>
</tr>
<tr>
<td>Bestetti et al. (2011)</td>
<td>231</td>
<td>Chronic heart failure</td>
<td>19 m</td>
<td>Death or heart transplant</td>
<td>LV end-systolic diameter</td>
<td>No BB therapy and inotropic support</td>
</tr>
<tr>
<td>Duarte et al. (2011)</td>
<td>56</td>
<td>Dilated cardiomyopathy</td>
<td>21 ± 14 m</td>
<td>Death or hospitalizaton</td>
<td>Rassi’s score</td>
<td>LV dyssynchrony was not associated with events</td>
</tr>
<tr>
<td>Nunes et al. (2012)</td>
<td>232</td>
<td>Dilated cardiomyopathy</td>
<td>3.4 y</td>
<td>Death or heart transplant</td>
<td>LVEF, RVMPI, LA volume, and (E'/e') ratio</td>
<td>NYHA class</td>
</tr>
<tr>
<td>Nascimento et al. (2013)</td>
<td>251</td>
<td>Indeterminate form and heart disease</td>
<td>842 ± 245 d</td>
<td>All-cause mortality, stroke, heart transplant, worsening HF or arrhythmias</td>
<td>(E') velocity and peak negative global LA strain</td>
<td>None</td>
</tr>
<tr>
<td>Rossi et al. (2014)</td>
<td>60</td>
<td>Heart failure with severe LV systolic dysfunction</td>
<td>24 m</td>
<td>Cardiovascular death</td>
<td>Indexed LA volume</td>
<td>None</td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; BB, beta-blocker; CI, confidence interval; ICD, intraventricular conduction disorders; d, days; LA, left atrium; LVEDD, left ventricular end-diastolic diameter; LVSD, left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; m, months; NYHA, New York Heart Association; QTd, QT dispersion; RVMPI, Right ventricular myocardial performance index; SVT, sustained ventricular tachycardia; NSVT, non-sustained ventricular tachycardia; VT, ventricular tachycardia; Y, years.

*Multivariate analysis.

*Clinical trial; 456 patients with heart failure were enrolled, and Chagas cardiomyopathy was present in 68 patients.
The ratio of early transmitral velocity to tissue Doppler mitral annular early diastolic velocity (E/e’ ratio), an accepted non-invasive method to estimate LV filling pressures, is also an independent predictor of mortality in patients with CCM.43,63,71

A previous study showed that the inclusion of the E/e’ ratio has improved the risk prediction model beyond established risk parameters in patients with CCM including functional class, LV ejection fraction, and RV function.92 However, E/e’ ratio appears to have different effects on mortality in the setting of CCM.71 In patients with mild or moderate LV systolic dysfunction, an E/e’ ratio > 15 was a powerful predictor of mortality. In contrast, in patients with severe systolic dysfunction, an increased E/e’ ratio was inversely associated with mortality.71 Although the underlying mechanism to explain these findings remains to be clarified, it suggests that Chagas disease has some specific features compared with heart failure from other aetiologies.

Increased left atrial (LA) volume has been shown to be an independent predictor of survival in CCM, adding incremental prognostic value to clinical factors, LV ejection fraction, and Doppler-derived parameters of diastolic function.86 More recently, a study showed that LA contractile function assessed by peak negative global LA strain was an independent predictor of clinical events, defined as the occurrence of a combined endpoint of all-cause mortality, stroke, heart transplantation, atrial fibrillation, or admission for worsening HF or cardiac arrhythmias.63 Although LA contractile function was depressed in all groups of patients with the cardiac form, LA contractile function was depressed only in those with heart failure.63

RV systolic involvement is a marker of Chagas disease severity associated with functional capacity93 and survival.73 A study in 158 patients with dilated CCM found that RV function, assessed by RV myocardial performance index was a predictor of death, independent of functional class and LV ejection fraction.73 Other subsequent studies assessing risk stratification in Chagas disease have confirmed the fundamental role of RV function in predicting prognosis.58,71,92

In summary, several echocardiographic variables have been associated with increased mortality (Table 3).10,6,3,7,19,94–102 The prognostic role of new echocardiographic techniques like speckle tracking echocardiography and three-dimensional echocardiography is promising but its ultimate usefulness for clinical purposes remains to be defined.

Cardiac magnetic resonance may have a role to stratify patients at risk of ventricular arrhythmias and progression to heart failure by detecting and quantifying the extension of myocardial fibrosis.57,61,103,104 Radionuclide methods may improve risk stratification to define cardiac involvement in Chagas disease in patients with devices precluding CMR.
Conclusions and future research

The early mortality and substantial disability caused by CCM result in a significant economic impact. Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease, and stratify patient risk and address management. Since unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, establishment of simplified protocols, could improve the access of these remote populations to important information provided by diagnostic methods that could impact in the clinical management of the disease.

There are many fields open for further research in cardiac imaging in Chagas disease. The role of speckle tracking echocardiography to allow for an earlier diagnosis of cardiac involvement and improve patients’ risk stratification remains to be addressed in properly powered outcome studies. Although three-dimensional echocardiography should be theoretically more accurate than conventional 2D echocardiography in measuring LV volumes and ejection fraction in ventricles with distorted geometries like those with regional aneurysms, whether this improved accuracy would translate into increased prognostic power remains to be proved. The role of three-dimensional echocardiography could be particularly useful to assess RV involvement and its prognostic impact. The prognostic role of the presence and extension of areas of myocardial oedema and/or fibrosis by CMR to predict future progression to cardiomyopathy, heart failure, severe ventricular arrhythmias, and sudden death should be addressed in well-designed multicentre outcome studies. Finally, the role of myocardial perfusion scintigraphy and assessment of myocardial sympathetic innervation for an early diagnosis of cardiac involvement and prognosis in patients with Chagas disease remains to be established.

Supplementary data

Supplementary data are available at European Heart Journal—Cardiovascular Imaging online.

Review

This document was reviewed by members of the EACVI Scientific Documents Committee for 2014–2016 and 2016-2018. EACVI reviewers included: Dr Victoria Delgado, Prof. Bernard Cosyns, Prof. Erwan Donal, Dr Alessia Gimelli, Prof. Frank Flachskampf, Assoc. Prof. Kristina Haugaa, Prof. Nuno Cardim, Dr Massimo Lombardi, Dr Denisa Muraru, and Dr Raluca Dulgheru.

Acknowledgements

The views expressed are those of the authors and not necessarily those of the National Health Service, National Institute for Health Research, or Department of Health.

Funding

C.B.-D. is supported by the Bristol NIHR Cardiovascular Biomedical Research Unit at the Bristol Heart Institute, Bristol, UK.

Conflict of interest: None declared.

References

Multimodality imaging evaluation of Chagas disease

15

