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Résumé 

Kandel Purna. (2018). Relations génétiques entre les caractères liés aux 

émissions de méthane et la composition du lait chez les vaches laitières en 

production (Thèse de doctorat en anglais). Gembloux, Belgique, Gembloux Agro-

Bio Tech, Université de Liège, 113p., 16 table, 16 fig. 

Les émissions de méthane (CH4) représentent un caractère d'évaluation de l'impact 

environnemental des vaches laitières parmi les plus importants. La mise en place de 

programmes de sélection génétique visant à réduire l'impact des émissions de CH4 

requiert l'estimation des paramètres génétiques du CH4, l'estimation des corrélations 

avec les autres caractères économiquement importants et une appréciation de la 

réponse à la sélection sur les caractères visés. Dans la première partie de cette thèse, 

les émissions de CH4 (g/j ; PME) ont été prédites à partir des spectres moyen 

infrarouge (MIR)d'échantillons de lait de vaches Holstein en utilisant des équations 

utilisant les acides gras comme variables de référence. Les héritabilités de PME ainsi 

obtenues étaient modérées, allant de 0.21 à 0.40. La variabilité génétique estimée 

des pères était suffisamment large que pour espérer une réponse à la sélection. Dans 

la deuxième partie de cette thèse et afin de minimiser les erreurs de prédictions, les 

paramètres génétiques ont été estimés à partir de prédictions directes du CH4à partir 

des spectres MIR en utilisant une équation de prédiction basée sur de vraies valeurs 

CH4 mesurées par la méthode SF6. L'intensité prédite du CH4 (PMI, g/kg de lait) a 

été obtenue en faisant le rapport de la valeur du CH4 (g/j) sur le rendement total en 

lait enregistré au jour de contrôle, ce caractère présentant l‟intérêtd‟être comparable 

entre différentes intensités de systèmes de production. La relation entre PMI et le 

rendement en lait (MY) était curvilinéaire. La distribution du PMI, n'étant pas 

normale, ce caractère a subi une transformation logarithmique (LMI) avant d‟être 

modélisé. Les analyses génétiques ont été réalisées en utilisant deux modèles 

génétiques. En plus des effets fixes, le premier modèle incluait un effet aléatoire lié 

à l‟environnement permanent et un effet génétique additif. Le deuxième contenait en 

plus un effet aléatoire intra-troupeau. Il a été ainsi montré que l'inclusion d'une 

courbe de lactation intra-troupeau permettait une meilleure modélisation. 

L'héritabilité de PME était de 0.26 et celle de PMI était de 0.27. La contribution à la 

variance totale del‟effet aléatoirelié à la courbe de lactation intra-troupeau suggère 

un impact de la conduite spécifique du troupeau sur les émissions de CH4. Après 

l‟obtention de la confirmation de la composante génétique des caractères liés au 

CH4, les corrélations génétiques entre ces caractères et ceux liés à la production 

laitière ont été estimées à partir de données issues de vaches en première et 

deuxième lactation. Les corrélations phénotypiques entre PME et MY, les 

rendements en matières grasses et en protéines étaient nulles, par contre les 

corrélations phénotypiques avec LMI étaient fortement négatives. La corrélation 

génétique était faiblement négative entre PME et les caractères de production laitière 
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mais fortement négative avec LMI. L'héritabilité intra-lactation et les corrélations 

changeaient toutes deux d'une lactation à l'autre, suggérant que la relation entre les 

caractères liés au CH4 et ceux de production laitière était dynamique. Après avoir 

montré les relations avec les caractères de production laitière, les corrélations 

génétiques des émissions de CH4 avec les caractères fonctionnels [fertilité, note 

d'embonpoint (BCS), longévité], les caractères de santé (santé mammaire etles 

caractères de conformationont été estimées. Les corrélations entre les caractères 

fonctionnels et ceux liés aux émissions de CH4 étaient positives, suggérant un 

certain équilibre entre ces caractères lors de la sélection. Les caractères de 

conformationliés à la capacité d‟ingestion montraient des corrélations génétiques 

positives avec PME mais négatives avec LMI. Finalement, en adaptantl‟actuel index 

de sélection wallon pour inclure PME ou LMI, il a été montré qu‟il était possible  de 

réduire les émissions, sans toutefois compromettre les caractères de production 

laitière mais avec des conséquences négatives sur la fertilité, la note d'embonpoint et 

la longévité. En conclusion, cette recherche suggère la faisabilité d'une sélection 

génétique permettant d‟optimiser les émissions de CH4 chez les vaches laitières. 

Mots-clés.  Méthane, moyen infrarouge, héritabilité, corrélations génétiques 

vaches laitières 
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Abstract 

Kandel Purna. (2018).Genetic relationships between methane-related traits and 

milk composition in lactating dairy cows. (PhD Dissertation in English).Gembloux, 

Belgium, Gembloux Agro-Bio Tech, University of Liège, 113 p., 16 table, 16 fig. 

Methane (CH4) emission is one of the most important environmental traits from 

dairy cows. Genetic selection programs aiming to mitigate CH4 emissions require 

the estimation of genetic parameters, correlations with other economically important 

traits and predicted selection response of these traits. In first part of this thesis, CH4 

emissions (g/d; PME) were predicted from several milk fatty acid based prediction 

equations using mid-infrared (MIR) spectra of milk samples from Holstein cows. 

The heritability of PME was moderate and ranged from 0.21 to 0.40. The sires 

genetic variability were large enough to respond selection pressure. In second part 

and to minimize prediction errors, genetic parameters were estimated from direct 

prediction of CH4 (i.e. based on SF6 measurements) from milk MIR spectra. 

Predicted CH4 intensity (PMI, g/kg of milk) was derived from the ratio of CH4 (g/d) 

value divided by the total milk yield recorded for the considered test-day which is a 

trait that is comparable across different production systems. The relationship 

between PMI and milk yield (MY) was curvilinear and the distribution of PMI being 

non-normal, it was log-transformed (LMI) in further analyses. The genetic analyses 

were performed using two genetic models with or without random within-herd 

lactation curve effects along with random permanent and additive genetic effects. 

The results showed that the model with random within-herd lactation curve effects 

had a better fitting. The heritability of PME was 0.26 and PMI was 0.27. The 

contribution of random herd-specific lactation curve effects to the total variance also 

suggested an impact of herd specific management on the CH4 emission traits. After 

confirming genetic component of CH4 traits, genetic correlations of these traits with 

milk production traits were explored and expanded to second lactation. The 

phenotypic correlations between PME and MY, fat yield and protein yield were not 

different than zero but with LMI, the phenotypic correlations were highly negative. 

The genetic correlation was low negative between PME and milk production traits 

but high negative with LMI. The intra-lactation heritability and correlation were 

changing across lactation suggested there was dynamic relationship between CH4 

traits and milk production traits. After demonstrating correlation between milk 

production traits, the genetic correlation between CH4 traits and functional traits 

[fertility, body condition score (BCS), longevity], health traits (udder health) and 

type traits were estimated. There were positive correlations between CH4 emission 

traits and functional trait suggested there were tradeoffs between these traits in 

selection. The ingestion ability related type traits had positive genetic correlations 

with PME but negative genetic correlation with LMI. Finally, using the current 

Walloon selection index and by selecting PME and LMI, the emission traits 

responded by a reduction in CH4emission, without jeopardizing in milk production 
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traits but having negative consequences in fertility, BCS and longevity. In 

conclusion, this study shows the feasibility to adapt the selection index to mitigate 

the CH4 emitted by dairy cows. 

Keywords: Methane, Mid infrared, heritability, genetic correlation, dairy cows 
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General Introduction 
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Methane (CH4) emission is of major concern in term of environmental impact of 

dairy cow breeding.The selection of CH4 emission traits predicted from milk 

composition was the main aim of this thesis. In this chapter, the context, aim, outline 

and framework of this research thesis are presented. 
 

 



1. General introduction 
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1. Context 

Major objective of dairy production is to maximize farm profitability; however, 

consumer preferences and environmental concerns associated with milk production 

have also been considered as integral components of sustainable dairy farming these 

days. Sustainable livestock production requires economic, societal and 

environmental impacts to be considered (Boichard and Brochard, 2012). Lower 

carbon footprint can be achieved by reducing enteric CH4 emissions. Indeed, 

livestock sector produces about 80 million tons of enteric CH4 annually 

(Beauchemin et al., 2008). Enteric CH4 fermentation by ruminants accounts for 

about 32% of total non-CO2 emissions from agriculture. In terms of greenhouse 

effects, CH4 is 25 times more potent than CO2; therefore, the reduction of CH4 

would make an important contribution to decrease the impact of greenhouse gas 

(GHG) emissions. Among others methods like the feeding changes or the use of 

feeding supplements that reduce CH4 emissions, selective breeding of animals with 

low CH4 emissions without (relative) compromising production characteristics could 

be promising area to reduce carbon footprint from milk production. This breeding 

goal requires a large number of accurate and repeatable phenotypes for genetic 

analysis, preferably from commercial farms. Several direct and indirect methods 

have been used to quantify CH4 emissions in vivo and they all have certain 

advantages and limitations. Conventional methods of enteric CH4 measurements 

(e.g. respiration chambers, SF6 tracer techniques and others) are difficult and not 

cost effective yet to get a large number of phenotypes for genetic analyses. 

Therefore, the recording of phenotypes that is highly correlated with CH4 emission 

and easier to record for a large number of cows would be an ideal alternative. These 

indirect biomarkers can then be used to predict the emissions of a larger number of 

animals and are therefore feasible to estimate the dairy cattle variability of CH4.  

Organizations involved in the performance recording of dairy cattle collect 

individual milk related traits through the analysis of individual milk samples by milk 

laboratories. A particularly promising group of milk components, in regard to this 

research context, are milk fatty acids (FAs). The use of milk FAs records is 

biologically relevant for predicting CH4emission. Indeed, some milk FAs are 

indirectly linked with volatile FAs formed during rumination. Based on this indirect 

link, equations using gas chromatographic FA measurements to predict CH4 

emissions have been derived (e.g., Chilliard et al., 2009; Dijkstra et al., 2011). Gas 

chromatography is also expensive technique and not in routine. Previous studies 

have shown that mid infrared (MIR) spectroscopy can be used to predict milk FAs 

(Soyeurt et al., 2011). These milk MIR predicted phenotypes are considered as 

cheap, rapidly obtained, usable on a large scale, robust and reliable. Initially, CH4 

emissions used in this PhD work were predicted from literature equations based on 

milk FAs predicted by MIR. In the second approach, CH4 emissions were directly 

predicted from MIR spectra to minimize prediction errors (Dehareng et al., 2012; 

Vanlierde et al., 2015 and 2016). Additionally, an interesting feature of MIR based 
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prediction of CH4 emissions is its repeatable characteristic. Indeed, approximately 

every four weeks during lactation, milk samples are collected for a considered cow 

and analyzed by MIR allowing a prediction of CH4. Therefore, this can generate a 

large amount of phenotypic data for genetic analysis. 

The consideration of new traits within the breeding selection goals starts by an 

acquisition of phenotypic data, and then the estimation of their heritability and 

genetic variability. After quantification of heritability of the considered trait using 

appropriate models, a number of correlated effects with traits of interests (milk 

production traits or functional traits like fertility and body condition scores, health 

traits (udder health), longevity and type traits) can be calculated. Finally, based on 

these correlated effects, selection response can be quantified based on the present 

and future selection scenarios. This PhD work followed this framework. Particularly, 

this thesis focused on simulated scenarios of genetic progress which helps to decide 

the ultimate goal of reducing CH4 emission from dairy production system through 

genetic selection using proxies of CH4 emissions. To achieve this objective, different 

hypothesis were validated: 

 predicted CH4 traits would be heritable;  

 those traits would have sufficient genetic variability to rank sires into low and 

high CH4 emitters; 

 those environmental traits and other traits included in the selection index would 

be selected simultaneously without jeopardizing animal production and 

efficiency. 

2. Aim of the Thesis 

This thesis aims to explore the potential of using genetic selection of CH4 emission 

traits predicted from milk composition using MIR spectroscopy. Towards the 

objective, genetic parameters of CH4 production (g/day) and intensity (g/kg of milk) 

were estimated from equations developed from MIR milk FAs and direct MIR milk 

spectra using models including or not random within-herd lactation effects. The 

phenotypic and genetic correlations of these CH4 traits with other economic traits 

were estimated from the dairy cattle in the Walloon region of Belgium. Finally, 

consequences of genetic selection of these traits were explored to provide estimates 

of selection response.  

3. Outline 

This manuscript is a compilation of published scientific papers. After general 

introduction in Chapter 1,the variability of literature based CH4 indicator traits 

predicted from milk fatty acids using MIR spectroscopy is exposed for the Holstein 

dairy cow population of Walloon region of Belgium(Chapter 2).Chapter 3 discusses 
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the CH4 traits directly predicted from MIR-spectra to estimate the genetic parameters 

of mid-infrared predicted CH4 emissions in first parity Holstein cows with or 

without random within-herd lactation effects. These genetic parameters of CH4 

emissions are expanded up to second lactation and exposed in Chapter 4as well as 

the genetic correlations with milk production traits. In Chapter 5, the consequences 

of genetic selection of environmental impact traits on economically important traits 

are analyzed. Finally, in Chapter 6, all results from previous chapters are discussed. 

The document draws the conclusion and the future perspectives of the present work.  

4. Thesis Framework 

This thesis research was initiated in September 2011 within the GreenhouseMilk- 

a Marie Curie Initial Training Network which was funded by the European 

Commission - Framework 7, to develop genetic tools to mitigate the environmental 

impact of dairy systems. Within this project, the objective was to harness genetic 

tools to elucidate the genetics of emissions in dairy cattle to select “environmentally 

friendly” bulls to suit dairy production systems. After November 2013, the research 

was supported by the Methamilk project (SPW-DGO3) funded by Ministry of 

Agriculture of Walloon Region of Belgium. Additional financial support was 

provided from University of Liège, Administration R&D. This thesis is an outcome 

of active collaborations with the Walloon Agriculture Research Center, Gembloux 

for CH4 equation development; the Walloon Breeding Association (Ciney, Belgium) 

for the pedigree and milk recording database; the Comité du Lait (Battice, Belgium) 

for the MIR analysis.  
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In this chapter, CH4 emissions were predicted from literature equations using fatty 

acids predicted by mid-infrared spectrometry. Moderate heritability (0.20-0.40) and 

large genetic variability was estimated. The genetic correlation with milk yield was 

low negative but high positive with fat content and protein contents. This study 

showed the feasibility to predict fatty acid derived CH4 indicator traits developed in 

the literature from MIR spectrometry. Moreover, the estimated genetic parameters 

of these traits suggested a potential genetic variability of the daily quantity of CH4 

eructed by Holstein dairy cows. 
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Abstract 

Dairy production is identified as a major source of CH4 emissions. Selective 

breeding can be one method to mitigate CH4 emissions but practical and cheap 

measurements of this trait are not currently available. Four CH4 indicator traits based 

on milk fatty acid (FA) contents were referenced from literature. The aim of this 

study was to use these literature CH4 indicators to assess the variability of CH4 

emission emitted by dairy cows. Literature indicator traits were originally based on 

gas chromatography derived FA. As those were not available for all available cows 

in our population, a sample of 602 gas chromatographic analyses was used to 

develop a calibration equation to predict the CH4 indicators based on milk MIR 

spectra which were available for all studied cows. Then, in a second step, MIR 

prediction equations were applied to the 604,028 recorded spectral data collected 

from 2007 to 2011 for 70,872 cows in their first three lactations in order to predict 

the literature CH4 indicator traits. Genetic parameters for these traits were estimated 

using single trait test-day random regression animal models. The predicted MIR CH4 

estimates were in the expected range from 350±40 to 449±65 g/d. The averaged 

predicted MIR CH4 emission (g/d) increased from the beginning of lactation, 

reached the highest level at the peak of lactation and then decreased towards the end 

of the lactation. The average daily heritabilities were 0.29-0.35, 0.26-0.40, and 0.22-

0.37 for the different studied CH4 indicators for the first three lactations, 

respectively. The largest differences between estimated breeding values of sires 

having daughters in production eructing the highest and the lowest CH4 content was 

24.18, 29.33 and 27.77 kg per lactation for the first three parities. Low negative 

correlations were observed between CH4 indicator traits and milk yield. Positive 

genetic correlations were estimated between CH4 indicator traits and milk fat and 

protein content. This study showed the feasibility to predict fatty acid derived CH4 

indicator traits developed in the literature from MIR spectrometry. Moreover, the 

estimated genetic parameters of these traits suggested a potential phenotypic and 

genetic variability of the daily quantity of CH4 eructed by Holstein dairy cows.  
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1. Introduction 

Livestock production is considered as one of the key sources of greenhouse gas 

emission, the main gas produced being CH4. Globally, livestock produces about 80 

million tons of enteric CH4 annually (Beauchemin et al., 2008). The enteric CH4 

fermentation by ruminants accounted for about 32% of total non-CO2 emissions 

from agriculture. CH4 is 25 times more potent than CO2 in its greenhouse effect; 

therefore, the reduction of CH4 would make an important contribution to decrease 

the impact of greenhouse emissions (Smith et al., 2007). Furthermore, CH4 emission 

from ruminants accounts for 2% to 12% of gross energy loss of feeds depending on 

the type of diets (Johnson et al., 1995). Therefore the mitigation of CH4 emission 

from livestock has dual advantages: the decrease of its environmental impact and the 

increase of energy efficiency. 

Currently a certain number of methods are available to obtain CH4 emission data 

on a low scale. It is largely admitted that the most accurate measurement of CH4 

emission can be obtained from the calorimetry method using respiration chambers. 

However, the cost, handling of lactating dairy cows and the CH4 measurement time, 

limit the number of animals that can be measured which reduces its usefulness in 

large populations. The sulfur hexafluoride gas (SF6) measurement (Johnson et al., 

1994) is an alternative method that can be used because of its relatively low cost and 

its ability to keep the animal in a more natural environment (i.e. grazing). However, 

obtaining an accurate direct measurement of CH4, using this method is complex and 

the recording of such data is also unfeasible at a medium to large scale. Other 

methods are under scrutiny but all depend on the acquisition of extra data outside 

current data acquisition strategies in regular recording system of animal production. 

The most used data acquisition in dairy cattle is through the performance 

recording. Consequently, some studies have focused on the creation of indicator 

traits indirectly related to the CH4 emission based on milk composition which is or 

could be routinely appreciated through milk recording. A particular promising group 

of components are FAs. The use of FA traits seems to be biologically relevant to 

predict CH4. Indeed, CH4 output from ruminants is directly linked to the microbial 

digestion in the rumen. The fermentation process of feed carbohydrates leads to the 

production of hydrogen (H2) and the methanogenesis is the essential pathway to 

expel this H2 (Moss et al., 2000). The synthesis of acetate (C2) and beta-

hydroxybutyrate (C4) produces H2 that is then converted to CH4, while propionate 

(C3) synthesis consumes H2 (Demeyer et al., 1975). The de novo synthesis of milk 

FA in the mammary gland uses mostly C2 (85% of de novo synthesized FA) but 

also C4 (10 to 15%), and a limited amount of C3 to make short chain FA (C4, C6, 

and C8), nearly all medium chain FA (C10, C12, and C14), and approximately 60% 

of C16 (Chilliard et al., 2000; Couvreur et al., 2007). Based on this indirect link, 

equations using gas chromatographic FA measurements (GCFA) to predict CH4 

emission have been derived (e.g., Chilliard et al., 2009; Dijkstra et al., 2011). 

Unfortunately, gas chromatography has not been adapted for large scale use in dairy 
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cow population especially due to its cost. 

Recent research showed the feasibility of the prediction of FA using MIR 

spectrometry (e.g., Soyeurt et al., 2011).Therefore, the aims of this study were 1) to 

develop MIR equations to predict fatty acid derived CH4 indicator traits developed 

in the literature directly from MIR spectrometry and to apply those for the Walloon 

Holstein cow population and 2) to estimate the phenotypic and genetic parameters 

for these traits and their relationship with milk production traits in order to evaluate 

indirectly the CH4 emission of Holstein dairy cows. 

2. Material and Methods 

2.1. Computation of Methane Indicator Traits 

Several different CH4 indicator traits derived from FA are given in the literature. 

Well known and already used in several studies are those defined by Chilliard et al., 

(2009) and Dijkstra et al., (2011). In this study CH4 indicator traits presented by 

Chilliard et al. (2009) were investigated, as the CH4 indicator trait defined by 

Dijkstra et al. (2011) was developed from less abundant milk FA and uses dry matter 

intake (DMI) in its formula. The CH4 emissions in Chilliard et al., (2009) were 

measured using SF6 technique. As the latter information was not available in the 

current study, the CH4 indicator trait developed by Dijkstra et al., (2011) was not 

used in this research. CH4 indicators defined by Chilliard et al., (2009) are based on 

major milk FA or class of major milk FA, and the accuracy of MIR prediction of 

these FA was a priori known to be very high (0.87 to 0.94) (Soyeurt et al., 2011). As 

the MIR spectrometry is used by nearly all milk recording organizations, adapted 

milk MIR spectra prediction equations for FA could be used to derive potentially 

informative CH4 indicator traits. In this context, two options are possible: 1) use of 

the equations for FA developed by Soyeurt et al., (2011), then computation of the 

CH4 indicators using these MIR based FA or 2) computing reference values for CH4 

indicator traits using the GCFA database used by Soyeurt et al., (2011) and then use 

of these reference values for CH4 indicators with associated MIR data to obtain 

direct MIR equations. The second proposal was used in this study for two reasons. 

First, one of the indicator traits was based on a sum of different FA, and using 

individual estimates would have led to an accumulation of prediction errors for this 

CH4 indicator. Also, by re-computing the calibrations for all traits, the obtained 

equations were comparable and adapted to the range of variation in the reference 

data. 

The calibration dataset used to develop the MIR calibration equations for the CH4 

indicator traits contained 602 Walloon milk samples and their corresponding GCFA 

profile and MIR spectra (i.e., those samples included in the calibration dataset used 

by Soyeurt et al., (2011)). The sampling procedure was explained in detail by 

Soyeurt et al., (2011).  

The reference values for the CH4 indicator traits (called hereafter Methane_1 to 
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Methane_4) were computed from the GCFA contents by using the equations 

published by Chilliard et al., (2009) (Table 2-1). The equations developed by 

Chilliard et al., (2009) predicted the CH4 emission in g/d. The coefficient of 

determination reported in literature by Chilliard et al., (2009) for the 4 indicators 

(R
2
ref) varied between 0.81 (i.e., Methane_3) and 0.88 (Methane_1 and 

Methane_2). From the reference CH4 data and their corresponding milk MIR 

spectra, partial least squares regressions were used to develop four CH4 indicator 

trait equations after applying a first derivative pre-treatment on the recorded spectral 

data. A t-outlier test was used to delete potential outliers during the calibration 

process. This process explained why the number of samples used for each developed 

equation was slightly different. The robustness of the developed MIR equations was 

assessed by cross-validation using 50 groups. The cross-validation coefficient of 

determination (R²cv) and the cross-validation standard error (SECV) were 

calculated. 

2.2. Milk Samples and Predictions of Methane Indicator 
Traits 

Milk samples were collected from Holstein cows in 1207 herds between January 

2007 and October 2011 through the Walloon milk recording managed by the 

Walloon Breeding Association (Ciney, Belgium). All samples were analyzed using a 

Milkoscan FT6000 spectrometer (Foss, Hillerød, Denmark) by the milk laboratory 

„Comité du Lait‟ (Battice, Belgium) to quantify the contents of protein and fat and to 

record the spectral raw data.  

The CH4 prediction equations developed by Chilliard et al., (2009) and adapted for 

MIR spectra in this study were applied to the recorded MIR spectral data to predict 

MIR literature indicators of the quantity of the eructed CH4. The dataset contained 

262,759 records from 53,481 first parity, 203,092 records from 41,419 second 

parity, and 138,177 records from 28,978 third parity Holstein cows. All records used 

were observed between 5 and 365 days in milk (DIM). The pedigree data was 

extracted from the pedigree used for the regular Walloon genetic evaluation for milk 

production traits.  

2.3. Estimation of Genetic Parameters 

Single trait test-day random regression animal models were used to model the 

variability of the studied traits: 

    y=Xβ+Q(Zp+Zu)+e 

where y was the vector of observations for each trait (Methane_1 to Methane_4, 

milk yield, fat and protein contents), β was the vector of fixed effects (herd x test-

day, DIM (24 classes; 15 days each starting from day 6 to day 365), and age at 

calving (9 classes: 21 to 28 months, 29 to 32 months, and 33 months and more for 

first lactation; 31 to 44 months, 44 to 48 months, and 49 months and more for 

second lactation and 41 to 57 months, 57 to 60 months, and 60 months and more for 
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third lactation); p was the vector of permanent environmental random effects, u was 

the vector of additive genetic effects; Q was the matrix containing the coefficients of 

2
nd

 order Legendre polynomials; e was the vector of residuals; X and Z were 

incidence matrices assigning observations to effects. 

Variance components were estimated using the average information REML 

method (AI-REML, Misztal, 2011). Average daily heritability (h
2
) was the averaged 

h
2
 estimated separately for each DIM between 5 and 305 DIM as the ratio of the 

genetic variance at the considered DIM to the total variance. The estimated breeding 

values (EBV) were calculated using a BLUP approach. Approximate daily genetic 

correlations were computed between traits using the following method. First, daily 

breeding values (EBVd) for each DIM between 5 and 305 and for cows with records 

were calculated as following: 

 

where EBVdhtk was the daily breeding value of cow k, for trait h, for each DIM t 

between 5 and 305; ahkm was the random regression coefficient for the additive 

genetic effects; ztm was the covariate for Legendre polynomials associated with DIM 

t; and zt0= 1.0, zt1= 3.0
0.5

x, zt2=5.0
0.5

(1.5x
2
– 0.5), where x= 2[(t– 5)/300] – 1. 

Second, daily genetic correlations between 2 traits were estimated as correlations 

between EBVd values of the 2 traits of interest for each DIM from 5 to 305. Finally, 

average daily correlations were defined as the average correlations across the entire 

lactation.  

3. Results and Discussion 

3.1. Development of MIR Predictions for Methane 
Indicator Traits 

After applying the equations of Chilliard et al., (2009) on the GCFA data included 

in the calibration set (i.e., 602 samples), the mean and the SD obtained for the 

reference values for Methane_1 to Methane_4 were within the range of estimated 

CH4 emission values from the results published by Chilliard et al., (2009; Table 2-

1). The values for Methane_3 had a clear tendency to be lower than the values for 

the other three indicators. 

The robustness of the MIR equation developed to predict the literature CH4 

indicator traits can be assessed by R
2
cv (Table 2-1). For all traits except Methane_3, 

R²cv was of 0.91 and higher. Methane_1 and Methane_2 seem to be the most 

relevant MIR traits because they had the highest R²ref (as reported by Chilliard et 

al., 2009), and high R²cv were obtained suggesting that they were theoretically the 

best CH4 indicators. Methane_2 and Methane_1 had also the lowest SECV (18.42 

and 19.30 g of CH4/d, respectively). In addition to this, the FA used in Methane_3 



Genetic relationships between methane-related traits and milk composition in lactating dairy cows 

14 

 

and Methane_4 were also a subset of those used for Methane_1. 

 

Table 2-1:Methane equations developed by Chilliard et al., (2009) and used in the 
calibration procedure and statistical parameters calculated for the developed MIR prediction 

equations for methane emission based on Walloon data (g/d) 

Indicator trait Equation (fatty acids in 
g/100g of fat) 

R
2
ref N Mean SD SECV R

2
cv 

Methane_1 
(g/d) 

9.97 x (C8:0 to C16:0) – 80 0.88 597 447 68 19 0.92 

Methane_2 
(g/d) 

-8.72 x C18:0 + 729 0.88 602 422 61 18 0.91 

Methane_3 
(g/d) 

282 x C8:0 +11 0.81 595 369 43 23 0.72 

Methane_4 
(g/d) 

16.8 x C16:0 – 77 0.82 588 460 88 26 0.92 

R
2
ref = literature coefficient of determination between the CH4 predicted from gas 

chromatographic data and the SF6 CH4 data (for Methane_1 to Methane_4); N = number of 
samples used in the calibration set; Mean = mean of the reference values; SD = standard 
deviation of the reference values; SECV = standard error of cross validation; R²cv = cross 
validation coefficient of determination 

3.2. MIR Indicators of Methane Eructed by Walloon 
Holstein Cows 

Descriptive statistics for the common production traits and the developed MIR 

CH4 indicator traits for the first three lactations of studied Walloon Holstein cows 

are shown in Table 2-2. By taking into account all CH4 indicators, the MIR CH4 

predictions ranged from 350 g to 443 g/d in the first lactation which corresponds to 

128 to 162 kg per year.  

For the second lactation, the CH4 MIR prediction was 360 g to 449 g/d and almost 

similar for the third lactation (Table 2-2). MIR predicted values stayed in the range 

observed on reference values (Table 2-1) in terms of means and standard deviations. 

For all studied MIR traits, a larger amount of CH4 was estimated for the second 

lactation compared to the first lactation. However, this trend was almost flat from 

the second to the third lactation. Even if Mohammed et al., (2011) suggested an 

overestimation of CH4 production obtained from the equations of Chilliard et al., 

(2009), the obtained MIR CH4 predictions were within the range of the published 

CH4 emissions. Except for Methane_3, the MIR based predictions of CH4 in our 

study were in agreement with the daily CH4 emissions (429± 128 g/d) measured in 

Holstein cows in Belgium (Dehareng et al., 2012), as well as the CH4 quantity 

measured from the group where these equations were derived (418.1 g/d, Martin et 
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al., 2008). Similarly, predictions were on par with CH4 emission measured through 

the SF6 method from other authors like Heimeier et al., (2011), and also measured 

from the respiration chambers (van Zijderveld et al., 2011). 

Table 2-2: Descriptive statistics for the common production traits and the CH4 indicator 
traits for the first three lactations (with their corresponding SD) 

Traits Lactation 1 
(N=262,759) 

Lactation 2 
(N=203,092) 

Lactation 3 
(N=138,177) 

Milk (kg/d) 23.61±5.88 26.57±7.59 27.51±8.36 

Fat (g/dl of milk) 4.07±0.62 4.17±0.67 4.19±0.67 

Protein (g/dl of milk) 3.44±0.35 3.53±0.38 3.50±0.38 

Methane_1 (g/d) 436±65 449±64 448±65 

Methane_2 (g/d) 401±58 414±57 415±57 

Methane_3 (g/d) 350±40 360±38 363±38 

Methane_4 (g/d) 443±73 448±76 444±75 

 
The estimated MIR CH4 indicators increased until the peak of lactation, which 

occurred during the second or third month of lactation, and then decreased (Figure 

2-1a). This pattern could be explained by the evolution of milk production within the 

lactation; an increase in milk production requires more energy and therefore led to 

increased CH4 emission per day, albeit a low amount (Capper et al., 2009). Similarly 

the DMI increases as the lactation progresses. Also, DMI is one of the primary 

drivers for CH4 emission (Hegarty et al., 2007). The peak of lactation don‟t 

corresponds to the peak of the ingestion andat the beginning of the lactation energy 

required to produce milk is also obtained by mobilizing body reserves (Banos et al., 

2010), which could explain the delay in the peak of the CH4 indicators compared to 

the peak in milk production. 

The difference in MIR CH4 predictions between the beginning and their peak 

during lactation was around 50-60 g/d. A similar observation was obtained by IPCC 

(2006) and Garnsworthy et al., (2012). The evolution pattern of the CH4 emission 

for the second and third lactations (data not shown) was similar to the one observed 

for the first lactation but the overall level of estimated MIR CH4 predictions was 

slightly higher (1-2%)(Figure 2-1b). It can be attributed mostly to the increase in 
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milk production, DMI and body weight gains (Grainger et al., 2008; Garnsworthy et 

al., 2012). Despite their very simple nature, the evolution of the MIR based CH4 

indicator traits were in line with expectations. 

 

 

Figure 2-1: Evolution of the four CH4 indicator traits and milk yield for the first (Figure 2-
1a), second (Figure 2-1b) and third (Figure 2-1c) parity Holstein cows throughout lactation 

3.3. Heritability 

Average daily heritability for the four MIR CH4 indicator traits ranged between 

0.29 and 0.35 for the first lactation, 0.26 to 0.40 for the second lactation, and 0.22 to 

0.37 for the third lactation. For Methane_1, which seems to be the most relevant 
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indicator, the average daily heritabilities were 0.35 (±0.01), 0.38 (±0.01), and 0.34 

(±0.01) for the first three lactations, respectively. The estimated heritability 

suggested a potential transmission of the capacity of dairy cows for emitting high or 

low quantity of CH4 from generation to generation. However, this CH4 indicator trait 

was basically derived from the saturated FA which has reported heritabilities around 

0.40 (Bastin et al., 2011); therefore, the values observed for daily heritabilities in 

this study were expected. Previously reported heritability for the predicted CH4 

production in Holstein cow was 0.12 (Cassandro et al., 2010) and 0.35 (de Haas et 

al., 2011). In the study by Cassandro et al., (2010), the CH4 production was 

calculated using predicted DMI for dairy cattle; de Haas et al., (2011) predicted CH4 

emission as 6% of gross energy intake corrected for the energy content of milk. 

Another study which estimated heritability of enteric CH4 emission measured by 

Fourier transform infrared gas analyzer obtained a heritability of 0.21 (Lassen et al., 

2012). The difference in heritability between different methods was presumably due 

to a prediction of CH4 obtained from very different methodology. However, the 

tendency found by these previous authors and the current results are in line to 

suggest a potential genetic variability of the quantity of CH4 eructed by dairy cows 

per day. 

The DIM heritabilities ranged from 0.29 to 0.41 for Methane_1, from 0.26 to 0.37 

for Methane_2, from 0.24 to 0.35 for Methane_3, from 0.29 to 0.41 for Methane_4 

in first lactation. The DIM heritabilities from all CH4 indicator traits increased from 

mid-lactation until late lactation and then decreased slightly until the end of the 

lactation for all studied lactations (Figure 2-2; data only shown for first lactation). 

This could be explained by the negative energy balance of a cow at the beginning of 

the lactation which involves a mobilization of lipids from adipose tissue. The energy 

is therefore partly obtained from metabolic processes which are controlled by 

different genetic processes. At later lactation stages, the cow is in positive energy 

balance; therefore, the energy comes mainly from the ingested food (Friggens et al., 

2007) which, given the results obtained here, seems to be captured well by the 

studied CH4 indicator traits. Another explanation could be the increase of DMI 

during the mid and later lactation. Indeed, the CH4 emission is positively correlated 

with DMI (Grainger et al., 2008), which is partially controlled by genetic process 

(Berry et al., 2007). Finally, the shape of the heritability curves is also a function of 

the model used. The objective of this research was not to study the optimal model 

for the studied traits. Previous studies for yield traits (e.g., Gengler et al., 2005) 

showed the potential importance of herd-specific lactation curves and the differences 

in partitioning of phenotypic variances across the lactation according to types of 

herds. Differences among herds in their feeding management are expected; 

therefore, future research will need to address this issue. 

3.4. Phenotypic and Approximate Genetic Correlations 

The phenotypic correlations and the approximate genetic correlations calculated 

between the MIR CH4 indicator traits and the common production traits are 
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presented in Table 2-3 for the first lactation. Both phenotypic and approximate 

genetic correlations were positive among all studied MIR CH4 indicators. 

Correlations between Methane_1 and Methane_2 were close to the unity indicating 

that they basically describe the same trait and lower correlations were observed with 

other CH4 MIR traits but the correlations always stayed positive. 

 

 

Figure 2-2: Evolution of the daily heritability of the four CH4 indicator traits throughout the 
first (Figure 2-2a), second (Figure 2-2b) and third (Figure 2-2c) lactations 

The phenotypic correlations for the MIR CH4 traits with milk yield were nearly 

zero (-0.18 to -.06) except for Methane_3 which was positive (0.24), indicating 

again that this trait behaved differently. IPCC model indicates a linear relationship 

between milk yield and CH4 emission due to fact that milk yield and feed intake as 

predictor of CH4 emissions in this model. However, other complex model like life 

cycle assessment model indicates lack of linear relationship (Sonesson et al., 2009). 

Wall et al., (2010) mentioned cows with higher genetic merit for milk production 
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produced less CH4/kg of milk on different diets possibly due to their low 

maintenance requirement and their higher feed efficiency suggesting a curvilinear 

relationship between these traits. Madsen et al., (2010) found a slight positive 

correlation between milk production and the ratio CH4:CO2 (i.e., proxy to the CH4 

emission). 

The observed phenotypic correlations were positive between MIR CH4 indicators 

and fat content (0.31-0.54) and protein content (0.14-0.38). This suggests a higher 

CH4 emission if the milk is rich in protein and/or fat. This could be partly explained 

by the fact that more energy is required to produce higher content of fat and protein 

(NRC, 2001). More specifically, fat content is influenced by the fiber content of 

feed. However, the relationship with protein content should be evaluated because 

protein will be enhanced with high energy diet containing starch and producing 

propionate in the rumen. Grainger et al., (2010) found a reduction of CH4 emission 

for dairy cows fed with a supplemented whole cottonseed meal with no change in fat 

content but a small decrease in protein content. However, except that, there is no 

direct evidence in the literature that an increase in fat and protein content 

proportionately increases the CH4 in g/d. 

The approximate genetic correlations between the studied MIR CH4 traits and milk 

yield were low and negative (-0.11 to -0.18), but positive with the fat content (0.31 

to 0.55) and protein content (0.14 to 0.36; Table 2-3). Therefore, Selecting for 

increased milk productioncan slightly decrease the CH4 emissions as suggested 

previously by Wall et al., (2010). 

Table 2-3: Phenotypic (below the diagonal) and approximate genetic (above the diagonal) 
correlations between the studied CH4 indicator traits and production traits in first parity 

Holstein cows 

 Methane_1 Methane_2 Methane_3 Methane_4 Milk Fat Protein 

Methane_1  0.98 0.55 0.81 -0.18 0.55 0.32 

Methane_2 0.99  0.59 0.75 -0.17 0.54 0.36 

Methane_3 0.56 0.57  0.18 -0.17 0.31 0.17 

Methane_4 0.88 0.87 0.32  -0.11 0.43 0.14 

Milk -0.07 -0.06 0.24 -0.18  -0.50 -0.38 

Fat  0.23 0.21 0.01 0.29 -0.39  0.59 

Protein  0.23 0.25 0.05 0.17 -0.38 0.51  

Milk=Milk kg/d; Fat = Fat content g/dl of milk; Protein=Protein content g/dl of milk 

 

EBVs for all studied CH4 indicator traits were estimated for cows with MIR CH4 

predictions and for sires that had daughters with MIR CH4 predictions. Given the 
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heritabilities, as expected, substantial differences in EBVs between animals were 

observed. For instance, the lowest EBV of sire for Methane_1 cumulated at 305 days 

was -11.12 kg and the highest was 13.06 kg. The range between EBVs of 

Methane_1 was 24.18 kg for the first lactation, 29.33 kg for the second lactation and 

27.77 kg for the third lactation. Similarly, the lowest EBV for cow for Methane_1 

was -14.46 kg and the highest was 14.87 kg. The range was equal to 30.36 kg for the 

first parity cows, 35.93 kg for the second parity cows, and 32.92 kg for the third 

parity cows. The EBV for extreme animals of all MIR CH4 traits was higher in the 

second lactation compared to the first one and slightly lower in the third lactation 

(data not shown). The Pearson correlations of EBV ranged from 0.77 to 0.80 

between first and second lactation, from 0.68 to 0.72 between first and third 

lactation and from 0.75 to 0.81 between second and third lactation. The relatively 

strong rank correlation suggested that the rankings of animal were consistent 

between lactations. 

Lower EBV for sires were observed for all MIR CH4 indicator traits compared to 

the ones calculated for the cows with MIR records as expected. Commonly used 

dairy sires are intensively selected for production traits. Given the estimated 

approximate genetic correlations, selecting for milk yield only should reduce slightly 

MIR CH4 indicator traits which are in line with expectations that animals with high 

genetic merit for yield are more efficient. However, selection is more on milk solids 

than on milk yield alone, and therefore the relationship between CH4 emissions and 

production traits is complicated and additional studies are required. 

4. Conclusions 

In conclusion, this study showed the potential to predict CH4 indicator traits from 

MIR spectral data based on CH4 indicator traits published in the literature and 

therefore, its potential use to screen a large dairy cow population. The obtained 

results showed also the existence of large phenotypic and genetic variability of these 

MIR CH4 indicator traits suggesting a potential phenotypic and genetic variability of 

CH4 content eructed by dairy cows. 
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In this chapter, CH4 emissions from first parity Holstein cows were predicted 

directly from milk mid-infrared spectra to minimize prediction errors. Two genetic 

models with or without random within-herd lactation curves effects models were 

tested and model with random within-herd lactation curves effects fitted better than 

without it. The estimates of heritability of predicted CH4 emission (PME) was 0.26 

and log-transformed predicted methane intensity (LMI) was 0.27 from model with 

herd-specific lactation curves random effects and within herd-lactation curve effect 

has significant effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From: Kandel, P. B., M.-L. Vanrobays, A. Vanlierde, F. Dehareng, E. Froidmont, 

N. Gengler, and H. Soyeurt. 2017. unpublished. With or without random within-herd 

lactation curve effects to estimate the genetic parameters of mid-infrared predicted 

methane emissions in first parity Holstein cows.  
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Abstract 

The carbon footprint of milk production can be improved by reducing the enteric 

CH4 emissions from cows through genetic selection. In this study, CH4 emission 

(PME; g/d) was predicted from milk mid-infrared spectra recorded longitudinally 

across the first lactation Holstein cows. Predicted CH4 intensity (PMI; g/kg of milk) 

was derived as the ratio of PME to milk yield for a given test-day and log-

transformed (LMI) in subsequent analysis. The objectives were to compare two 

statistical models; to infer variance components and heritability for predicted CH4 

traits (PME and LMI).Data included 366,126 predicted CH4 emissions test-day 

records on 56,991 cows in 935 herds. The first model included herd x test-day, days 

in milk, and age at calving as fixed effects; and permanent environment, additive 

genetic and residual effects as random effects. In order to allow herd-specific 

lactation curves effects, the second model also included random effects modeling 

herd-specific lactation curves. Firstly, two models were compared from the log-

likelihood ratio test (LRT), Akaike information criterion (AIC), Bayesian 

information criterion (BIC), the coefficient of calibration (R²C) and the root mean 

square error of prediction (RMSEP). Based on LRT, AIC, BIC, second model fit 

better than first model. Average daily heritability (±se) of PME was 0.26(±0.01) and 

LMI was 0.27(±0.01) and daily heritability ranged from 0.22 to 0.32 for PME and 

from 0.20 to 0.36 for LMI from second model. The relative variance for random 

herd-specific lactation curve effects for PME was 0.10 and LMI was 0.05. The 

contribution of random herd-specific lactation curve effects to the total variance also 

suggested an impact of herd specific management on the CH4 emission traits. In 

conclusion, model with random herd-specific lactation curve effects fit better for 

both traits and MIR predicted CH4 emission traits had moderate heritable genetic 

components. This information can be used breeding programs that aimed to reduce 

the carbon footprint of dairy products. 
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1. Introduction 

Livestock production is considered to be responsible for 14.5% of global 

anthropogenic CH4 emissions (Gerber et al., 2013). The enteric fermentation of feed 

in rumen accounts for the major part of the total CH4 emitted by ruminant livestock. 

CH4 is a potent greenhouse gas with a global warming potential 25 times that of 

CO2. In addition to the environmental impact, enteric CH4 production also represents 

a loss of dietary energy for ruminants considered to range from 2 to 12% of gross 

energy intake depending on factors such as feed intake, diet composition and the 

animal itself (Johnson and Johnson, 1995). Therefore, reducing the enteric CH4 

emissions of dairy cows is expected to improve both economic and environmental 

performance of livestock industries. 

Although the use of animal selection is interesting to mitigate the CH4 emission of 

dairy cows due to its additive specificity, current selection breeding objectives do 

not include enteric CH4 emissions trait because this inclusion is difficult due to a 

paucity of records. Direct CH4 measurements are done using respiration chambers; 

SF6 technique or other recent techniques have a too low throughput and are too 

expensive to generate sufficient data needed for the estimation of genetic 

parameters. Therefore, the use of indirect biomarkers that allow predictions of the 

CH4 emissions for a large number of animals is desirable. Previous studies have 

shown that MIR spectroscopy can be used to predict milk fatty acid concentrations 

(Soyeurt et al.,2011), which were found by several authors to be indirectly related to 

CH4 emission (e.g., Chilliard et al., 2009; Dijkstra et al., 2011). Recently, Dehareng 

et al., (2012) and Vanlierde et al., (2015 and 2016) demonstrated the prediction 

feasibility of CH4 emission by milk MIR spectra. This MIR-based CH4 emission 

indicator trait that can be used easily to generate a large number of CH4 emission 

phenotypes as this technology is routinely used for the milk analysis used for the 

milk payment and the milk recording.  

However, despite this difficulty to obtain enough phenotypes, a few studies had 

already investigated the genetic aspects of CH4 quantities emitted by dairy cows. 

Between-cow coefficient of variation (CV) of daily CH4 production (g/d) of 17.8% 

(measured in respiration chamber) and CV of 19.6% (measured by SF6 technique) 

was reported in sixteen lactating dairy cows (Grainger et al., 2007). However, as dry 

matter intake (DMI) is the primary determinant of CH4 emission (Hegarty et al., 

2007), a substantial proportion of variability in daily CH4 emission between cows 

can be attributed to between-cow variation in feed intake and indirectly milk yield. 

A more accurate estimation of the true genetic variation in CH4 emission between 

cows is provided by measurement of CH4 yield expressed in g/kg of dry matter 

intake (DMI). The CV of CH4 yield (g/kg of DMI) of eight lactating Holstein cows 

fed a forage diet was recently estimated to be approximately 7% using both 

respiration chambers and SF6 techniques (Deighton et al., 2014). A heritability of 

0.35 for CH4 emission (g/d) predicted from gross energy intake was estimated by de 

Haas et al., (2011). Similarly, the heritability of CH4 emission (g/d) predicted from 
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the MIR milk fatty acids using prediction equations published by Chilliard et al., 

(2009) was 0.22 to 0.40 (Kandel et al., 2015). The heritability of CH4 emission (g/d) 

and emission intensity (g/kg of milk) indirectly obtained by Fourier transform infra-

red gas analyzers were both estimated at 0.21±0.06 (Lassen and Løvendahl 2016). 

Therefore, even though these studies were based on different methodologies, all 

supported the existence of a genetic contribution to the enteric CH4 emission of 

dairy cows. Still, the number of samples and cows used in these studies limited an 

accurate prediction of genetic parameters of CH4 emission and abundance of MIR 

spectral predicted CH4 emissions would permit estimation of genetic parameters 

more accurately. 

Different sources of variation of CH4 emission in dairy cows are already 

highlighted by several studies (e.g., Garnsworthy et al., 2012). One of the most 

influent sources is the feeding practices) which changes often throughout the year 

(i.e., pasture during the spring and summer for having sufficient grass areas) (Ulyatt 

et al., 2002). Therefore, the inclusion of effect(s) in the descriptive model which take 

this particularity into account is also required. Previous studies showed the potential 

importance of herd-specific lactation curves for production traits (e.g. Gengler et al., 

2005) and therefore, models with and without herd-specific lactation curves effects 

were also had to be examined in MIR predicted CH4 emissions traits. Therefore, the 

main objective of this study was to estimate accurately the genetic parameters of 

CH4 emission for first parity dairy cows through the use of a large dataset containing 

MIR-predicted CH4 traits (g/d and g/kg of milk). To achieve this objective, this 

study also compared two statistical models with the difference of the inclusion of 

random within-herd lactation curve effects.  

2. Materials and Methods 

2.1. Data 

Milk samples were collected from first parity Holstein cows (i.e., at least 75% of 

Holstein gene) between January 2010 and April 2014 as part of the routine milk 

recording undertaken in the Walloon region of Belgium by the Walloon Breeding 

Association (Ciney, Belgium). All samples were analyzed using a Foss Milkoscan 

FT6000 spectrometer (Hillerød, Denmark) by the milk laboratory „Comité du Lait‟ 

(Battice, Belgium) to quantify the contents of fat and protein and to provide the 

spectral data. Only test-day records observed between 5 and 365 days in milk (DIM) 

were kept. As applied by the International Committee for Animal Recording, records 

were retained in this study if they were comprised between of 3 and 99 kg of milk 

yield, 1 and 7 % of milk protein content, and 1.5 and 9 % of milk fat content. 

The daily CH4 emission (PME; g/d) was predicted from the recorded milk MIR 

spectra using the lactation-stage-dependent equation developed by Vanlierde et al., 

(2015) which is an extended work of Dehareng et al., (2012). The CH4 MIR 

prediction equation was developed from 446 SF6 CH4 measurements taken from 142 
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cows. The standard error of calibration for the equation was of 63 g/d with a 

calibration coefficient of determination equal to 75%. More detail about the 

development of this equation was provided in Vanlierde et al., (2015). Predicted 

methane intensity (PMI; g/kg of milk) was derived from PME (g/d) divided by the 

total milk yield (kg/d) recorded on the same test-day. Based on the observed 

skewness and kurtosis for PMI (Table 3-1), this trait was log-transformed to be 

normally distributed (LMI). 

In order to eliminate potential abnormal records, PME values below the 0.1 

percentile and above the 99.9 percentile were deleted. Moreover, herds were only 

kept in the study if there were at least 100 records from January 2010 to April 2014. 

The final dataset contained 366,126 daily CH4 emission test-day records on 56,991 

first parity cows from 935 herds. In total, 1.93% of all available records were deleted 

after the applied edits.  

Pedigree data were extracted from the database used for the official Walloon 

genetic evaluation and were limited to animals born after 1990 which permitted to 

pedigree up to three generations back. The pedigree file included 120,503 animals. 

2.2. Estimation of Genetic Parameters 

In order to test the interest of taking into account the herd variability, two different 

single trait random regression test-day models were compared. The first model 

(called hereafter model_1) was similar to the model used routinely for the Walloon 

genetic evaluation of dairy production traits where a fixed herd x test-day effect is 

included to take into account the fixed differences in herd management between 

studied herds (Croquet et al., 2006). The second model (model_2) differed from the 

model_1 by the addition of a random within-herd lactation curve effect regressed 

using the second order Legendre polynomials. 

Model_1 and model_2 can be summarized as follows: 

 

 y=Xβ+Q(Zp+Zu)+e….....................……………………….(model_1) 

  and 

 y=Xβ+Q(Hh+Zp+Zu)+e…..............……………………….(model_2) 

where y was the vector of observations for PME or LMI, β was the vector of fixed 

effects (herd x test-day, DIM (24 classes of 15 days interval), and age at calving (3 

classes: 21 to 28 mo, 29 to 32 mo, and 33 mo to 49 mo), h was the vector of random 

within-herd lactation curve effects, p was the vector of random permanent 

environmental (PE) effects, u was the vector of random additive genetic effects; Q 

was the matrix containing the coefficients of second order Legendre polynomials; e 

was the vector of residuals; X, H and Z were incidence matrices assigning 

observations to effects. (Co) variance components were estimated by using the 

Restricted Maximum Likelihood (REML) method (Misztal, 2012). The 

convergence of REML for variance components estimation was set at 10
-11

. Average 
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daily heritability was the average of heritability values estimated for each DIM 

between 5 and 305 DIM as the ratio of the genetic variance to the total variance at 

the considered DIM. Variance components mentioned in this article were also 

averaged between DIM 5 and 305. 

The two studied models were compared based on the log-likelihood ratio test 

(LRT), Akaike information criterion (AIC), Bayesian information criterion (BIC), 

the coefficient of determination (R²) and the root mean square error of prediction 

(RMSEP). The LRT compared the fit of two models, one of which (model_1, 

number of parameter = 13) is a reduced version of the full model (model_2, number 

of parameter = 19). LRT value was calculated for all studied traits as follows: 

 LRT = 2log likelihood of model_2 - 2log likelihood of model_1 

This calculated LRT value was compared with a critical value to decide whether to 

reject the model_1 in the favor of model_2. The critical value was determined based 

on the difference of degrees of freedom between the two models and a significance 

level equal to 0.05 from a chi-squared distribution. The AIC is also related to the 

maximum likelihood estimation and is defined as: 

   -2Lm+2m 

Where Lm is the maximized log-likelihood and m is the number of parameters in 

the model. The model with the minimum AIC is considered as the best model. The 

BIC is a criterion for model selection among a finite set of models; it is based on 

likelihood function and considers a penalty term for the number of parameters in the 

model by which a model with smaller value is better. The calibration coefficient of 

determination (R
2
 calibration) was calculated as the square of the correlation 

coefficient between the solutions of on model_1 to their corresponding predicted 

values calculated from the model_2. Similarly, RMSEP between model_1 and 

model_2 were also computed. 

2.3. Estimated Emission Pattern for each Random 
Effects 

The estimated breeding values (EBV) were calculated for appreciate the 

variability of genetic component potentially transmission towards offspring. The 

EBVs as well as the solutions of the fixed effects were obtained by solving the 

associated mixed model equations using the best linear unbiased method (BLUP) 

implemented in the program created by Mistzal, (2012).  

3. Results 

3.1. Descriptive Statistics 

The descriptive statistics for studied traits are presented on Table 3-1. The average 

and standard deviation of PME was 440 ± 80 g CH4/d with a minimum of 100 g/d 

and a maximum of 913 g/d. The average PMI was 19.7 ± 6.5 g CH4/kg of milk with 



3. With or without random within-herd lactation curve effects to estimate the genetic parameters of 

mid-infrared predicted methane emissions in first parity Holstein cows 

31 
 

a minimum of 5 g/kg and a maximum of 72 g/kg of milk. The average LMI was 

2.94±0.32 with a minimum of 1.60 and a maximum of 4.27. The coefficient of 

variation of PME and LMI was 18.6 % and 11.1%. Within lactation, PME increased 

from early lactation to 120-150 DIM and then decreased towards the end of lactation 

whereas PMI (or LMI) was decreased from early lactation to 40-50 DIM and then 

increased gradually to the end of lactation reaching maximum at 250-280 DIM and 

almost flat after that (Figure 3-1).  

Table 3-1: Descriptive statistics of studied traits on first parity Holstein cows (n = 366,126 
records from 56,991 cows in 935 herds) 

Traits Mean SD Min Max Skew
ness 

Kurto
sis 

Predicted methane 
emission (PME; g/d) 

440 80 100 913 -0.28 1.16 

Predicted methane 
intensity (PMI; g/kg of 
milk) 

19.6 6.5 5.0 71.9 1.54 5.08 

Log-transformed 
methane intensity (LMI) 

2.9 0.3 1.6 4.2 0.04 0.82 

Milk yield (kg/d) 23.9 5.9 3.40 81.6 0.16 0.15 

Fat content (g/dl of milk) 3.9 0.6 1.5 9.0 0.39 0.92 

Protein content (g/dl of 
milk) 

3.3 0.4 1.0 7.0 0.51 1.76 

 

3.2. Choice of Model 

The variance components were calculated using models with and without random 

within-herd lactation curve effects. The comparison of the two models was 

performed using the statistical parameters LRT, AIC, BIC and R
2
 of calibration 

coefficient and RMSEP and results are presented in Table 3-2. The calculated value 

of LRT for PME was 3441 and for LMI was 3468. These values were a significant 

difference (P<0.001) at six degrees of freedom between the two models and was in 

favor of model_2 for both CH4 traits. Similarly, the AIC values were smaller for 

both CH4 traits and smaller values of AIC are considered better fit model. However, 

the R
2
 of calibration and RMSEP were so similar therefore, this test was not 

conclusive on model selection. However, random within-herd lactation curve effect 

was significantly than zero (0.11 and 0.05), therefore, it was still important to 

incorporate in model. Therefore, model_2 was regarded better fit than model_1. 
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Figure 3-1: Change in daily predicted methane emissions (PME, g/d) and daily predicted 

methane intensity (PMI, g/kg of milk) with stage of lactation (days in milk) for first lactation 
Holstein cows 

3.3. Partitioning of Variances and Heritability 

The average daily variance components with their corresponding relative variances 

from both models and traits are presented in Table 3-3. Residual variances were 

same across lactation because model used as constant residual effects. The average 

relative 305-d variance of the random within-herd lactation effects obtained using 

model_2 was 0.11 for PME and 0.05 for LMI. By comparing the absolute variance 

results from the two studied models, 305-d random within herd-specific lactation 

variance came partly from the 305-d genetic effect along with an increase of the 

305-d total variance. The partitioning of 305-d variances within lactation from both 

models for PME and LMI are presented in Figure 3-2 and Figure 3-3, respectively. 

The smallest permanent environment variance was observed during mid-lactation. 

There were slight changes in random within-herd lactation effect variances 

throughout lactation. Both PME and LMI genetic variances were larger at the 

beginning and at the end of lactation. 
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Table 3-2: Comparison of the two models* 

Statistical parameters Predicted methane emission 
(PME) 

Log-transformed methane 
intensity (LMI) 

 Model_1 Model_2 Model_1 Model_2 

2 log Likelihood value -3,662,149 -3,658,708 -3,024,079 -3,020,611 

Log-likelihood ratio (LRT) 3,411
a
 3,464

b
 

Akaike information criterion 
(AIC)

c
 

3,662,175
d
 3,658,746

e
 3,024,105

f
 3,020,649

g
 

Bayesian information criteria 
(BIC)

h
 

3,662,315
i
 3,658,952

j
 3,024,245

k
 3,020,855

l
 

R
2
 coefficient of Calibration 84.89 84.84 86.96 86.90 

Root mean square error of 
prediction (RMSEP) 

31.60 31.64 1.19 1.19 

*Model_1 had fixed effects as herd x test-day, days in milk and age at calving and random 
effects as permanent environment, genetic and residual effects. Model_2 had an extra 
random within-herd lactation effect than model_1. 

a, b
Highly significant (<0.001 at 6 degree 

of freedom); 
c,d,e

AIC (Smaller is better; model_2 has 3429 less than model_1);
c,f,g

AIC 
(Smaller is better; model_2 has 3456 less than model_1); 

h,i,j
BIC (Smaller is better; model_2 

has 3363 less than model_1);
h,k,l

BIC (Smaller is better; model_2 has 3390 less than 
model_1). 

 

Average and standard error of daily heritability of PME was 0.32 ± 0.01 and 0.26 

± 0.01, from model_1 and model_2 respectively. Similarly heritability and standard 

errors of LMI was 0.32±0.01 and 0.27±0.01 from model_1 and model_2 

respectively. The differences in heritability values between model_1 and model_2 

are attributed to the inclusion of the random within-herd lactation effects in 

model_2. As mentioned previously, the genetic variability decreased when random 

within-herd lactation effects were considered. Therefore, it was expected that a 

lesser estimated heritability would result from model_2 compared to model_1. Daily 

heritability of PME ranged from 0.27 to 0.42 and from 0.22 to 0.32 from model_1 

and model_2, respectively. Similarly, daily heritability of LMI ranged from 0.27 to 

0.44 and from 0.20 to 0.36 from model_1 and model_2 respectively (Figure 3-4). 

Overall, different heritability patterns were observed between PME and LMI. Daily 

heritability of PME decreased from the beginning of lactation until around 210 DIM 

and then increased; whereas daily heritability of LMI increased from the beginning 

to the end of lactation. 
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Table 3-3: Average daily variances of studied random effects estimated for the Mid-
infrared predicted methane emission (PME) and log-transformed predicted methane intensity 

(LMI) in first parity Holstein cows 

  Variance Herd 
specific 
lactation 

curve 

Permanent 
environment 

Genetic Residual Total 

PME(kg
2
/d

2
) 

 

Model_1 

Absolute N/A 743 1153 1488 3384 

Relative N/A 0.22 0.34 0.44 1.00 

Model_2 

Absolute 369.58 803 938 1485 3597 

Relative 0.10 0.22 0.26 0.41 1.00 

LMI  

 

Model_1 

Absolute N/A 2.20 1.96 2.01 6.16 

Relative N/A 0.36 0.32 0.33 1.00 

Model_2 

Absolute 0.28 2.30 1.67 2.00 6.25 

Relative 0.05 0.37 0.27 0.32 1.00 

Model_1 had fixed effects as herd x test-day, days in milk and age at calving and random 
effects as permanent environment, genetic and residual effects. Model_2 had an extra 
random within-herd lactation effect than model_1. 

3.4. Estimated Emission Pattern for each Random 
Effects 

The EBVs for both predicted CH4 traits were estimated for sires that had daughters 

with observed MIR CH4 predictions. Given the obtained heritability and observed 

phenotypic variations of PME and LMI, it was expected that substantial differences 

in EBVs between sires would be observed. The PME EBVs of sires that had 

daughters with PME using model_2 was ranged from -21.8 to 17.2 kg CH4 when 

cumulated over 305-d of lactation. Similarly, the LMI EBVs of sires that had 

daughters with LMI ranged from -9.8 to 10.7. Therefore, there is significant ranges 

existed in both that which supports genetic variability of both traits. 
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Figure 3-2: Partitioning of mid-infrared predicted methane emission (PME) variances (g
2
/d

2
) 

in first lactation for random within-herd lactation curve effect (Herd_2), permanent 
environmental (PE), genetic and total variances using two models. The residual variance was 
assumed constant throughout lactation (not shown). Subscript 1 corresponds to model_1 and 

subscript 2 corresponds to model_2. Model_2 had an extra random within-herd lactation 
effect than model_1 

4. Discussion 

Current selective breeding objectives for dairy cattle do not include enteric CH4 

emissions. Selection objective traits should be measurable, have genetic variation 

and economic value. These MIR predicted CH4 traits fulfill at least first two criteria. 

However environment concerns are not yet addressed in breeding goal due to the 

knowledge gap on how to improve them most efficiently without jeopardy of 

profitability and how to measure these traits in large scale and accurately. In the 

future due to socio-economic importance, the third criterion might also be met. The 

abundance of MIR spectra through routine milk collection is a key to generate these 

large numbers of CH4 phenotypes to proceed for genetic analysis. 

4.1. Mid-Infrared Predicted Methane Emission 
Phenotypes 

The average PME (440 g/d) and PMI (19.7 g/kg of milk) (Table 3-1) were within 

the range of several CH4 emission studies reported in Holstein cows. The normal 

distribution of PME permitted strait forward to fit in genetic analysis model however 

the distribution of PMI was non-normal and values were skewed (Table 3-1); 

therefore the PMI was log-transformed (LMI). Even though, the PMI was log-

transformed for genetic analyses, for reasonable comparison at phenotypic level with 

published literature, PMI was also discussed below. CH4 emissions and CH4 
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intensity measured in respiration chamber from UK Holstein cows were 430 g/d and 

21.4 g/kg of milk (Veneman et al., 2015); 360 g/d and 26.5 g/kg of milk were 

mentioned by Enriquez-Hidalgo et al., (2014) from Irish Holstein; and 418 g/d and 

17.4 g/kg of milk were measuring SF6 techniques in French Holstein by Martin et 

al., (2008). All of these published CH4 emission values were based on a relatively 

small number of cows per experiment (n = 6 to 30). Recently, Moate et al., (2014) 

reported a CH4 intensity of 20.2 g/l of milk from 220 Australian dairy cows 

measured in respiration chambers which are similar to the average (19.7 g/kg milk) 

of PMI observed in this study. Additionally, a low coefficient of variation could 

cause difficulties in quantifying genetic variance; however, these predicted CH4 

phenotypes had relatively high coefficient of variations. Therefore, we concluded 

from the above mentioned references and also those reported by Vanlierde et al., 

(2015), that PME and PMI values obtained were within the expected range for CH4 

traits.  

 

 

Figure 3-3: Partitioning of mid-infrared predicted log-transformed methane intensity (LMI) 
variances in first lactation for random within-herd lactation curve effect (Herd_2), permanent 
environmental (PE), genetic and total variances using two models. The residual variance was 
assumed constant throughout lactation (not shown). Subscript 1 corresponds to model_1 and 

subscript 2 corresponds to model_2. Model_2 had an extra random within-herd lactation 
effect than model_1 
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Figure 3-4: Daily heritability of mid-infrared predicted methane emission (PME) and Log-
transformed predicted methane intensity (LMI) in first lactation Holstein cows obtained from 

model_1 and model_2. Model_2 had an extra random within-herd lactation effect than 
model_1 

The prediction of PME pattern within lactation (Figure 3-1) was similar to that 

obtained by Garnsworthy et al., (2012). The largest amount of CH4 was predicted in 

120-150 DIM which is later than peak milk yield and standard DMI curve during 

lactation. The PMI pattern (Figure 3-1) differed from the PME pattern as expected 

due to the definition of PMI which had milk as denominator. Both PME and PMI 

patterns can be explained by differences in the energy partitioning, feed intake and 

milk yield at the different stages of lactation. The pattern of PME was explained by 

the increase of feed intake by cows postpartum as feed intake is positively associated 

with CH4 emissions (Hegarty et al., 2007). The PMI records were obtained by 

dividing PME by the daily milk yield observed at the considered test-day. Therefore, 

the pattern of PMI within the lactation can be explained by changes in milk 

production throughout lactation. Lower PMI was therefore observed when the milk 

production was higher. In nutshell, both predicted CH4 emission phenotypes values 

were as expected CH4 emission from dairy cows and enough to proceed forward for 

genetic analyses.  

4.2. Model Selection and Variance Components 
Analysis 

Based on the obtained LRT, AIC tests, model_2 which had an extra random herd-

specific lactation effects better fit of model. Even though R
2
 co-efficient calibration 

and RMPSE results didn‟t show improvement in model_2, the relative variance of 

11 percent in PME and 5 percent in LMI in total variance explained by herd-specific 

lactation curves random effects was a good argument for model_2 was better than 
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model_1. Even though, residual variances were same using both models, the total 

variances were larger in model_2 which reduce relative residual variance by 

model_2 by 3 percent in LMI and 4 percent in PME also signify that model_2 was 

better fit than model_1. PME values on some herds had higher PME and 2 to 3 fold 

greater LMI than the lowest emitting herd (data not shown) which is in agreement 

with the results reported by O‟Brien et al., (2014). Based on their case study to 

assess the carbon footprint of milk between top-performing and average herds in 

Irish, UK, and US dairy systems, the top performing herds had carbon footprints 

32% less than average herds. Differences between herds observed in both PME and 

LMI in the present study was explained by analyzing the non-genetic component of 

the total variance of MIR CH4 traits (i.e. random herd-specific lactation curve effects 

in model_2). This enabled the observed differences to be related to herd 

characteristics which can be the result of variation in CH4 emission and milk yield; 

and low CH4 intensity due to low CH4 emission and high milk yield across herds. 

The relative variance of 11 percent of random herd specific lactation effect also 

support the hypothesis that existence of herd difference of CH4 emissions of dairy 

cows. Previous studies for production traits (e.g. Gengler et al., 2005) showed the 

potential importance of herd-specific lactation curves, here modeled using herd-

specific lactation curve effects, and the differences in partitioning of phenotypic 

variances across the lactation according to the herd type. Understanding the cause of 

the observed random herd-specific lactation effects could help to adapt the 

management of cows in a given herd to reduce their CH4 emission of milk 

production. 

4.3. Genetic Parameters 

Average daily heritability values obtained for both CH4 traits were similar to those 

estimated for production traits in dairy cattle breeding. These heritability estimates 

were lower than most short-chain fatty acids predicted from MIR spectra and higher 

than polyunsaturated fatty acids (Bastin et al., 2013). Heritability differences were 

noted within lactation. After a slow decrease, an increase was observed from early to 

late lactation for PME, while LMI heritability increased from towards late lactation. 

These features were common in both models (Figure 3-4). Differing daily 

heritability throughout lactation suggests that there might be dynamic genetic 

regulations within intra-lactation. Differences in heritability estimates at the 

beginning of lactation within these primiparous cows may reflect differences in 

metabolism, such as a need for young cows to partition energy toward growth 

(Wathes et al., 2007) and mobilizing body lipid. This phenomenon might be due to 

in early lactation, milk production increased rapidly towards peak production but 

DMI increased at a slower rate (Berry et al., 2007) requiring the energy for milk 

production to be partly derived from body reserves (VandeHaar and St-Pierre, 2006) 

resulting in reduced LMI. Conversely, during late lactation, cows increased the 

deposition of body tissue whilst milk yield declines, thereby increasing LMI during 

the later stage of lactation. Therefore, milk production, DMI regulation, body fat 
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mobilization and CH4 emissions should have a dynamic relationship throughout 

lactation. The difference in physiological stages in growing heifers (primiparous) 

and multiparous cows with different energy demands and the age of the animal at 

measurement can substantially affect phenotypes for methane traits, which in turn, 

affects genetic parameter estimation (Manzanilla-Pech et al., 2016).This could be 

one of the most important areas for further research to explore genetic regulation of 

CH4 emissions which disentangle effects of other factors verses CH4 emissions. 

Nevertheless, the genetic parameters obtained from milk MIR spectra predictions are 

also potential selection traits because of high predictive ability of CH4 emissions. 

Previous study estimated the heritability of CH4 emission (g/d) predicted from milk 

MIR fatty acids based on equations developed by Chilliard et al., (2009) were 

estimated to be between 0.22 and 0.40 (Kandel et al., 2015). Similarly, heritability of 

CH4 yield (g/kg of DMI) predicted from several groups of fatty acids were reported 

from 0.12 to 0.44 (van Engelen et al., 2015). The heritability of CH4 emission g/d 

and emission intensity (g/kg of milk) indirectly obtained by Fourier transform infra-

red gas analyzers was estimated at 0.21±0.06 (Lassen and Løvendahl 2016). Various 

other proxies have been published that predict CH4 emissions from dairy cows from 

milk composition, feed intake and other indirect measurements. Feed intake based 

prediction of CH4 emission had a heritability of 0.12 if the indicator was predicted 

from DMI (Cassandro et al., 2010) and of 0.35 if the indicator was predicted from 

6% of gross energy intake (de Haas et al., 2011). The observed differences in 

heritability values between the literatures and those obtained in the current study 

may be due to the diversity of CH4 predictions and their correlations with actual 

measured traits. However, all studies confirmed the heritable nature of CH4 related 

traits.  

4.4. Estimated Emission Pattern during Lactation 

Substantial differences in EBVs among animals were observed as expected which 

permit the ranking of sires based on their EBV values. However, additional research 

is required to obtain data from further lactations and multiple generations to improve 

the accuracy of a sire EBV for both PME and LMI. This study was only intended to 

compare two genetic model to estimate genetic parameters of predicted CH4 traits, 

however in real life selection of new traits is based on not only genetic parameter of 

that trait but also correlated response of other economic important traits like milk, 

fat, protein yield and functional traits. We didn‟t cover those traits in this manuscript 

however research is underway to estimate all correlated responses from all economic 

traits. Nevertheless, these results provided first insights of partitioning of variances 

and heritability of predicted CH4 traits to proceed further. 

5. Conclusions 

The present study found that the MIR CH4 traits had moderate heritable 

components and genetic variability between cows could be exploited in breeding 
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programs. A model including random herd-specific lactation effects provided a 

better fit than a model containing random permanent environmental and genetic 

effects. There was substantial range of EBV further reinforce the genetic variability 

of studied traits. These genetic parameters of MIR CH4 traits provide a starting point 

for the selective breeding of dairy cattle with a reduced carbon footprint of milk 

production. 
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In this chapter, using better fit model from chapter 3, genetic parameters for 

predicted methane traits (PME; g/d and LMI) and their correlation with milk 

production traits in the first and second lactation dairy cows were estimated. 

Heritability values of CH4 traits were moderate (from 0.17 to 0.24) which confirmed 

a genetic contribution for the predicted CH4 emissions. The genetic correlation 

between PME and milk and protein yield were low negatives but fat yield was 

positive. Genetic correlations between LMI and milk, fat and protein yields were 

negative implying that selection for higher producing cows would favour a lower 

CH4 emission intensity. 
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Abstract 

Many countries have pledged to reduce greenhouse gases. In this context, the dairy 

sector is one of the identified sectors to adapt production circumstances to address 

socio-environmental constraints due to its large carbon footprint related to CH4 

emission. This study aimed mainly to estimate 1) the genetic parameters of two milk 

mid-infrared based CH4 proxies (PME; g/d and LMI) and 2) their genetic 

correlations with milk production traits [milk (MY), fat (FY) and protein (PY) 

yields] from first and second parity Holstein cows. A total of 336,126 and 231,400 

MIR CH4 phenotypes were collected from 56,957 and 34,992 first and second parity 

cows, respectively. PME increased from the first to the second lactation (433 vs. 453 

g/d). LMI decreased (2.93 vs. 2.86). We used 20 bivariate random regression test-

day models to estimate the variance components. Moderate heritability values were 

observed for both CH4 traits and those values decreased slightly from the first to the 

second lactation (0.25 ± 0.01 and 0.22 ± 0.01 for PME; 0.18 ± 0.01 and 0.17 ± 0.02 

for LMI). Lactation phenotypic and genetic correlations were negative between 

PME and MY in both first and second lactations (-0.07 vs. -0.07 and -0.19 vs. -0.24, 

respectively). More close scrutiny revealed that relative increase of PME was lower 

with high MY levels even reverting to decrease and therefore explaining the 

negative correlations indicating that higher producing cows could be a mitigation 

option for CH4 emission. PME phenotypic correlations were nearly equal to zero 

with FY and PY for both lactations. However, the genetic correlations between PME 

and FY were slightly positive (0.11 and 0.12) whereas with PY the correlations were 

slightly negative (-0.05 and -0.04). Both phenotypic and genetic correlations 

between LMI and MY or PY or FY were always relatively highly negative (from -

0.21 to -0.88). As the genetic correlations between PME and LMI were strong (0.71 

and 0.72 in first and second lactation); the selection of one trait would also strongly 

influence the other trait. However, in animal breeding context PME, as direct 

quantity CH4 proxy, would be preferred to LMI which is a ratio trait of PME with a 

trait already in the index. The range of PME sire estimated breeding values were 

22.1 and 29.41 kg per lactation in first and second parity. Further studies must be 

conducted to evaluate the impact of the introduction of PME in a selection index on 

the other traits already included in this index such as, for instance, fertility or 

longevity. 
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1. Introduction 

Due to its large carbon footprint, the dairy sector must to adapt its production 

circumstances to address the current socio-environmental constraints (Wollenberg et 

al., 2016). This environmental impact is mainly related to the emission of enteric 

CH4 by dairy cows occurring during the microbial fermentation of feed in rumen. 

Changes in feeding or adapted animal genetics are two relevant solutions to mitigate 

the CH4 emission. Compared to feeding, genetic selection has a slower response on 

the field but its effect is permanent and cumulative. To conduct successful genetic 

mitigation of CH4, three pre-requisites are needed. First, CH4 trait must be 

sufficiently heritable from generation to generation to allow a relatively fast 

significant improvement. Second, a sufficient genetic variability of this studied trait 

must exist in the considered dairy cow population. Third, genetic correlations of 

CH4 with other traits of interest need to be known. To verify these 3 pre-requisites, 

genetic analysis must be performed.  

Currently, more and more researches focus on the genetic variability of CH4 

emitted by dairy cows. Heritability (h²) of CH4 emission quantified using respiration 

chambers, considered as the gold standard for CH4 measurements, is not available 

due to technical and financial difficulties to obtain sufficient phenotypes. However, 

few studies report h² values using gas analyzer technique. Pickering et al. (2015) 

found a h² of 0.05 for the daily CH4 emission. For the same trait, Lassen and 

Løvendahl (2016) reported higher values (0.25). All of these results came from 

relatively low scale studies (i.e., low number of cows and herds). To increase the 

number of phenotypes, the use of CH4 correlated traits easier to be collected on the 

field and in many herds is relevant. Due to the high relationship between the 

quantity of CH4 eructed by dairy cows and the feed intake, some authors estimated 

the h² of CH4 from feed intake based CH4 predictions. So, Pickering et al. (2015) 

found a higher h² compared to the one obtained from gas analyzer (0.13). Cassandro 

et al. (2010) reported a similar h² value (0.10). However, de Haas et al. (2011) 

estimated a higher h² value (0.35). Even if this methodology allows the collection of 

a higher number of phenotypes, the acquisition of feed intake and composition 

records is not largely generalized on a routine basis.  

Another alternative is the use of milk composition as a proxy of CH4 emission. 

The FA profile seems to be valuable information (Chilliard et al., 2009; Dijkstra et 

al., 2011). So, van Engelen et al. (2015) estimated the h² of CH4 yield (g/kg of DMI) 

predicted from several groups of FAs. Obtained h² ranged from 0.12 to 0.44. As the 

FA profile can be predicted using MIR spectrometry (Soyeurt et al., 2011), this 

method could be used to predict directly the quantity of CH4 eructed daily by dairy 

cows. So, Dehareng et al. (2012) developed the first MIR CH4 equation which was 

later improved by Vanlierde et al. (2015 and 2016). As this methodology is used 

currently for the milk recording which implies an individual milk sample collection 

from all productive cows in all participated herds every 4 or 6 weeks, the MIR CH4 

phenotypes have the advantage to be fast, cheap and allow a large scale data 
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recording. Moreover, as it is known that the quantity of CH4 eructed by dairy cows 

varies within and between lactations (Garnsworthy et al., 2012), the first objective of 

this study is the estimation of the genetic parameters of MIR CH4 emission (PME, 

g/d) and intensity (PMI, g/kg of milk) traits from first and second parity Holstein 

cows. Moreover as the relationships of CH4 emission and intensity with other 

economically important traits are relatively unknown at large scale, the second 

objective of this paper is to estimate the phenotypic and genetic correlations between 

those two MIR CH4 traits with MY, FY, PY. 

2. Materials and Methods 

2.1. Data 

Milk samples were collected from first and second parity Holstein cows between 

January 2010 and April 2014 as part of the routine milk recording undertaken in the 

Walloon region of Belgium by the Walloon Breeding Association (Ciney, Belgium). 

All milk samples were analyzed using Foss Milkoscan FT6000 spectrometers 

(Hillerød, Denmark) by the milk laboratory „Comité du Lait‟ (Battice, Belgium) to 

quantify the contents of fat and protein and to generate the spectral data.  

PME (g/d) was predicted from the recorded milk MIR spectra using the lactation-

stage-dependent equation developed by Vanlierde et al. (2015). In few words, this 

CH4 MIR prediction equation was developed from 446 CH4 measurements from 142 

Belgian and Irish cows. Reference daily CH4 emissions of individual cows were 

determined using the SF6 tracer gas technique with a gas collection period of 24 h. 

The calibration dataset was characterized by a mean of 416 ± 128 g of SF6 CH4/d 

with minimum and maximum of 180 and 942 g/d. The lactation-stage-dependent 

equation was developed from those reference values and their corresponding daily 

milk MIR spectra. The standard error of calibration of this equation was of 63 g/d. 

The calibration coefficient of determination was equal to 75%. More details about 

the sample collection and data treatment are reported in Vanlierde et al., (2015). 

PMI (g/kg of milk) was defined as the ratio of PME divided by the daily MY (kg/d) 

recorded on the same test-day. This trait was then log-transformed to be normally 

distributed and called LMI. In order to eliminate potential abnormal records, the 

predicted MIR CH4 traits values below the 0.1 percentile and above the 99.9 

percentile were deleted.  

Only cows between 5 and 365 DIM and with at least 75% of Holstein genes were 

studied. If a cow had CH4 records for second parity, this cow must have also records 

for first parity to be considered in the study. As proposed by the International 

Committee for Animal Recording, milk production records were retained if they 

were between 3 and 99 kg of milk yield, 1 and 7% of protein, and 1.5 and 9% of fat. 

Moreover, only herds having at least 100 MIR CH4 phenotypes were kept in this 

study. Therefore, the final dataset contained 366,126 and 231,400 test-day records 

collected from 56,957 and 34,992 first and second parity Holstein cows belonging to 
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935 herds. Pedigree data were obtained from the pedigree database used for the 

Walloon genetic evaluation. The pedigree file contained 120,504 animals born after 

1990. The average number of daughters per sire was 84 with a minimum of 15 

daughters and a maximum of 9,762 daughters from a total of 581 sires. 

2.2. Genetic Analyses 

Twenty bivariate random regression test-day models were performed to estimate 

the variance components of studied traits. The pairs were PME and MY; PME and 

FY; PME and PY; LMI and MY; LMI and FY; LMI and PY; MY and FY; MY and 

PY; FY and PY; PME and LMI in first and second lactation. The model can be 

summarized as follows: 

   y=Xβ+Q(Hh+Zp+Zu)+e 

where y was the vector of observations of pair of two traits, β was the vector of 

fixed effects (herd x test-day, DIM (24 classes of 15 days interval), and age at 

calving (3 classes for each lactation: 21 to 28 mo, 29 to 32 mo, and 33 mo and more 

for first lactation and 31 to 44 mo, 44 to 48 mo, and 49 mo and more for second 

lactation),h was the vector of random within-herd lactation curve effects, p was the 

vector of permanent environmental random effects, u was the vector of additive 

genetic random effects; Q was the matrix containing the coefficients of 2
nd

 order 

Legendre polynomials; e was the vector of residuals; X was the incidence matrix 

assigning observations to fixed effects; H was the incidence matrix assigning 

observations to random within-herd lactation curve effects and Z was the incidence 

matrix assigning observations to the additive genetic or permanent environmental 

effects. 

Variance components were estimated by Bayesian method using Gibbs sampling 

(Misztal, 2012). Priors of variance components were estimated from univariate 

models using average information REML method (Misztal, 2012). Posterior means 

of (co)variance components were calculated using 100,000 iterations after a burn-in 

of 10,000 iterations. As three replicates were available for the variance components 

for each studied trait due to the number of used bivariate models, the variance 

estimates were averaged.  

Average daily h² value was the average of h² estimated for each DIM between 5 

and 305 DIM. These daily h² at a specific DIM was calculated as the ratio of the 

genetic variance to the total variance (i.e., the sum of variances estimated from the 

within-herd lactation curve, genetic variances, permanent environment, and residual) 

at the considered DIM. Standard errors of h² estimates were computed using the 

method reported by Fischer et al., (2004) based on variance estimates from the 

inverse of the average information matrix.  

Daily phenotypic and genetic correlations between trait a and trait b at DIM i were 

calculated as followed: 
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where t was the vector created by summing coefficients of Legendre polynomials 

for DIM 5 to 305; Σa,b was the matrix including the genetic or phenotypic 

covariances between trait a and trait b; and Σa and Σb were the genetic or phenotypic 

variance matrices for traits a and b, respectively. 

The breeding values were estimated (EBV) using a BLUP approach. Daily EBV 

for each DIM between 1 and 305 and for cows with records were calculated as 

following: 

 

where EBVdhtk was the daily breeding value of cow k, for trait h, for each DIM t 

between 5 and 305; ahkmwas the BLUP solution of the additive genetic effect of 

order m; ztmwas the covariate of Legendre polynomial of order m associated with 

DIM t; and zt0 = 1.0, zt1 = 3.0
0.5

x, zt2 =5.0
0.5

 (1.5x
2
 – 0.5), where x = 2[(t – 5)/305] – 

1. Only EBV of sire having daughters with MIR CH4 phenotypes were kept for this 

step. All daily EBVs were cumulated to get 305d-EBV of animal for each trait. The 

Spearman correlations were calculated between EBVs of sires estimated using first 

and second parity records in order to assess the differences between sire rankings for 

all MIR CH4 traits.  

3. Results 

3.1. MIR Methane Traits and their Observed 
Relationships with Milk Yield 

Table 4-1 provides the mean and standard deviation of all studied traits in first and 

second lactation. PME increased from the first to the second lactation (433 vs. 453 

g/d). Inversely, PMI decreased (19.8 vs. 18.8 g/kg of milk) as LMI (2.93 vs. 2.86). 

The coefficients of variation between lactations stayed relatively stable for all 

studied CH4 traits (18.6% and 17.1% for PME; 11.1% and 12.8% for LMI in first 

and second lactation, respectively). 

Figure 4-1a illustrates the relationship between PME and MY. An increase of MY 

increased PME until on average 20 kg of milk/d then the relationship was nearly flat 

and was slightly negative for high daily productive cows. PME increased at the 

beginning of lactation, but in contrast to MY, the peak of PME reached later (after 

120
th
 DIM; Figure 4-2a). Similar patterns were observed for both studied lactations 

even if the values were slightly higher for the second lactation (Figure 4-2a).  
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Table 4-1: Mean ± standard deviation of all studied traits 

Traits Lactation 1 

(N=366,435) 

Lactation 2 

(N=231,743) 

MIR CH4 emission (g/d) 433 ± 80 453 ± 78 

MIR CH4 intensity (g/kg of milk) 19.8 ± 6.8 18.8 ± 7.6 

Log-transformed MIR CH4 
intensity 

2.93 ± 0.33 2.86 ± 0.37 

Milk yield (kg/d) 23.41 ± 6.42 26.79 ± 8.24 

Fat yield (kg/d) 0.92 ± 0.23 1.07 ± 0.32 

Protein yield (kg/d) 0.78 ± 0.19 0.90 ± 0.25 

 

The relationship between MY and PMI was curvilinear and after log-

transformation, the relationship was linearized (Figure 4-1b). LMI pattern within 

lactation was the lowest around 50
th
 DIM and higher values at beginning and late 

lactation. Due to the higher MY in second lactation, PMI was lower throughout 

second lactation than first lactation (Figure 4-2b). 

3.2. Heritability Estimates of MIR Methane Traits  

We have observed moderate h² values for PME and those values decreased slightly 

between first and second lactation (0.25 ± 0.01 and 0.22 ± 0.01). Lower values were 

observed for LMI compared to PME and stayed stable between lactations (0.18 ± 

0.01 and 0.17 ± 0.02; Table 4-2). Values of h² estimated for MY, FY and PY were 

similar to those previously reported by Bastin et al. (2013) from Walloon Holstein 

cattle. 

Within lactation, daily h² of PME ranged from 0.20 to 0.27 in first lactation and 

from 0.16 to 0.26 in second lactation. In first lactation, h² estimates of PME 

increased from beginning, were higher in mid lactation and decreased towards the 

end of lactation. In second lactation, PME h² decreased from early lactation towards 

the end of lactation (Figure 4-3). Within lactation, LMI ranged from 0.12 to 0.24 and 

from 0.13 to 0.19 in first and second lactation, respectively. The h² values of LMI in 

both lactations increased linearly from the beginning to the end of lactation. LMI h² 

pattern observed for the two lactations were globally similar even if larger 

differences of h² appeared at the end of the lactation (Figure 4-3). 
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Figure 4-1: Relationship between mid-infrared predicted CH4 emission (g/d; 4.1a) or 
intensity [PMI; g/kg of milk, and log10(PMI), called LMI; 4.1b] and milk yield (kg/d) from 

first- and second-parity Holstein cows. Lac1 = lactation 1; Lac2 = lactation 2 

3.3. Phenotypic and Genetic Correlations between MIR 
Methane Traits and Milk Yield 

Phenotypic correlations between PME and MY were slightly negative in both 

lactations (-0.07). The estimated within-lactation phenotypic correlations were equal 

to -0.11 at the beginning of lactations and then increased gradually towards zero 

until the end of lactation (Figure 4-4a). However, at genetic level, the estimated 

correlations were higher. Indeed, the lactation genetic correlations were equal to -

0.19 and -0.24 for the first and second lactation, respectively (Table 4-2). Compared 

to phenotypic level, the changes of genetic correlations throughout the lactation was 
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more marked notably for the first lactation. Indeed, the genetic correlations 

decreased until around 200
th
 DIM and then increased rapidly until the end of 

lactation (Figure 4-4a). 

Figure 4-2: Change in daily mid-infrared (MIR) CH4 emission (PME), milk yield (MY), 
MIR CH4 intensity (PMI), and log10(PMI), called LMI, across lactation from first- and 

second-parity Holstein cows. Lac1 = lactation 1; Lac2 = lactation 2 

Phenotypic correlations between LMI and MY were highly negative in both 

lactations (-0.68 and -0.72; Table 4-2) and stayed relatively constant throughout the 

lactation even if a slight decrease of values can be observed for the second parity at 

the end of the lactation (Figure 4-4b). Highly negative correlations were also 

observed at the genetic level. The values ranged between -0.60 and around -0.85 for 

both lactations. The correlations decreased until around 180
th
 DIM and then 

increased untilthe end of lactation (Figure 4-4b).  
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Table 4-2: Heritability (diagonal and bold), phenotypic (below the diagonal) and genetic 
(above the diagonal) correlations between mid-infrared (MIR) CH4 traits and production 

traits in the first (first row) and second (second row) lactation Holstein cows 

 PME LMI Milk yield Fat yield Protein yield 

PME 0.25 

0.22 

0.71 

0.72 

-0.19 

-0.24 

0.11 

0.12 

-0.05 

-0.04 

LMI 0.47 

0.46 

0.18 

0.17 

-0.68 

-0.88 

-0.21 

-0.26 

-0.66 

-0.62 

Milk yield -0.07 

-0.07 

-0.68 

-0.72 

0.16 

0.14 

0.79 

0.84 

0.92 

0.94 

Fat yield -0.01 

0.01 

-0.43 

-0.51 

0.79 

0.83 

0.13 

0.12 

0.82 

0.86 

Protein yield -0.02 

0.01 

-0.55 

-0.61 

0.92 

0.93 

0.82 

0.86 

0.14 

0.11 

PME = MIR CH4 emission (g/d); LMI = Log-transformed MIR CH4 intensity 
 

 

Figure 4-3: Daily heritability estimates for MIR CH4 emission (PME) and log-transformed 
MIR CH4 intensity (LMI) in first and second lactation 

3.4. Phenotypic and Genetic Correlations between MIR 
Methane Traits and Fat Yield 

Lactation phenotypic correlations between PME and FY were nearly equal to zero 

in both lactations (-0.01 and 0.01; Table 4-2). However, marked changes of 
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phenotypic correlations were observed throughout the lactation. Indeed, the within 

lactation phenotypic correlations between PME and FY were negative at early 

lactation, zero at mid-lactation and positive at late lactation. We have observed this 

tendency in both studied lactations (Figure 4-5a). At the genetic level, lactation 

correlations were positively higher (0.11 and 0.12; Table 4-2); however negative 

correlations were observed at the beginning of second lactation until 90
th
 DIM. In 

first lactation, the correlation values were globally positive throughout the lactation 

(Figure 4-5a). 

Lactation phenotypic correlations between LMI and FY were moderately negative 

for both lactations (-0.43 and -0.51; Table 4-2). Compared to PME, the correlations 

values were always negative throughout the lactation (Figure 4-5b). 

3.5. Phenotypic and Genetic Correlations between MIR 
Methane Traits and Protein Yield 

As observed with FY, lactation phenotypic correlations estimated between PME 

and PY were nearly equal to zero in both lactations (-0.02 and 0.01; Table 4-2). 

Similarly to FY, the within lactation phenotypic correlations between PME and PY 

were negative at early lactation, zero at mid-lactation and positive at late lactation in 

both studied lactations (Figure 4-6a). Compared to FY, the genetic correlations 

estimated between PME and PY stayed relatively similar to the ones obtained at the 

phenotypic level (-0.05 and -0.04; Table 4-2). However the pattern of genetic 

correlation changes was more fluctuating (Figure 4-6a). 

Lactation phenotypic correlations between LMI and PY were higher than the ones 

observed with FY but lower than the ones observed for MY (-0.55 and -0.61; Table 

4-2). At the genetic level, the correlations were also negative and the values were 

similar to the ones observed at the phenotypic level (-0.66 and -0.62; Table 4-2). 

Within lactation correlations between LMI and PY were relatively stable at the 

phenotypic level but more fluctuating at the genetic level (Figure 4-6b). 

3.6. Genetic Variability of Methane MIR Traits  

EBVs of MIR CH4 traits in both lactations were estimated for sires that had 

daughters with MIR CH4 phenotypes. The lowest sire EBV for PME cumulated at 

305 days was -11.15 kg and the highest was 11.01 kg in first lactation and was -

15.68 kg and the highest was 13.73 kg in second lactation. The range was therefore 

equal to 22.15 kg in first parity and 29.41 kg in second parity. The Spearman 

correlations of EBV of PME between first and second lactation was 0.92 and 0.95 

for LMI. 
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Figure 4-4: Genetic and phenotypic correlations between MIR CH4 emission (PME; Figure 
4-4a) or log-transformed MIR CH4 intensity (PMI; Figure 4-4b) and milk yield within the 

first and second lactation 

4. Discussion 

Current selective breeding objectives for dairy cattle do not include enteric CH4 

traits. However, the improvement of livestock through genetics is particularly an 

effective technology, producing permanent and cumulative changes of trait in a 

desired direction (Wall et al., 2010). In this context, a study about the genetic 

variability of MIR CH4 predictions can be a starting point for the inclusion of such 

environmental trait in future selection index. To achieve this, 3 pre-requisites must 

be verified: 1) MIR CH4 traits must have a behavior similar to the one observed 

from gold standard CH4 measurements, 2) MIR CH4 traits must be heritable and 3) 
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MIR CH4 traits must present a sufficient genetic variability in the studied dairy cow 

population. Finally if all of these pre-requisites are satisfied, the knowledge of the 

relationships between these MIR traits with high economic interest traits is required. 

We have considered only the relationships with milk production traits in this paper. 

 

Figure 4-5: Genetic and phenotypic correlations between MIR CH4 emission (PME; Figure 
4-5a) or log-transformed MIR CH4 intensity (PMI; Figure 4-5b) and fat yield within the first 

and second lactation 
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Figure 4-6: Genetic and phenotypic correlations between MIR CH4 emission (PME; Figure 
4-6a) or log-transformed MIR CH4 intensity (PMI; Figure 4-6b) and protein yield within the 

first and second lactation 

4.1. Behavior of MIR Methane Traits compared to 
Reference Methane measurements 

This study used CH4 phenotypes predicted using milk MIR spectrometry. The 

calibration coefficient of determination for the MIR CH4 equation used was equal to 

0.75 and their calibration standard error was of 63 g/d (Vanlierde et al., 2015). 

Therefore the phenotypes used in this study must be considered as a proxy of the 

enteric quantity of CH4 eructed by dairy cows. So, it is necessary to verify if these 

MIR CH4 phenotypes have the expected behavior compared to the findings 

published in the literature.  

The means of PME (433 and 453 g/d) and PMI (19.8 and 18.8 g/kg of milk; Table 

4-1) were within the range reported in several studies conducted on dairy cows. For 

instance, Veneman et al. (2015) reported 430 g of CH4/d and 21.4 g of CH4/kg of 
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milk from Holstein cows installed in respiration chambers. Enriquez-Hidalgo et al. 

(2014) mentioned 360 g/d and 26.5 g/kg of milk. Martin et al. (2008) obtained 418 

g/d and 17.4 g/kg of milk from SF6 experiment. Moate et al. (2014) reported a CH4 

intensity of 20.2 g/l of milk.  

More than only the similarities with CH4 estimates, the between and within 

lactation tendencies were also in agreement with the literature. The within lactation 

changes of daily PME (g/d) depicted in Figure 4-2 were similar to the one reported 

by Garnsworthy et al. (2012) using gas analyzer technique. Based on the same 

authors, the higher values of PME and the lower of PMI observed in second 

lactation were also expected and can be mainly explained by the changes of feed 

intake, feed efficiency, energy partitioning and the evolution of milk production.  

MIR CH4 phenotypes should also have the expected behavior when they are 

compared to the evolution of MY. The curvilinear relationship between PMI and 

MY observed in this study (Figure 4-1b) suggested the same pattern between CH4 

intensity and MY. This type of curve was also reported by Moate et al. (2014). 

Concerning PME, the correlation observed between these values and MY was equal 

to 0.33 which was a very low value compared to the expected relationship and may 

be considered controversial. There are however several elements that appear under 

closer scrutiny in our data that can explain this value. First there is obviously no 

doubt about the fact that PME is related to the quantity of feed intake and there is no 

indication that this relationship differs significantly from a linear one. However the 

relationship between the quantity of milk produced by the cow and its feed intake is 

not as linear but also lactation stage dependent. Interestingly Figure 4-1a shows the 

pattern of the evolution of the relationship between PME and MY was not linear. 

Figure 4-7a represents the evolution between PME and MY also in regards to the 

evolution of DIM and the number of records in function of classes of 1 kg MY. By 

observing more closely the pattern of this evolution (Figure 4-7a) and limiting to 

MY classes with at least 1,500 test-day records (Figure 4-7b), 2 distinct areas 

appeared: one from 9 to 23 kg of milk/d and another one from 24 kg to 38 kg of 

milk/d. The first area showed a nearly linear increase of PME with MY and a strong 

positive correlation between them (0.83) and the second area showed first a 

stagnation of the increase of PME and then after 30 kg/d a slight, nearly linear, 

decrease of PME leading to a negative correlation (-0.43). Under more close 

scrutiny, we can observe that the evolution of PME as a function of MY class in the 

first area (i.e., positive correlation) can be largely explained by the average DIM of 

each MY class (R=-0.95). Therefore if DIM increased, PME decreased. This is 

expected due to the relationship between feed intake and DIM in late lactation, as all 

average DIM were > 170 days. The second area (until 38 kg/d in order to have a 

sufficient number of records to calculate the average PME; Figure 4-7b) was less 

explained by DIM and showed a positive relationship between PME and DIM 

(0.56). This is consistent with the fact that this area was more associated with cows 

in the first part (< 165 DIM) of their lactation, therefore increasing their feed intake 

and their PME with DIM. Moreover, there are three associated elements that we 
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might put forward to explain the behavior for high classes of MY. First high yielding 

cows might be more efficient which leads to increasing MY without higher 

emissions of CH4. But we have no elements to proof this. Second, cows in early 

lactation produce more milk, but potentially reach their feed intake limits too, 

therefore mobilizing energy from their adipose tissue to produce additional milk, 

this milk being not related to an increase of PME. Third, in Belgium currently the 

feeding systems used increase the ratio of concentrates to roughage strongly for MY 

over 30 kg, in many farms even for lower levels of production, because of the wide-

spread use of concentrate feeding stations. These increasing levels of concentrates in 

the feeding of higher MY imply relatively lower CH4 emissions. Unfortunately, no 

data about feed intake or composition as well as feed efficiency is available in the 

Walloon Region of Belgium to confirm all these hypotheses. 

 Even if the calibration coefficient of determination was nearly equal to 1, all of 

these results confirmed that the MIR CH4 phenotypes (i.e., indirect CH4 proxy) had a 

behavior in line with the expectations based on the findings obtained from direct 

CH4 measurements or estimates. 

4.2. Heritability of MIR Methane Traits 

Several recent studies described the genetic regulation of either CH4 emissions or 

proxies of CH4 emissions predicted from feed intake. The estimation of h² from 

direct CH4 measurements on dairy cows using respiration chambers, considered as 

the gold standard method, is not feasible due to an insufficient acquisition of CH4 

phenotypes explaining by technical and financial reasons. Currently, gas analyzer 

instrument allows a larger CH4 data acquisition. Various results of h² were published 

in the literature: for instance, 0.05 by Pickering et al. (2015) and 0.21 ± 0.06 by 

Lassen and Løvendahl (2016). However, such studies were also conducted at 

relatively low scale even if the study of Lassen and Løvendahl covered 20 herds and 

1,745 cows. To conduct larger scale studies, the use of CH4 proxies are interesting. 

A proxy is a trait directly or indirectly correlated with the interest trait. By using 

MIR CH4 phenotypes, the current study enters in this context. Indeed, MIR CH4 

phenotypes can be considered as indirect CH4 proxies. From more than 230,000 

records and using random regression test-day models, this study found moderate h² 

for PME suggesting a moderate genetic component of the quantity of CH4 eructed 

by dairy cows. These results are in agreement with other studies conducted from 

CH4 direct measurements (e.g., Lassen and Løvendahl, 2016) and from CH4 proxies. 

Indeed, Kandel et al. (2015) found h² ranged from 0.22 to 0.40 from CH4 proxies 

estimated from milk MIR FAs based on equations developed by Chilliard et al. 

(2009). The h² for CH4 proxies (g/d) derived from feed intake information was 

estimated to 0.13 by Pickering et al. (2015), 0.10 by Cassandro et al. (2010) and 0.35 

by De Haas et al. (2011). Similarly, van Engelen et al. (2015) reported h² of CH4 

yield (g/kg of DMI) predicted from several groups of FAs. The h² values ranged 

from 0.12 to 0.44. Even if all of these studies were based on different 

methodologies, all support the existence of a genetic component of the enteric CH4 
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quantity eructed by dairy cows.  

Moreover, the daily h² tendencies within and between two lactations were also 

shown in this study. A slightly decrease of h² was observed between the first and 

second lactation (0.25 vs. 0.22). Kandel et al. (2013) reported also this decrease 

using MIR CH4 phenotypes predicted using an independent-lactation-stage MIR 

CH4 equation. However the heritability values obtained by these authors were lower 

(0.12, 0.10 and 0.09 from first, second and third parity cows). These h² differences 

could be only explained by the changes of the prediction equation because the 

studied cow population having the same origin. Within lactation evolution of MIR 

CH4 phenotypes predicted using an independent-lactation-stage equation, as done by 

Kandel et al. (2013), had not the expected shape (Vanlierde et al., 2015). By 

opposition, the use of a dependent-lactation-stage equation, as done in this study, 

allows the obtaining of MIR CH4 phenotypes which have the expected DIM trend 

(Vanlierde et al., 2015). Within lactation differences in PME h² curves from 

primiparous and second parity cows were observed and could reflect differences in 

the partitioning of energy between first and second parity cows (Wathes et al., 

2007).  

We found that LMI was less heritable than PME (0.18 and 0.17; Table 4-2) and 

increased linearly throughout the lactation. This h² values were similar to the ones 

observed for milk yield (0.16 and 0.14). Similar results were obtained by Lassen and 

Løvendahl (2016). These authors found 0.21 ± 0.06 for the CH4 intensity measured 

using gas analyzer technique. De Haas et al. (2011) found a h² of 0.58 using 

CH4proxies based on feed intake information. However, the CH4 intensity trait was 

not log-transformed in those 2 studies. 

4.3. Genetic Variability of MIR Methane Traits  

The calculated ranges of 305-d EBV for sires having daughters with MIR CH4 

phenotypes were equal to 22.15 kg and 29.41 kg in first and second lactation. These 

substantial EBV differences between sires were expected because of the obtained 

moderate h² (Table 4-2) and the observed phenotypic variability of PME (Table 4-

1). De Haas et al. (2011) reported a genetic standard deviation around 6 kg of CH4 

per lactation. 

The high Spearman correlations values of sire EBVs between first and second 

lactation for MIR CH4 traits (0.92 for PME and 0.95 for LMI) suggested that the 

rankings of animal were similar between the 2 studied lactations. 

4.4. Phenotypic and Genetic Correlations between MIR 
Methane Traits and Milk Production Traits  

Negative phenotypic and genetic correlations were observed between PME 

andMY; genetic correlations were higher (-0.07 and -0.07 vs. -0.19 and -0.24 for 

first and second lactation, respectively; Table 4-2). These findings are surprising 

becauseolder researches mentioned a positive genetic correlation (De Haas et al., 
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2011; Dong et al., 2015; Kandel et al., 2013 and Lassen and Løvendahl, 2016). As

 

Figure 4-7: Evolution of predicted methane emission (g/d) and day in milk in function of 
milk yield (g/d) from the entire first lactation dataset (4-7a) and from CH4 and day in milk 

averages calculated from at least 1,500 test-day records (4-7b) 
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mentioned previously, the results obtained by Kandel et al. (2013) must be 

considered with caution due to the use of a dependent-lactation-stage MIR CH4 

equation. However, from gas analyzer technique, Lassen and Løvendahl (2016) 

found also a positive genetic correlation between CH4 emission (g/d) and fat and 

protein corrected milk (0.42 ± 0.10). The way of measurement for CH4 in g/d used 

by these authors forced a positive correlation with MY. Indeed, the CH4 proxy was 

estimated by using the CH4:CO2 ratio multiplied by the daily CO2 emission and the 

heat-producing unit which was calculated using the following formula: (5.6 x live 

weight
0.75 

+ 22 x fat and protein corrected milk + 1.6 x 10
-5

 x days carried calf). De 

Haas et al. (2011) found also a positive correlation (0.26) from feed intake based 

CH4 proxy; the very strong link between this proxy and dry matter intake (0.99) 

could explained this correlation. Dong et al. (2015) mentioned that there was no 

apparent influence of genetic merit of cows. Phenotypically, the correlation 

observed in this study was close to zero. This was expected based on the observed 

relationship between MY and PME (Figure 4-1a, 4-7a and 4-7b). Indeed, as you had 

a mix of positive, and negative relationships between MY and PME, it was expected 

to observe a nearly zero phenotypic correlations. At genetic level, the negative 

correlations between MY and PME were higher (-0.19 and -0.24; Table 4-2) but 

stayed relatively low. Two remarks from these results: First, as the value was low, 

the MY information cannot be considered as a good proxy of CH4 at the genetic 

level. Second, if a breeding selection is conducted for high producing cows, the 

PME will decrease slightly. Unfortunately, it is known that high milk producing 

cows tend to have more problems of fertility and longevity. This is not desired. 

Therefore, further studies must be conducted about the links between PME and the 

other traits included in the selection index such as, for instance, fertility or longevity.  

Based on the positive genetic correlations between MY and FY (0.79 and 0.84), it 

was expected to observe negative correlations between PME and FY but the 

correlations were positive (0.11 and 0.12). This can be explained. Soyeurt et al. 

(2008) showed that if MY increased, fat content decreased and the unsaturated FA 

increased (Soyeurt et al., 2008). Based on the findings of Van Lingen et al. (2014), 

this involved a decrease of CH4 emission (g/d). Indeed, those authors reported 

negative correlations between the concentrations of trans-6+7+8+9 C18:1, trans-

10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14C18:1, and 

cis-9,12 C18:2 in milk fat and CH4 emission. Therefore the slight positive 

correlation can be explained by the combination of fat dilution in higher milk 

production and the changes of milk fat composition in milk produced by high daily 

milk productive cows. The changes of genetic correlations within lactation were also 

expected because as mentioned previously CH4 is influenced by the changes of milk 

FA composition and these FAs vary within lactation (Bastin et al., 2013). The 

phenotypic correlations between PME and FY were equal to zero but the changes of 

correlation value throughout the lactation were important. For instance, in first 

lactation, negative correlations were observed until 120
th
 DIM and then became 

positive.  
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PY is more related to the nitrogen efficiency than CH4 emissions but MY and PY 

were strongly positively genetically correlated (0.92 and 0.94; Table 4-2). Therefore 

the slight negative correlations between PME and PY (-0.05 and -0.04) were 

expected. The same conclusion can be formulated at the phenotypic level. 

The observed phenotypic and genetic correlations between LMI and production 

traits (MY, FY and PY) were all highly negative for the 2 studied lactations (Table 

4-2). Therefore these results support the hypothesis that an increase of cow 

productivity (i.e., higher MY, FY and PY) will lead to a decrease of CH4 intensity 

per kg of milk (Gerber et al., 2013). This relationship confirmed the suggestion of 

Wall et al. (2010) that the use of higher milk producing cows in a herd can be 

regarded as one of the mitigation options to reduce environmental impact of the 

dairy production system. However, this approach could imply fertility and longevity 

which could also impact the final calculation of carbon footprint of a specific herd. 

Future investigations must be conducted based on life cycle assessment to verify 

this. 

4.5. Predicted Methane Emission as Selection Trait 

Selection for CH4 mitigation has to be conceived inside adapted breeding 

programs using updated breeding objectives obtained with selection indexes 

containing also CH4 indicator traits. In this study, 2 CH4 predictions were studied 

(PME and LMI). Both traits were heritable and presented a genetic variability on the 

studied dairy cattle. Compared to LMI, PME is a direct CH4 quantity trait. For all of 

these reasons, PME would be preferred for a future inclusion in a selection index. 

Moreover, the relationship between PME and LMI was genetically strong (0.71 and 

0.72 in first and second lactation) suggesting to the inclusion of one of these traits 

will impact the other.PME selection would select sustainable cows while a selection 

on the LMI would select a sustainable milk production. Before inclusion of PME in 

a selection index, further studies must be conducted. Indeed, the relationship 

between PME and other economic interest traits must to be known in order to avoid 

any undesired impact on cow health, longevity and fertility as well as on milk 

production and composition. 

5. Conclusions 

In summary, due to their heritability and genetic variation, PME and LMI can be 

introduced in selection index to consider the environmental impact of milk 

production in the future breeding objectives but PME would be preferred as it is a 

direct CH4 quantity proxy. However, the genetic correlations between PME and LMI 

were high, suggesting that a selection of one will trigger improvement of the other. 

The genetic regulation of PME and LMI differed between early and later lactation 

especially in first lactation. Different within lactation correlations suggested 

dynamic relationships between milk production traits and CH4 emissions. Before the 

introduction of PME in a selection index, further studies must be conducted to 
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evaluate the impact of this inclusion in all traits already present in the current 

selection index and not only the common production traits as done in this study; 

notably because the results suggested that the use of higher milk productive cows 

can be a mitigation option but it is known that such cows have more problem of 

robustness, fertility and longevity. Moreover, the improvement and the validation of 

MIR phenotypes must continue to ensure that the MIR CH4 proxy used is reliable 

and accurate. 
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After demonstrating correlation between milk production traits in chapter 5, the 

genetic correlation between CH4 traits and functional traits (fertility, BCS, 

longevity), health traits (udder health) and type traits were estimated. There were 

positive correlations between CH4 emission traits and functional traits suggested 

there would be tradeoffs between these traits in selection. The capacity related type 

traits had positive genetic correlations with PME but negative genetic correlation 

with LMI. Finally, using present Walloon selection program and by selecting PME 

and LMI, the emission traits would responded by reduction in emission, without 

jeopardizing in milk production traits but negative consequence in fertility, BCS and 

health traits. 
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Abstract 

Methane emission is an important environmental trait in dairy cows. Breeding 

aiming to mitigate CH4 emissions require the estimation of genetic correlations with 

other economically important traits and the prediction of their selection response. In 

this study, test-day CH4 emissions were predicted from milk mid-infrared spectra of 

Holstein cows. Predicted CH4 emissions (PME) and log-transformed CH4 intensity 

(LMI) computed as the natural logarithm of PME divided by MY. Genetic 

correlations of PME and LMI with traits used currently were approximated from 

correlations between estimated breeding values of sires. Values were for PME with 

MY 0.06, FY 0.09; PY 0.13; fertility 0.17; BCS -0.02; udder health (UDH) 0.22; 

and longevity 0.22. As expected by its definition, values were negative for LMI with 

production traits (MY -0.61; FY -0.15 and PY -0.40) and positive with fertility 

(0.36); BCS (0.20); UDH (0.08) and longevity (0.06). The genetic correlations of 33 

type traits with PME ranged from -0.12 to 0.25 and for LMI ranged from -0.22 to 

0.18. Without selecting PME and LMI (status quo) the relative genetic change 

through correlated responses of other traits were in PME by 2% and in LMI by -

15%, but only due to the correlated response to MY. Results showed for PME that 

direct selection of this environmental trait would reduce milk carbon foot print but 

would also affect negatively fertility. Therefore more profound changes in current 

indexes will be required than simply adding environmental traits as these traits also 

affect the expected progress of other traits. 
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1. Introduction 

The breeding goal in dairy cattle should support the profitability of milk 

production. Genetic correlations between MY and reproduction, health and fitness 

traits are negative, and a decline in many functional traits was reported by many 

studies (Egger-Danner et al., 2015). Accordingly reproduction, health and fitness 

traits have been included in breeding goal and also selection indices over the past 

decade. This has resulted in improvement in these traits (Egger-Danner et al., 2015). 

However a novel class of traits will need to be considered in the future, those linked 

to environment concerns. There are at least two major reasons why they are not yet 

addressed. First direct accurate measurements of these traits on a large scale are 

difficult to impossible, making their use as selection index traits difficult. Second 

introduction of environment concerns into breeding goal is also very difficult due to 

the knowledge gap on how to improve them most efficiently without putting 

profitability into jeopardy. A major source of the environmental footprint from dairy 

system is CH4emissions which is responsible for 4% of the anthropogenic CH4 

emission (FAO, 2010). The enteric fermentation in the rumen accounts for a major 

part of total CH4 emitted from dairy cows. In addition to the environmental impact, 

CH4 is associated in the literature to a loss of 2 to 12% of gross energy intake 

(Johnson and Johnson, 1995). Therefore, reducing the CH4 emitted by dairy cows is 

of both, economic and environmental, interests. Genetic gains are cumulative and 

small improvements per generation can build over time. To select any new trait, it 

must have genetic variation and show heritability. Even with currently only limited 

research available, CH4 traits predicted from milk fatty acids (Kandel et al., 2015) 

and measured through non-invasive method (Lassen and Løvendahl 2016) have 

shown sufficient heritability. Previous studies have shown that MIR spectroscopy 

can be used to predict milk fatty acids (Soyeurt et al., 2011) and that milk FAs are 

indirectly related to CH4 emission (Chilliard et al., 2009; Dijkstra et al., 2011). Also, 

the heritability of MIR milk FAs predicted CH4 emission was estimated between 

0.21 to 0.40 (Kandel et al., 2015). Moreover, direct prediction of CH4 from MIR 

spectra without the use of milk fatty acids would be a step forward because by 

avoiding intermediate steps, prediction errors could be minimized (Gengler et al., 

2016). Dehareng et al., (2012) and Vanlierde et al., (2015 and 2016) demonstrated 

that quantification of CH4 emission directly by MIR spectroscopy from milk 

samples was feasible and can be useful to generate a large number of indirect CH4 

phenotypes. Vanlierde et al., (2015) supported by results from Vanrobays et al., 

(2016) showed that links between CH4 and milk composition are lactation stage 

specific. 

Genetic selection of CH4 emission traits predicted from MIR spectra of milk 

samples can be imagined because recent research demonstrated genetic variance and 

sufficient heritability (Kandel et al., 2017). However, the addition of environmental 

impact traits into the selection goal needs the careful consideration of its impact on 

other traits in this goal. Before adding any novel traits, additional information about 

genetic correlations with other objective traits that are already in place and their 
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predicted response are needed. Amongst the correlations needed are those with milk 

production traits, with functional traits like fertility and with health traits. Udder 

health was represented by somatic cell score (SCS) on a reversed scale. Even if they 

are not in the breeding objective, correlations to type and BCS, will allow assessing 

the impact on these traits too.  

Therefore, the objectives of this study were twofold, first to estimate the genetic 

correlations between environmental impact traits and other traits of interest, and 

second to quantify their predicted selection response in simple scenarios.  

2. Materials and Methods 

2.1. Genetic Valuation of Environmental Impact Traits 

Currently no routine genetic evaluation exists in the Walloon region of Belgium 

for environmental impact traits linked to CH4 emissions. However in order to 

approximate genetic correlations amongst traits, preliminary evaluations were 

necessary. 

2.2. Milk Samples and Prediction of Environmental 
Traits 

Milk samples were collected from Holstein cows in their first three lactations from 

January 2010 and March 2014 as routine Walloon milk recording. All milk samples 

were analyzed using a Milkoscan FT6000 spectrometer (Foss, Hillerød, Denmark) 

by the milk laboratory „Comité du Lait‟ (Battice, Belgium) to quantify the contents 

of fat and protein and to record the spectral data. Production records ranged between 

5 and 365 DIM. Official International Committee of Animal Recording (ICAR) 

norms were applied. Therefore observations outside of ranges of 3 to 99 kg milk 

yield, 1 to 7% protein content and 1.5 to 9% fat content were not used for the 

calculations as suggested in these norms (ICAR, 2016). 

The CH4 emission (PME; g/d) was predicted from the recorded and standardized 

(Grelet et. al., 2015) milk MIR spectral database of Walloon milk recording using 

the equation developed by Vanlierde et al., (2015). The PMI (g/kg of milk) was 

defined as the ratio of PME divided by the total milk MY recorded for the 

considered test-day. The distribution of PMI was non-normal and skewed therefore 

(Figure 5-1) presenting a log-normal aspect. Therefore PMI was log-transformed 

and called LMI using the natural logarithm. The data sets of predicted environmental 

traits had 700,505 test-day records from 58,412 first three parity cows sired by 2455 

bulls. The heritabilities of PME and LMI were estimated to be 0.25 and 0.18 

respectively (Kandel et al., 2017). Within cow, if parity 3 was present, parities 1 and 

2 had to be present, and if parity 2 was present, parity 1 had to be present. Animals 

which had, based on their pedigree, at least 75% of confirm Holstein genetics in 

their breed composition were kept for this study. Pedigree data were extracted from 

pedigree used for routine Walloon genetic evaluation and contained 119,068 animals 
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born after 1990 which permitted pedigree up to three generations back. 

 

Figure 5-1: Frequency distribution of 700,505 records of (5-1a) predicted methane intensity 
(g/kg of milk) and (5-1b) log-transformed methane intensity for 58,412 Holstein cows. 

2.3. Model 

A single trait multiple lactation random regression test-day model was used to 



5. Consequences of genetic selection for environmental impact traits on economically important traits 

in dairy cows 

75 
 

estimate the genetic parameters and breeding values of each of PME and LMI. The 

model can be presented as follows:  

    y = Xβ + Q(Hh + Zp + Zu) + e  

where y was the vector of observations for each trait (PME or LMI), β was the 

vector of fixed effects (herd x test-day, days in milk (24 classes of 15 days interval), 

and age at calving (9 classes: 21 to 28 months, 29 to 32 months, and 33 months and 

more for first lactation; 31 to 44 months, 44 to 48 months, and 49 months and more 

for second lactation and 41 to 57 months, 57 to 60 months, and 60 months and more 

for third lactation), h was the vector of random within-herd lactation curve effects, p 

was the vector of permanent environmental (PE) random effects, u was the vector of 

additive genetic effects; Q was the matrix containing the coefficients of 2nd order 

Legendre polynomial regressors; e was the vector of residuals; X was an incidence 

matrix assigning observations to levels of fixed effects., H and Z were incidence 

matrices assigning regressors to random regression coefficients. 

2.4. Variance Components and Solutions of Mixed 
Model Equations 

The variance components were estimated by Bayesian method with Gibbs 

sampling. Priors of variance components were estimated using univariate models 

using the average information REML method (Misztal, 2014). Posterior means of 

(co)variance components were calculated using 90,000 samples after a burn-in of 

10,000 samples. The EBVs were calculated using a BLUP approach using obtained 

variance components. 

2.5. Economically Important Traits 

The Walloon Breeding Association (Ciney, Belgium) uses for Holstein dairy cows 

a selection index called V€G (Vanderick et al., 2015). Table 5-1 gives the relative 

importance of the different traits used in the current index. This index was obtained 

to select for a breeding goal that was derived based on a lifetime economic function 

including production and functional traits (N Gengler, pers. comm.). The three 

categories of traits under routine genetic evaluation in Wallonia and included in the 

selection index are production, functional traits and type traits. The later were not 

considered having an economic value on their own, but contributing to the traits in 

the breeding goal (N Gengler, pers. comm.). Production traits included MY, FY and 

PY, functional traits were UDH and longevity and more recently fertility and calving 

traits. These traits were a. combined female fertility (CFF), b. direct calving ease 

(DCE) and c. maternal calving ease (MCE). The genetic correlations were 

calculated for all fertility related traits however response to selection was only 

calculated for combined female fertility. CFF representing pregnancy rate and higher 

values are better. Direct calving ease and maternal calving ease were just recently 

added in selection index; therefore, the responses were not calculated in this study 

however genetic correlations were calculated. The trait BCS is currently used in 

computations of EBV for combined fertility and not directly in the index or even 
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breeding goal. However there are indications (e.g. Vanrobays et al., 2016) that CH4 

production through its links to fatty acids and intake interacts with body fat 

mobilization. Effects of selection on CH4 were also computed for BCS, an indicator 

of body fat mobilization and, indirectly, an important element for a long term effect 

on fertility. Longevity was also calculated from direct longevity trait plus genetically 

correlated type traits. In addition to production and functional traits, a total of 33 

type traits (recorded and derived) are also part of Walloon animal genetic evaluation 

system. Type traits were broadly classified as body capacity, udder and feet and leg 

traits. Details of all these traits definitions, their genetic model for parameter 

estimations are described in Vanderick et al., 2015 and Croquet et al., 2006. The 

EBV of sires for production, functional and type traits were extracted from the 

database containing the EBV computed for the official Walloon genetic evaluation 

2016 March run. These EBV were of domestic, but more often of Multiple Across 

Country Evaluation (MACE) origin, provided by the INTERBULL Center 

(Uppsala, Sweden). 

2.6. Approximated Genetic Correlations 

Very few genetic evaluation systems are completely multivariate across all the 

index traits. An implication of this is also that genetic correlations amongst these 

traits are not known. In order to achieve the objective of this study approximated 

values were needed. Pearson's correlations among EBVs of sires were computed in 

order to get lower-bound estimates of genetic correlations. The productive life of 

higher yielding cows goes over 2.5 to 3.2 parities before being culled (e.g., Hare et 

al., 2006). As life (3 parities) genetic correlations and selection response is easy to 

understand and interpret, therefore in this study we studied all traits cumulated over 

life time (at least 3 parities). A total of 2455 bulls had daughters with environmental 

records and subsequently EBV. These EBV were centered and expressed as average 

daily values but based on cumulative 305 day emissions over the three lactations 

(Table 5-2). For this 2455 sires the corresponding sire EBV for current official 

genetic evaluations were selected when they showed sufficient reliability (limits 

depending upon the traits: 50-99% for production traits and 25-99% for functional 

and type traits). Table 5-2 gives the figures of selected bulls ranging from 1369 to 

1427 for production and functional traits. The equivalent figure was 1422 sires for 

type traits. 

2.7. Selection Scenarios and Predicted Responses 

Five selection scenarios were proposed to calculate the selection response. 

Scenario I was the current Walloon selection index V€G (status quo), and from 

second to fifth selection scenarios were 5, 12.5 and 25 and 50 percent addition of 

CH4 emission traits (PME respectively LMI) and proportional reduction on other 

traits present in current index (Table 5-1). The weight of CH4 traits were put 

negative because we were interested to reduce the CH4 emission from our dairy 

production. Relative genetic changes for each trait from selection based on these 

alternative total indexes were estimated as r = b′G where r = vector of relative 



5. Consequences of genetic selection for environmental impact traits on economically important traits 

in dairy cows 

77 
 

genetic gain on all traits; and b = vector of proportional index weights; G = matrix 

of genetic correlations between index traits and goal traits. As only relative changes 

were relevant for this study, selection intensity was set to 1 and response was 

calculated for one generation.  

3. Results 

3.1. Environmental Traits and Economic Important 
Traits Descriptions 

The average ± sd PME was 443.86 ± 77.04 (g/d) and LMI was 2.87 ± 0.36 for first 

three lactations. The sire EBVs of CH4 emissions traits that had daughters in 

production were accumulated over three parities, expressed on a daily basis and 

presented in Table 5-2. Similarly the corresponding sire EBVs obtained from official 

Walloon genetic evaluation for production (MY, FY and PY) and functional traits 

(Fertility, BCS, UDH and longevity) were also presented in Table 5-2. Average 

reliabilities of selected groups ranged between 61 (for maternal calving ease) and 91 

(for UDH). The selected sire EBV for type traits are presented in Table 5-3 with 

average reliabilities between 74 and 91. 

3.2. Genetic Correlations between Environmental Traits 
and Economic Important Traits 

The approximate genetic correlations based on correlation between sire EBV, 

hereafter called simply genetic correlation, between PME and LMI and production 

and functional traits are presented in Table 5-4. The genetic correlation between 

PME and LMI was estimated 0.33. PME had small positive genetic correlations with 

milk production traits i.e. 0.06 with MY, 0.09 with FY and 0.13 with PY. However, 

the genetic correlation between LMI and milk production traits were negative and in 

case with MY was highly negative (-0.61) and moderate negative with PY (-0.40) 

and low negative (-0.15) with FY. The genetic correlation with combined female 

fertility with both CH4 traits was positive but higher in case of LMI (0.36 vs 0.17). 

Other reproductive traits (DCE and MCE) also had positive genetic correlation with 

PME however negative correlation were observed between LMI and MCE. The 

correlation between PME and BCS was very close to zero but 0.20 between LMI 

and BCS. UDH had positive genetic correlation with both CH4 traits. Finally, 

longevity had positive genetic correlation with both CH4 traits (Table 5-4). 

The genetic correlations between CH4 traits and type traits are reported in Table 5-

3. The genetic correlation between PME and 33 type traits ranged from -0.12 to 0.25 

and between LMI and 33 type traits ranged from -0.22 to 0.18. The body capacity 

traits also had in general positive genetic correlation with PME and negative genetic 

correlations with LMI. The body weight related traits like stature and angularity has 

positive genetic correlation with PME and negative genetic correlation with LMI. 

The udder capacity traits also had in general positive genetic correlation with 
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PMEand negative genetic correlations with LMI. 

3.3. Expected Genetic Changes under Selection 
Scenarios 

The selection response to each scenario of selecting PME is reported in Table 5-5. 

The PME would be increased by 2% without selecting this trait but through 

correlated responses of other traits. A relative weight of 12.5% on PME (selection 

scenario III) was necessary to decrease PME. A relative weight of 25 % of PME 

(selection scenario IV) generated a response of PME by -6%, MY by 15%, FY by 

6%, PY by 11%, fertility by -4%, BCS by -11%, UDH by 13% and longevity by 

22% . In all scenarios MY, FY and PY also increased except with the extreme 

selection scenario V (50% weight on PME) which decreased FY and PY.  

In all PME reduction scenarios, fertility, BCS and UDH would decrease. Given 

that the longevity has currently a very high weight in Walloon index (~21 percent) 

longevity has a very positive response in selection scenario I, however the progress 

would be reduced with each scenario selecting for lower PME. 

The favorable genetic gain would be achieved for LMI in all selection scenarios 

(Table 5-6). The expected response of LMI would range from -15% to -33% from 

selection scenario I to selection scenario V. MY, FY and PY would increase in each 

scenario. For example by the addition of 25% of LMI, the resulting response would 

be for LMI by -24%, MY by 29%, FY by 16%, PY by 28%, fertility by -10%, BCS 

by -13%, UDH by 13% and longevity by 23%. 
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Table 5-4: Genetic correlation between environmental traits with production and 
functional traits of selection of dairy cows 

Traits Predicted methane emission Log-transformed methane intensity 

LMI 0.33 / 

Milk yield 0.06 -0.61 

Fat yield 0.09 -0.15 

Protein yield 0.13 -0.40 

Fertility 0.17 0.36 

Direct calving ease 0.37 0.00 

Maternal calving ease 0.15 -0.11 

Body condition score -0.02 0.20 

Udder health 0.22 0.08 

Longevity 0.22 0.06 

LMI = log-transformed methane intensity 
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4. Discussion 

The final objective of this study was to assess the response of selection for 

environmental traits by selecting them directly as well as the correlated responses of 

other economic important traits. Similarly, the motivation was also to improve the 

understanding of the genetic influence and their correlations on CH4 emission by 

dairy cows. Currently, there is no direct economic incentive for a dairy producer to 

develop a program which reduces CH4 emissions. Given that increasing significance 

of climate change, in national agendas but also for the dairy industry, environmental 

traits would need to be included in dairy cattle breeding. Similarly, societal demands 

are changing from both environmental and economic perspectives and CH4 emission 

traits could be added in the breeding goals defined for dairy cows in the near future 

(Hayes et al., 2013).  

All of genetic correlations between production, functional and type traits and CH4 

emissions traits were revolving around the efficiency and inefficiency of animal 

from intake, digestion, production, reproduction and survival. Dairy cows seem to 

partition energy for production, then for reproduction and finally for survival. More 

efficient dairy cows will produce more milk relative to the amount of feed ingested 

and less energy lost as CH4. All production traits had small positive correlations 

with PME and high negative correlations with LMI, as was expected given its 

definition. The very negligible positive genetic correlation of PME with production 

traits suggested that these traits are not able to predict CH4 emissions alone in dairy 

cows on a genetic level. Similarly, positive genetic correlations observed between 

PME and fat and protein corrected milk yield (0.07±0.09) (Lassen and Løvendahl, 

2016) was similar to this study (0.06 with MY). There is ongoing debate on those 

figures because they appear low, but one should not forget that even if PME is also 

driven by intake it is also strongly related to energy lost or energy efficiency, a 

different mechanism a priori not (strongly) linked to intake. On a phenotypic level 

our recent research (unpublished data) showed that with increasing MY, the 

correlation with PME is decreasing and eventually inversing as always higher 

producing animals produce more and more from body reserve mobilization than 

intake. In beef cattle, using small preliminary analysis using genomic selection, 

response to selection of CH4 yield (CH4/kg dry matter intake) was estimated to be 

reduction by 4 percent in 10 years (Hayes et al., 2016). In dairy cows, using 

prediction from feed intake, PME would at least theoretically decrease in the order 

of 11 to 26% in 10 years (de Haas et al., 2011). However those predictions were 

totally different than prediction used in this study as they assumed that the major 

driving factor behind PME were only intake driven, therefore, direct comparison 

was difficult. 

The reduction of LMI by 15% through the current Walloon selection index was 

similar to results obtained by Bell et al., (2011). These authors demonstrated that 

genetic selection for energy corrected milk (ECM) reduced CH4/ECM (which is 

similar to LMI) by 15% for the first three lactations until mature size and maximum 
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milk yield are achieved. Moreover, increasing selection pressure for reduced LMI 

gives a strong positive reaction of MY and associated traits. Therefore, as expected 

from these results, the functional traits would have negative to strongly negative 

correlated response. Fertility and BCS would be mostly affected but also longevity. 

The genetic correlation between environmental traits and fertility could indicate 

that more resource inefficient cows show better female fertility and therefore 

simultaneous selection for both traits might be difficult. On the other hand, a 

breeding strategy emphasizing female fertility traits would improve cow fertility and 

reduce within-herd replacement rates and consequently reduced replacements 

contribute to decreasing CH4 emissions in herd level (Knapp et al., 2014) but the 

relationship in individual level is not known yet. 

The body condition score would decrease in all scenarios of selection on either 

PME or LMI. The substantial genetic correlation between BCS and LMI reduced 

BCS and positive genetic correlation between BCS and fertility (Bastin et al., 2013) 

had led to reduction in both traits. It is also well known that the early lactation 

period is characterized by body fat mobilization, negative energy balance (van 

Knegsel et al., 2007) which is also related to CH4 emissions, so test-day genetic 

correlations are more important than average of whole lactations.  

The fact that longevity had also positive genetic correlations with emissions could 

indicate that the higher CH4 producing cows might be more efficient in survival. 

However like for improved fertility, by promoting longevity emissions from 

replacement would be diluted. However their effect in individual level of emission is 

unresolved (Grandl et al., 2016). 

In sheep, it was demonstrated that smaller body confirmation animal had smaller 

rumen and shorter duration of ruminal passage which leads to less CH4 (Goopy et 

al., 2014). In this study, almost all capacity and body size related traits like stature, 

chest width, rump length and angularity had positive genetic correlations with PME 

which suggested increased body capacity and body weight increased also PME. On 

the other hand, the body capacity type traits had negative genetic correlations with 

LMI, suggesting that selection for LMI would preserve these traits. 

Even without selection on LMI the reduction in CH4 intensity was already 

substantial due to the negative correlation with production traits. The speed of 

reduction would be faster if we add this new trait to the selection index, however the 

decrease in fertility would be substantial unless fertility traits were also added in the 

selection index.  

This study has some limitations. First, the analyses were only based on 

correlations of sire EBV. A more direct method would be to estimate genetic 

correlations from the data using bivariate models. However, such approach would 

have required variance components estimation for a great number of bivariate 

models including random regression. Therefore, for this study, approximation were 

used and as presented by Calo et al. (1973), correlations between breeding values do 

not fully reflect the genetic relationships between two traits and they might 

underestimate them. Second, a better approach to create a selection index would be 
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to put appropriate economic weights to environmental traits instead of adding a 

linear percentage in selection scenarios. However, even if there is an economic value 

of CH4 emission in the industrial sector, this is not yet the case in agriculture. An 

alternative strategy would be to optimize expected gains, developing weights 

retrospectively. Third, the responses presented in Table 5-5 and 5-6 assume that all 

breeding values for all traits have equal reliability. That might not be the case at the 

moment of selection. It is therefore somewhat idealized scenarios but in practice 

accuracy will differ due to heritability and different recording (e.g. longevity and 

fertility). However, this study showed practical significance of current selection and 

its effect on PME and LMI where PME is increasing but CH4 intensity decreasing. 

5. Conclusions 

This study presented novel results. First, under the hypothesis to continue using 

the current Walloon index, without directly selection for environmental traits, PME 

would be increased but LMI would be decreased through correlated responses to the 

selection for correlated traits. This is the expected result that gains are currently only 

achieved per unit produced. Second, by giving direct selection pressure on 

environmental traits, they would respond to selection, but would also change 

fundamentally the responses in other traits. These responses were quantified in 

various scenarios. One of the scenarios – reducing all traits weight by 25% of 

current index and addition of 25% of PME would reduce gains in FY and PY and 

almost all functional traits (fertility, BCS, and longevity) would need to be 

protected. The addition of 25% of LMI would shift the emphasis on production 

traits, especially MY, and affect even stronger functional traits. In conclusion, direct 

selection of environmental traits would reduce methane emission (a part of carbon 

footprint of milk) but more profound changes in current indexes will be required 

than simply adding environmental traits, as adding these traits to the selection index 

would affect the equilibrium between the other traits. 
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Previous chapters demonstrated that mid-infrared prediction of CH4 emission 

traits can be considered as indicator of CH4 measurements obtained by SF6 

reference method. These predicted CH4 emission traits had a large genetic 

variability which suggested that these traits would likely respond to selection 

pressure. Selection of CH4 traits would reduce milk carbon footprint without 

jeopardizing production traits, but energy balance and efficiency related (fertility, 

body condition score) traits have to be protected. This requires the use of innovative 

selection index useful for climate-smart breeding. In this chapter, key results, their 

discussion and implications have been summarized and future research directions 

are discussed. 
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1. Selection of Environmental Impact Traits in Dairy 
Cows 

Livestock production affects and is affected by global warming. First, it 

contributes to global warming through GHG emission and, second, it also suffers 

from global warming through the changes of quality and yield of animal feed and a 

potential climatic stress (Kipling et al., 2016). Therefore, many researchers have 

been striving to put environmental impact traits in their breeding goal for dairy cattle 

(Pickering et al., 2015). Similarly, from the consumer‟s perspective, it is believed 

that the negative impact of climate change can be minimized by consuming 

environmental friendly products. The consumer behavior, by choosing low carbon 

footprint milk products, may also provide a competitive edge for „greener‟ milk 

production (Feucht and Zander, 2017). Beside the carbon footprint of milk and 

consumer‟s behavior, CH4 emission from dairy cows is also a loss of energy from 

feed offered to animals (Johnson and Johnson, 1995). This loss of energy could be 

decreased by reducing CH4 emissions, offering potential economic profit for 

farmers. In these multifaceted problems and opportunities, the genetic selection of 

dairy cows for environmental traits without jeopardizing farm profitability and 

animal welfare would be one of the objectives for future dairy production system. 

Genetic selection provides a reliable route towards permanent and cumulative 

reductions in enteric CH4 emissions. In this PhD thesis, only environmental traits 

based on enteric CH4 were studied and carbon footprint is colloquially used for CH4 

emissions. However, this thesis doesn‟t address nitrogenous emission and higher 

concentrate in animal feeds may lead to higher nitrogen rejection and nitrous oxide 

emission. If other production parameters are the same, a genetic selection for 

decreasing CH4 emission will decrease carbon footprint. 

2. Large scale methane related phenotypes 

The pre-requisite for selective breeding is the obtaining of a large amount of 

phenotypic data. Several direct in vivo methods are used to quantity CH4 emitted by 

dairy cows but they are expensive and labor intensive. This limits the availability of 

phenotypes. Therefore, there is a necessity to obtain or predict CH4 proxies using 

large scale, cost and labor effective techniques. In this context, milk FAs were 

deemed to be biologically relevant indicators to predict CH4. Indeed, CH4 output 

from ruminants is directly linked to the microbial digestion in the rumen. So, several 

equations from milk gas chromatography FAs were published by different authors to 

predict CH4 emissions (i.e., Chilliard et al., 2009; Dijkstra et al., 2011; van Lingen et 

al., 2015; van Gastelen et al., 2017). Major milk FA composition can be measured 

through the analysis of individual milk samples by MIR spectrometry (Soyeurt et al., 

2011; de Roos et al., 2007). This approach has the advantage to be rapid, cheap, 

environmentally friendly and already used in routine by milk laboratories around the 

world. Similarly, in the context of performance recording, an interesting feature of 

MIR based prediction of CH4 emissions is there are longitudinal records repeated 
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approximately every four weeks during lactation for each cow. First, in this thesis, 

the literature CH4 emission phenotypes (g/day) predicted from Chilliard et al. (2009) 

equations using gas chromatography FAs were used as reference values to 

developMIR equations. This allowed obtaining CH4 phenotypes predicted from milk 

MIR spectra used in Chapter 2. Unfortunately, those predictions included multiple 

prediction errors related to the prediction of CH4 using major FA in milk itself as 

well as the prediction of FA by MIR. The best methane prediction equation had R
2
 

of 0.80 with R
2
cv of 0.92. This provided the final R

2
 is about 0.72. Another factor 

was the prediction accuracy of milk FAs themselves, which ranged from 0.80 to 

0.90. This was the good start to explore possibility of milk fatty acids as a predictor 

of CH4 emissions; however, GC is unsuitable for routine analysis. Methane 

emissions prediction can be improved from integration with other factors, like feed 

intake, nutrient composition of the feed, parity, and lactation stage using MIR 

spectra (van Gastelen and Dijkstra, 2016.) Therefore, to minimize the prediction 

error and to add additional milk composition information, direct CH4 predictions 

(g/day) from milk MIR spectra using Vanlierde et al. (2015) equations were 

considered as second approach where parity and lactation stage dependent factors 

were considered. The equation developed by Vanlierde et al., (2015) was used to 

predict methane emissions traits in this thesis (Chapter 3, 4 and 5). This CH4 MIR 

prediction equation was developed from 446 CH4 measurements from 142 Belgian 

and Irish cows. Reference daily CH4 emissions of individual cows were determined 

using the sulfur hexafluoride (SF6) tracer gas technique with a gas collection period 

of 24 h. The lactation-stage-dependent equation was developed from those reference 

values and their corresponding daily milk MIR spectra. The standard error of 

calibration of this equation was of 63 g/d. The calibration coefficient of 

determination was equal to 76% (Vanlierde et al., 2015).  

Environmental traits used in this thesis were only based on predicted enteric CH4. 

CH4 emission (PME; g/d) was predicted from milk MIR spectra collected from 

Holstein cows using Chilliard et al. (2009) equations (Chapter 2) and Vanlierde et al. 

(2015) equations (Chapter 3, 4 and 5). Predicted CH4 intensity (PMI; g/kg of milk) 

was derived as the ratio of PME to milk yield for a given test-day. Due to the 

statistical property of this trait, PMI was log-transformed (LMI). Genetic parameters 

were estimated for those traits in order to test the following hypotheses: 

 Are predicted CH4 traits heritable? ; 

 Do those traits show sufficient genetic variability to rank sires into low and high 

CH4 emitters? ; 

 Is it possible to include those environmental traits in selection indexes without 

jeopardizing animal production, health, fertility and longevity? 

3. Phenotypic variability of MIR Methane proxies 
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The MIR CH4 emissions (g/d) varied throughout the lactation with an increase 

mid-lactation and then a linear decrease. The observed pattern of MIR CH4 

emissions (g/d) in function of the days in milk (Chapter 3 and 4;Figure 6-1) was in 

overall comparable with the one observed from other methods of CH4 measurements 

(Garnsworthy et al., 2012; Lassen and Løvendahl, 2016). The coefficients of 

variation between lactations stayed relatively stable for all studied CH4 traits (15-

18% for PME and 11-14% for LMI; Chapter 2 and 4). 

 

Figure 6-1:.Change in daily predicted methane emission (PME_direct) and milk fatty acids 
predicted (PME_FAs) across lactation. The PME was averaged for first three lactations from 

the data from Chapters 3 and 4 for illustration. 

The phenotypic correlation of CH4 and milk yield (MY) were very low along with 

FY and PY, however the correlations with fat and protein percentages had moderate 

correlations (Chapter 2 and Chapter 4). LMI had high negative phenotypic 

correlations with MY, FY and PY (Chapter 4) but had positive phenotypic 

correlations with fat and protein content (Chapter 2; Williams et al., 2014). The 

curvilinear relationship between MIR CH4 emission intensity and MY suggested that 

high yielding cows have lower milk carbon footprint (Chapter 4). This curvilinear 

relationship was also observed by Moate et al., (2016) from Australian dairy 

population measured using respiration chamber of CH4 measurement method 

(Figure 6-2). Similar curvilinear relationship was also observed by Watt et al., 

(2015). This relationship could be attributed to a dilution of fixed requirements for 

maintenance, and to a lower extent to an improved efficiency for milk production 

(Dijkstra et al., 2013; Knapp et al., 2014). Therefore, this relationship also suggested 
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that the promotion of higher milk producing cow is regarded as one of the mitigation 

options to reduce the environmental impact for dairy production system (Wall et al., 

2010). 

For all studied MIR CH4 traits (g/d), second lactation CH4 emissions were higher 

than the first lactation. However, the MIR predicted CH4 emission was almost flat 

from the second lactation to the third lactation (Table 2-2; Table 4-1 and Figure 6-3). 

This agrees with the findings of Grandl et al. (2016) who mentioned that older cows 

did not have increased CH4 emissions than second lactation cows. Similar results 

were also reported by Haar and Pierre (2006) that maximum lifetime energy 

efficiency is typically reached after 2.5 lactations, when mature size and maximum 

milk production are achieved. In case of CH4 emissions, from the emission patterns 

between second and third lactation, first two lactations records look sufficient for 

complete picture that allows shorter phenotype collection period. These authors 

suggested that when maximum energetic efficiency is reached, environmental waste 

such as energy loss as enteric or manure CH4 will be minimized (Haar and Pierre, 

2006). 

 

Figure 6-2:  6-2a. Relationship between predicted methane intensity (PMI; g/kg of milk) and 
milk yield (kg/d) in the averaged first three lactation Holstein cows. PMI=Predicted methane 

intensity (from Chapter 5) 6-2b. The relationship obtained from Australian dairy cows 
(adapted from Moate et al., 2016 figure ©CSIRO publishing) 

4. Genetic Parameters of Predicted Methane 
Emission Traits 

The heritability values of predicted MIR CH4 emissions from Chilliard et al. 

(2009) equations were moderate (from 0.26 to 0.40). Heritability values obtained in 

this study were similar to the findings of van Engelen et al., (2015) which were also 

obtained from milk FAs. The average heritability increased from the beginning of 
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the lactation towards the end of lactation with the changes in body lipid mobilization 

and energy balance which is seen as a change of body condition score (Chapter 2). 

The range of EBV of sires having their daughters in production with the highest and 

the lowest CH4 content was around 27 kg per lactation. These ranges of estimated 

breeding values were large enough to appreciate genetic variability. The genetic 

correlation between MIR FAs predicted CH4 emissions and milk yield was low 

negative while the correlations between CH4 emissions and fat and protein contents 

were positive. This study supported the hypothesis of genetic component of 

predicted CH4 emissions from dairy cows and can be used to rank sires based on 

their EBV. This should allow to select future generations for reduced CH4 emissions 

(Chapter 2).  

 

Figure 6-3: Predicted methane emissions from MIR milk fatty acids (PME_FAs) and direct 
prediction from MIR spectra (PME_direct) in the first, second and third lactation Holstein 

cows (results from Chapter 3, 4 and 5); Lac=Lactation. 

Genetic analyses of the directly predicted MIR CH4 phenotypes (PME and LMI) 

were carried out using two models to select better fit model. One model had extra 

random within-herd lactation curve effects, including permanent environment and 

additive genetic effects. The random within herd lactation curve effects model fitted 

better than without herd lactation curve effects model (Chapter 3). The contribution 

of random herd-specific lactation curve effects was around 10 percent of the total 

variance. This random herd-specific lactation curve effects suggested an impact of 

herd specific management on the CH4 emission traits. Using this model, the 

estimates of heritability for PME (0.26) and log-transformed CH4 intensity (0.27) 

were moderate. The heritability values were higher (0.34 vs. 0.26 for PME and 0.32 
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vs. 0.27 for LMI) from the model without random within herd lactation curve 

effects. The most part of these differences were attributed to the random within herd 

lactation curve effects and PE effects (Chapter 3). These heritability values were 

lower (0.35 vs. 0.26) compared to the ones found for the milk FAs predicted 

methane emissions (g/d; Chapter 2). From these results, further investigation about 

the genetic parameters in second lactation and the relationships with other milk 

production traits was carried out (Chapter 4). These heritability results were in 

general within the range of various methods of CH4 measurements (Table 6-1). 

5. Genetic Correlations between MIR Methane 
Proxies and Economic Important Traits of Selection 

Model including a random within herd lactation curve effects had a better fit 

(Chapter 3) and was used to estimate the genetic correlations of PME and LMI with 

the common milk production traits (MY, FY and PY). The low negative genetic 

correlation between PME and MY from this study was similar to the findings 

obtained in other studies (Dong et al., 2015; Lassen and Løvendahl (2016). Across 

lactations, genetic correlation between PME and FY increased from the beginning 

toward late lactation and this evolution persisted in both first and second lactations. 

The observed changing genetic correlations between PME and FY within lactation 

suggest the complex relationship between CH4 traits and FY. The fat composition is 

indirectly related to CH4 emissions, they share mechanism during rumen 

fermentation (Bielak et al., 2016). Genetic correlations of LMI and MY with FY and 

PY were negative and became more pronounced with increasing days in milk. These 

relationships were consistent with the pattern of body lipid mobilization during 

lactation. Indeed, an early lactation cow is able to mobilize body energy reserves 

towards milk production and body fat mobilization does not contribute in CH4 

production which leads to lower CH4 intensity. Mid and later lactation cow has to 

replenishing fat stores, towards fetus in addition to milk production and also higher 

feed intake that results higher amount of CH4 intensity. Therefore, there was 

dynamic intra-lactation genetic correlation between both PME and LMI and 

FY(Chapter 4). PY is more related to the nitrogen efficiency than CH4 emissions 

butMY and PY were strongly positively genetically correlated. Therefore the slight 

negative correlation between PME and PY was expected (Table 4-2). 

After estimating genetic correlations between MIR CH4 traits and milk production 

traits, the genetic correlations with functional and type traits were estimated 

(Chapter 5). Genetic correlations between CH4 traits and all traits in the selection 

index were approximated in Chapter 5 from the correlations between their 

corresponding EBVs rather than bi-variate models. This way of doing does not fully 

reflect the genetic relationships between two traits and can underestimate the 

intensity of the relationship. This could explain the small differences in genetic 

correlation values between CH4 traits and milk production traits estimated in 

Chapter 4 (i.e., from bivariate models) and Chapter 5 (i.e., from approximated  
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correlation from EBV estimation). Genetic correlations between PME and functional 

traits (fertility, UDH and longevity) were low positive (from 0.17 to 0.22) except 

BCS (-0.02). Genetic correlations between LMI and all studied functional traits were 

positive (from 0.06 to 0.36). The CH4 emission is inefficiency of animal but 

production, reproduction and survival are efficiency from animal. The relation 

between inefficiency and efficiency should be antagonistic and the genetic 

correlation should be reflected on that way. Dairy cows seem to partition first energy 

for production, then for reproduction and finally for survival (Puillet et al., 2016). 

More efficient dairy cows will produce more milk relative to the amount of feed 

ingested and less energy lost as CH4 and this mechanism is likely controlled by 

genetics. This hypothesis also supported by Grandl et al., (2016) was that CH4 

emissions feeding diets. Even if measurement methods and techniques are different, 

the conclusion about the genetic regulation of CH4 emissions from dairy cows was 

similar between studies. Older cows do not have increased CH4 emissions than 

second lactation cows (Grandl et al., 2016) and also observed by our data set. 

Similar results were found by Haar and Pierre (2006) that maximum lifetime energy 

efficiency is typically reached after three lactations, when mature size and maximum 

milk production are achieved. These authors suggested that when maximum 

energetic efficiency is reached, environmental waste such as energy loss as enteric 

or manure CH4 would be minimized. The correlation with BCS found in this this 

should be taken with extra care because of its dynamic nature intra-lactation (i.e., 

BCS changes) and further study in this area is required. 

Udder health was represented by SCS on a reversed scale. The genetic correlations 

were low positive between MIR CH4 traits and UDH (Table 5-4; Chapter 5). Direct 

biological reasoning of this relationship has to be established, however, we could 

argue that increased production has a toll on health traits.  

The genetic correlation between 33 type traits and PME were ranged from -0.12 to 

0.25 while the correlation between same 33 traits and LMI were ranged from -0.13 

to 0.18. Particularly, the capacity related traits (e.g. overall conformation, udder and 

development score) had positive genetic correlations with PME and negative genetic 

correlations with LMI. It suggested that through CH4 intensity selection, these type 

traits could be preserved. Body weight (BW) is not a part of selection index however 

a higher BW animal has a large rumen capacity. A large rumen capacity results in a 

lower passage rate of feed in rumen causing in a higher CH4 production (Moraes et 

al., 2014). The fluctuation of BW should be considered as previously mentioned 

genetic correlations of BCS.  

6. Consequences of Selection of Environmental 
Impact Traits 

The breeding goal is the direction in which we want to improve the population in 

future. In this study, the breeding goal is to include the reduction of carbon footprint 
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of milk production. Generally, the breeding goals are based on economic model of 

the production system. The economic value for each trait is determined by modeling 

the effect of that trait on the profit of a production herd. A profit equation is derived 

that is a function of the breeding goal traits. Subsequently, the economic value of 

each breeding goal trait is found as the partial derivative of profit with respect to that 

trait. The goal of selection index is to estimate the genetic component of the 

breeding objective by assembling traits to be selected into a weighted linear 

combination. The current selection index of the Walloon region of Belgium 

considers the following weights (Vanderick et al., 2015):  

Table 6-2: Current Walloon selection index 

Sub-index Traits Weight 

Production Traits 
 

48 

 
Milk (kg) 10 

 
Fat (kg) 9 

 
Protein (kg) 29 

Functional Traits 
 

28 

 
Udder health 3.3 

 
Longevity 20.7 

 
Total fertility 2.0 

 
Direct calving ease 0.8 

 
Maternal calving ease 1.1 

Type Traits 
 

24 

 
Feet and leg  9 

 
Capacity related traits 1 

 
Udder traits 14 

(Detailed description on Table 5-1) 
   

In some cases, indirect selection of a particular trait is considered if highly 

correlated traits are more regularly recorded, less expensive to record, measured at 

earlier life and/or more heritable. Methane emissions provide an example of a 

phenotype that is difficult to measure individually on a large scale and for which 

proxies can be assembled into an indirect selection index for CH4 (i.e., MIR 

prediction in this thesis) (Negussie et al, 2017). Beside large-scale reliable records 

on the proxies, important building blocks of an indirect selection index are their 

heritability values and the genetic correlations between them and the other traits 

included in the selection index. For CH4 proxies, heritability and correlations are 

known from this thesis, however their direct contribution to the profit functions (i.e., 

contribution of the given trait to the breeding goal) are unknown. 
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Without including PME and LMI in the Walloon selection index (status quo), the 

relative genetic change through correlated response of other traits, PME would be 

increased by 2% and LMI would be decreased by 14% per generation. Without 

direct inclusion of PME and LMI in the index, the relative change in MY, FY, PY 

and longevity would be increased by ~16% and fertility, BCS and UDH would be 

decreased by ~10%. Reducing the relative weights of all traits by 25% in the current 

index and adding 25% of PME (or LMI) would result PME to be decreased by 6% 

and LMI to be decreased by 23%. When selecting for environmental traits, the 

response of functional traits would be unfavorable; therefore, energy balance and 

efficiency related traits (fertility, BCS) and health traits (UDH) must be protected 

(Chapter 5). 

Some other literatures have also predicted how much changes would come in CH4 

reduction from genetic selection. De Haas et al. (2011) estimated the possibility of 

reduction of CH4 production of a cow by selecting more-efficient cows in the order 

of 11 to 26% in 10 year time from base year. That estimate was based on the 

selection of residual feed intake, not by directly selecting CH4 traits. Eight percent 

reduction CH4 yield was estimated in sheep after one generation of selection against 

CH4 emissions (Pinares-Patiño et al., 2013). Similarly, through genomic selection, 

CH4 emissions could be reduced by 5% in 10 years in beef cattle (Hayes et al., 

2016). In Australian dairy cows, the selection response without any selection 

pressure in CH4 emission traits was predicted ~1% in total emissions from the dairy 

industry per year (i.e., corresponds with status quo scenario of PME). Methane 

intensity is expected to be reduced by 0.55% per year (Pryce and Bell, 2017). Using 

life cycle analysis and estimated from correlated traits, 15% reduction in CH4 

intensity was projected over next 15 years from Irish dairy industry (Amer et al., 

2017). Of course, these predictions are based on different assumptions and many 

parameters like accuracy of selection, reliability of traits are not precise yet. This 

leads to difficulty for direct comparison between methods but give an overall 

consensus that genetic selection is possible to reduce CH4 emissions.  

In Chapter 5, the reliabilities of the CH4 EBV were assumed high (through high 

number of progeny as of MY and moderate heritability of trait; production traits 

have reliability of 0.8 or higher). Some unanswered questions remain in this 

research. How many animals/progeny with CH4 records do we need to achieve 

reliable EBV? Also, do multi-traits analysis combing CH4 traits with other traits 

improve the reliability of CH4 EBV? 

When including traits in the overall selection index or breeding program for a 

breed, it is important to be aware of potential unexpected consequences. For 

example: are there traits for which we do not want to select (against or in favor) but 

that are correlated with the breeding goals and would therefore be passively dragged 

by selection? A known illustration in dairy breeding is the somewhat inverse relation 

between milk yield, on one hand, and milk quality (e.g., fat and protein content) and 

animal functionality (e.g., fertility) on the other hand (Negussie et al, 2017). A 
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careful construction of the overall selection index and its implementation in the 

breeding program is therefore needed. An important conclusion of this thesis and 

other studies is that innovative selection index theory will be needed to develop 

adapted indexes useful for climate-smart breeding strategies, especially because of 

first indications that CH4 reduction influences fertility and animal robustness 

negatively were confirmed. Strategies to develop restricted selection index 

(Kempthorne and Nordskog, 1959) or direct economic weights for emission traits 

should be identified to mitigate CH4 emission from dairy system to reduce carbon 

foot-print of milk production. Other potential approaches are through desired gain 

index, where trait values are calculated indirectly from index-weighing factors based 

on a predetermined desired or restricted amount of genetic gain for one or more 

traits (Gibson & Kennedy, 1990) or with trait weightings in the formulation of 

breeding objectives (Amer et al., 2017). 

Even though, direct pricing of CH4 emissions from dairy industry is not in 

practice, future pricing mechanism cannot be ignored. A note should also be taken in 

consideration of global collaboration of greenhouse gas reduction from dairy 

industry. Paris climate accord (2015) might have large impact to formulate the exact 

policy in particular countries, regions depending upon price of carbon (if any). Even 

though, recently, second largest polluter of GHG, USA had withdrawn from its 

climate accord commitment. Nevertheless, Europe (including Belgium), Canada and 

other countries are still in Paris accord; therefore, the dialogue of economic selection 

index is still on the table.  

7. Conclusions 

In conclusion, the inclusion of environmental impact traits into dairy cattle 

selection seemed to be possible through selection index theory. The obtained results 

support the following hypotheses: a) predicted MIR CH4 traits are heritable; b) those 

traits have sufficient genetic variability to rank animals into low and high CH4 

emitters; and c) environmental traits can be included in the current selection index, 

however, a new equilibrium between traits is needed in order to avoid jeopardizing 

animal production, udder health, fertility and longevity.  

8. Implications 

Some previous studies already supported the genetic contribution to the CH4 

emissions from dairy cows. This research confirmed those previous studies through 

the obtained heritability estimates of predicted MIR CH4 emission. Moreover, this 

research provided a better understanding of genetic correlation between MIR based 

CH4 emission traits and milk production, udder health, functional and type traits. 

The selection of CH4 trait could have the following implications: 

 At animal level: with the current Walloon index, the CH4 intensity from dairy 
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cows is decreasing; direct selection for reduced CH4 would increase the 

reduction, however, other (functional) traits must be protected. 

 At national herd level: Appropriate selection index can be formulated to 

minimize unwanted correlated response on functional traits. 

 At policy level: Regional and federal governments are generally inclined to levy 

carbon tax on any sectors that produces GHG. This research showed that the 

CH4 intensity from milk production is decreasing regardless of the selection of 

CH4 emission traits. However, it also showed that incorporating these novel 

traits into the selection index offer more reduction of CH4 emissions from dairy 

cows. However, integration of environmental traits may be problematic with 

fertility and BCS, and ultimately farm profit; therefore, the proper mechanism to 

compensate/incentive should be in place to ensure farm profit. Otherwise the 

end-users may not be interested to incorporate this trait in their breeding 

objective. Farmers are already in the tight-rope of the profit margin; therefore, it 

should be included in rural development policy through incentive to farmers 

who rear dairy herd more environmental friendly. In addition, these results may 

assist global collaboration to define a suitable measurement, and many 

thousands of records to ensure valid and accurate evaluations of environmental 

traits. 

9. Future Research 

This thesis is based on the prediction of CH4 traits from MIR milk composition. 

Several authors have demonstrated that MIR spectra can predict this trait whereas 

some studies have skeptic (for e.g. Shetty et al., 2017). The selection index 

formulation for environmental traits has issues and use of these traits in era of 

genomic selection, following future research are recommended to get whole picture 

of mitigation of methane emission from genetics.  

 The MIR predicted phenotypes used must be validated. An innovative method 

could be to estimate the genetic correlations between MIR phenotypes and direct 

CH4 measurements. 

 Direct genetic correlations between MIR CH4 predictions and functional and 

type traits must be estimated. 

 The fixed effects used in thesis to explain the CH4 variability were based on 

those used in the Walloon genetic evaluation for dairy production traits. 

Addition research is therefore required to optimize the modeling of these effects 

as was already done for the random effects during this thesis. 

 The economic weight of the CH4 emissions traits are still blur. Some 

countries/regions had tried to quantify the price of carbon offset but their values 
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are still unclear. Therefore, further research is required to create economic 

weight or alternatively, with trait weightings in the formulation of breeding 

objectives or restrictive selection index or desired gain index. 

 Most of the animals used in this study were also genotyped through various 

projects, therefore, genome wide association study to pinpoint the chromosomal 

regions of CH4 emission. The future genetic evaluation of any novel trait in 

dairy cows would have both genetic and genomic analysis. These difficult to 

measure traits are one of the prime examples to be benefitted from genomic 

selection. The integration of both sources of information should be used into a 

genetic or a single-step genomic evaluation. 

 Lastly, but not least; the microbes that convert methane in host rumen may have 

a significant role in methane emissions. Even though, this thesis didn‟t touch the 

microbes and host-microbes interaction, which is one of the areas of potential 

research.  
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Doctoral Trainings and Scientific 

Communications 

1. Thematic Training (minimum 15 credits) Credits 

1.1 Training for users of computing devices and mass 

storage,  Université catholique de Louvain, Belgium 

5 

1.2 Dairy cows lactations, profiles, nutrient allocation and energy 

balance, Aarhus University, Denmark 

4 

1.3 Training in infrared spectroscopy and chemometrics, Walloon 

Agricultural Research Center, Gembloux 

4 

1.4 Modeling for Biologist, Agro Paris Tech, France 4 

1.5 High Performance computing, Université catholique de Louvain, 

Belgium 

5 

1.6 Nutrition and fat metabolism in dairy cattle, Wageningen 

University, The Netherlands  

1 

1.7 Healthy foods from Healthy animals, BSAS, University of 

Nottingham, UK plus student sessions and GHM meeting 

3 

1.8 International conference on Quantitative Genetics: Understanding 

variation in quantitative traits, Edinburg, UK 

5 

 Subtotal 31 

2. Transversal Training (minimum 10 credits)  

2.1 Animal Use in Research Training: Ethics of Animal Use, Core and 

Livestock stream, University of Alberta, Canada 

3 

2.2 American Dairy Science Association Conference, Phoenix, AZ, 

USA 

4 

2.3 American Dairy Science Association Conference, Indianapolis, 

USA 

4 

2.4 Genetic Parameters for methane indicator traits based on milk fatty 

acids in dual purpose Belgian Blue cattle, 17
th
 Symposium on 

Applied Biological Sciences, University of Leuven, Belgium 

1 

2.5 Scientific Stay aboard 'TEAGASC,  Moorpark', Ireland 5 

2.6 Peer -reviewing (1 article in journal 'Animal' and 2 articles in 

'Journal of Dairy Science') 

3 

 Subtotal 20 

3. Scientific Communications (minimum 25 credits)  

3.1 Kandel, P. B., M.-L. Vanrobays, A. Vanlierde, F. Dehareng, E. 

Froidmont, N. Gengler, and H. Soyeurt. 2017. Genetic parameters 

of mid-infrared methane predictions and their relationships with 

milk production traits in Holstein cattle. J. Dairy Sci. 100: 5578–

5591. 

8 
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3.2 Kandel, P. B., S. Vanderick, M.-L. Vanrobays, H. Soyeurt, and N. 

Gengler. 2017. Consequences of genetic selection for environmental 

impact traits on economically important traits in Dairy Cows. 

Animal Prod. Sci. 57:x (online early) 

8 

3.3 Kandel, P. B., N. Gengler, and H. Soyeurt. 2015. Assessing 

variability of literature based methane indicators traits in a large 

dairy cow population. Biotech. Agron. Soc. Environ. 19:11-19. 

5 

3.4 Kandel, P. B., S. Vanderick, M.-L. Vanrobays, A. Vanlierde, F. 

Dehareng, E. Froidmont, H. Soyeurt, and N. Gengler. 2014. 

Consequences of selection for environmental impact traits in dairy 

cows. Proceeding of 10
th
 World Congress on Genetics Applied to 

Livestock Production (WCGALP), Vancouver, Canada. Am. Soc. 

Anim. Sci., Champaign, IL. 

5 

3.5 Kandel, P. B., M.-L. Vanrobays, A. Vanlierde, F. Dehareng, E. 

Froidmont, P. Dardenne, E. Lewis, F. Buckley, M.H. Deighton, S. 

McParland, N. Gengler, and H. Soyeurt. 2013. Genetic parameters 

for methane emission predicted from milk mid-infrared spectra in 

dairy cows. Adv. Anim. Biosci. 4:279.  

5 

3.6 Kandel, P. B., H. Soyeurt and N. Gengler. 2012. Estimation of 

genetic parameters for methane indicator traits based on milk fatty 

acids in dual purpose Belgian blue cattle. Comm. Agri. Appl. 

BioSci. 771:21-25. 

5 

3.7 Genetic parameters for methane emission indicators in dairy cows, 

Département des Sciences Agronomiques, presentation des travaux 

de doctorat, University of Liege, Gembloux Agro-Bio Tech, 

Gembloux 

3 

 Subtotal 39 

 Total 90 

 
 

 

 

 

 

 

 


