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In the context of Grand Unified Theories (GUT) baryogenesis models, a well-known theorem asserts that
CPT conservation and the unitarity of the S matrix require that the lowest order contribution that leads to
the generation of a nonzero net CP violation via the decay of a heavy particle must be toOðα3

B
Þ, where αB is

a baryon number (B) violating coupling. We revisit this theorem [which holds for lepton number (L)
violation, and hence for leptogenesis as well] and examine its implications for models where the particle
content allows the heavy particle to also decay via modes which conserve B (or L) in addition to modes
which do not. We systematically expand the S matrix order by order in B/L violating couplings, and show,
in such cases, that the net CP violation is nonzero even to Oðα2

B
Þ, without actually contradicting the

theorem. By replacing a B/L violating coupling (usually constrained to be small) by a relatively
unconstrained B/L conserving one, our result may allow for sufficient CP violation in models where it may
otherwise have been difficult to generate the observed baryon asymmetry. As an explicit application of this
result, we construct a model in low-scale leptogenesis.
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I. INTRODUCTION

The asymmetry in the Universe between baryonic and
antibaryonic matter is expressed in terms of the ratio,

YΔB ≡ nB − nB̄
s

; ð1Þ

where nB and nB̄ represent the baryon and antibaryon
densities, respectively, and s ¼ g�ð2π2=45ÞT3 is the
entropy density in which g� is the number of relativistic
degrees of freedom in the plasma and T is the temperature.
The current estimate for this asymmetry has been deter-
mined independently from (i) the abundances of light
nuclei due to big bang nucleosynthesis (BBN) and,
(ii) analyses of the cosmic microwave background radiation
(CMB). Its values (at 95% C.L.) [1,2],

YBBN ¼ ð8.10� 0.85Þ × 10−11;

YCMB ¼ ð8.79� 0.44Þ × 10−11; ð2Þ

confirm that we exist in a Universe that is baryon domi-
nated [3,4]. The consistency between these independent

measurements of the baryon asymmetry is all the more
impressive because their respective epochs are separated
by about 6 orders of magnitude in temperature, putting its
existence on a firm experimental footing.
At variance with this, however, is the fact that a largely

symmetric Universe, in terms of matter and antimatter,
is expected from our present theoretical understanding of
the early Universe and the extremely tiny amount of matter-
antimatter asymmetry present in the quark sector of
fundamental particle interactions. While B violation, the
first of the well-known Sakharov conditions [5] for the
generation of the asymmetry, may well be realized at high
temperatures in the early Universe [6], the second condition
of CP violation [7] requires a mechanism beyond the
Kobayashi-Maskawa complex phase [8] of the Standard
Model (SM). Similarly, the third Sakharov condition of
departure from thermal equilibrium may require extending
the physics of the Standard Model. The latter allows
nonequilibrium processes to occur at the electroweak phase
transition [9,10], but these may not be sufficiently first
order and thus, unable to generate the requisite asymmetry
[11]. It is thus fair to say that while several interesting
theories have been proposed to explain the dynamical
generation of this asymmetry, the actual mechanism by
which this occurs in nature remains to be established.
Baryogenesis is a class of mechanisms that attempt to

explain the asymmetry by postulating its dynamic generation
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in the early Universe, during the period between the
end of cosmological inflation and reheating, and
prior to the onset of nucleosynthesis, via interactions of
particles and antiparticles asymmetric in their rates (see
Refs. [12–14] for detailed reviews). Examples of mecha-
nisms which have been proposed include (a) GUT baryo-
genesis models [15–24], (b) electroweak baryogenesis
[10,12,13], (c) the Affleck-Dine mechanism [25], and
(d) spontaneous baryogenesis [26,27]. In recent times,
however, much attention has been focussed on achieving
baryogenesis via leptogenesis [28]. This involves the initial
generation of an asymmetry in the lepton-antilepton con-
tent of the Universe and its subsequent conversion to
baryon asymmetry by means of sphaleron interactions that
violate baryon (B) and lepton (L) numbers simultaneously,
while conserving B − L (see Refs. [29–35] for reviews on
the subject).
Our work focuses on the constraints that are imposed on

models of baryogenesis (including baryogenesis via lepto-
genesis) by the fundamental invariances of CPT and
unitarity in quantum field theories.
The general consequences of CPT invariance and

unitarity of the S matrix in the context of the generation
of baryon asymmetry in GUT models have been explored
in the past [23,36]. In particular, as first pointed out by
Nanopoulos and Weinberg [23], while calculating the CP
asymmetry generated in B violating heavy particle decays,
the leading contribution to the asymmetry involves proc-
esses which are to the third order or higher in the B
violating coupling αB. Thus, the (amplitude-level) contri-
bution of graphs to the first order in B/L (i.e., B or L)
violation (and to all orders in B/L conserving interactions)
vanishes as a consequence of CPT invariance and unitarity
of the S matrix in the theory. Henceforth, we shall refer
to this result as the Nanopoulos-Weinberg theorem. Its
importance lies in it being a general result that applies to
any particle physics model that attempts to dynamically
generate the baryon asymmetry and the requisite CP
violation with interaction vertices that break B or L. The
most significant application has been to nonequilibrium
decays of heavy particles which constitute the spectrum of
theories beyond the Standard Model.
Although widely applicable, the Nanopoulos-Weinberg

theorem was formulated in the context of massive gauge
boson decays associated with GUTs. An important input in
proving this theorem was that, in the models considered in
Ref. [23], all decay modes of these heavy bosons were
B violating. Such an assumption is, of course, completely
justified when formulating a minimal model satisfying the
requirements for GUT-based baryogenesis. However, we
note that in the present context of efforts to carry physics
beyond the Standard Model, a wide range of possible
models with varying particle content which can provide the
seeds for B/L generation have been studied in the literature.
In this wider framework, the heavy particle which leads to a

CP asymmetry by its decay may have access to decay
modes which conserve B (or L) in addition to those which
violate it. Our work pertains to such cases, and points out a
facet of the theorem which may guide the building of
baryogenesis and leptogenesis models which have not
received adequate attention so far.
In what follows, we revisit the impact of CPT and

unitarity on asymmetry generating interactions by looking
at the S matrix order by order in B/L violating couplings,
and determine the leading order in these couplings at which
the net CP violation generated is nonzero. Specifically, we
study the generic scenarios where the parent particle has
access to (a) only B/L violating decay modes and (b) both
B/L conserving and violating ones. The essential upshot
of our considerations is that in models where a consistent
and natural scheme of B/L number assignment leads to
the presence of both B/L violating and conserving decay
modes of a heavy particle, the net CP violation to Oðα2

B
Þ

(calculated with graphs to only first order in B/L violation)
is nonzero. We emphasize that our result is in no way
contradictory to the Nanopoulos-Weinberg theorem, but
rather a useful reanalysis and extension, which might be
helpful while considering the building of various models to
achieve baryogenesis and leptogenesis.
This paper is organized as follows: in Sec. II, we review

the constraints imposed by CPT invariance and unitarity
of the S matrix on the possible generation of CP violation
in the decays of heavy particles. In Sec. III, we find
expressions for the B/L asymmetries generated in different
schemes of B/L assignment for the decaying particle and
demonstrate their equivalence. We also explore the conse-
quences of the reformulation of the Nanopoulos-Weinberg
theorem by constructing an example model of leptogenesis
in the same section. The last section contains our conclusions.

II. CP VIOLATION IN HEAVY PARTICLE DECAY

A. General implications of CPT invariance
and S-matrix unitarity

We first briefly review the general implications of CPT
conservation and unitarity of the S matrix for various
interactions [23,36].
Let us assume that the initial state of a system repre-

sented by i (which represents all the quantum numbers of
the system at this state) proceeds via interactions to a final
state f. The probability of a transition to a state f from the
state i is given by jSfij2, where

Sfi ¼ hf∣S∣ii ð3Þ
is the so-called S-matrix element. This S matrix can be
decomposed as follows:

Sfi ¼ δfi þ ιTfi; ð4Þ
where Tfi represents the fith element of the T matrix,
which represents the probability amplitude of transition of a
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system in the initial state i to a distinct final state f, i.e.,
without transitioning to itself. The S matrix must be unitary,

SS† ¼ 1 ¼ S†S: ð5Þ

Written out in terms of the elements after inserting a
complete set of states wherever necessary, this gives

X
f

jSfij2 ¼ 1; and ð6aÞ

X
f

jSifj2 ¼ 1: ð6bÞ

Equivalently, in terms of the T matrix, this can be
expressed as

X
n

T�
niTnf ¼ −ιðTif − T�

fiÞ; ð7aÞ

which implies, for i ¼ f,

X
n

jTnij2 ¼ 2ℑðTiiÞ; ð7bÞ

where, in going from Eq. (7a) to (7b) we have denoted the
imaginary part of the complex quantity Tif by ℑðTifÞ. It is
easy to show, along the same lines but starting from
Eq. (6b) instead of (6a), that, also,

X
n

jTinj2 ¼ 2ℑðTiiÞ: ð8Þ

Further, conservation ofCPT ensures that the probability
of transition of an initial state i to a final state f is
equivalent to that of the transition of the corresponding
CP conjugate states f̄ to ī:

Tfi ¼ Tī f̄: ð9Þ

The consequence of unitarity as expressed in Eqs. (7)
and (8), along with CPT invariance, ensures that

X
f̄

jTf̄ īj2 ¼
X
f

jTfij2: ð10Þ

Therefore, the probability of a system in a state i tran-
sitioning to all possible final states f is identical to the
probability of the system in the CP conjugate state ī
transitioning to all possible final states f̄. This is an
important consequence of CPT conservation and unitarity
and it tells us, among other things, that the total decay
width of a particle and its CP conjugate (antiparticle) are
necessarily identical.
CP violating amplitudes and unitarity. As opposed to

constraints on sums over all final states, as considered

above, we now pose the question: what constraint does
unitarity impose on individual CP violating amplitudes?
If the particular interaction that generates the transition
amplitude Tfi is CP nonconserving, then the difference
between the probabilities of the CP conjugate processes
i → f and ī → f̄, or equivalently between i → f and f → i,
is finite and nonzero. Indeed, using Eq. (7b) in the form

Tif ¼ ι
X
n

TinT�
fn þ T�

fi; ð11Þ

it is straightforward to obtain an expression for the differ-
ence in the probabilities for the CP conjugate interactions

jTf̄ īj2 − jTfij2 ¼ jTifj2 − jTfij2

¼ −2ℑ
�X

n

ðTinT�
fnÞTfi

�

þ
����
X
n

TinT�
fn

����
2

: ð12Þ

This equation implies that CP violating differences are
generated by the interference of tree and loop graphs, where
the intermediate states in the loop are on shell [36], leading
to a nonzero imaginary part in the amplitude.
At this juncture, it is appropriate to recall the result of the

Nanopoulos-Weinberg theorem, which examined the net
baryon excess ΔB produced in the decays of superheavy X
bosons and their antiparticles. The conclusion derived there
[23] was that graphs to first order in B violating interactions
but to arbitrary order in baryon conserving interactions
make no contribution to a net ΔB. In particular, it was
shown that when decay amplitudes are calculated using
graphs to first order in B violating interactions, CPT
invariance requires that the decay rate for a particle X into
all final states with a given baryon number B equal the rate
for the corresponding decay of the antiparticle X̄ into all
states with baryon number −B. Therefore, this theorem
indicates that one must consider graphs to at least second
order in B violating interactions.
We note, however, that in this paper the authors

considered models where the superheavy boson giving
nonzero contribution to the net baryon asymmetry had only
B violating decay modes. This assumption was incorpo-
rated in the proof of this theorem by demanding that in the
absence of B violating interactions, the wave function of X,
ψX is a one-particle state. As noted in the Introduction, over
the past two decades, many classes of models for baryo-
genesis (and leptogenesis) have appeared in the literature,
with particle spectra involving not just heavy GUT scale
gauge bosons, but also beyond Standard Model (BSM)
scalars and Majorana fermions, with B/L and CP violating
interactions. It is thus reasonable and relevant to relax this
particular assumption in the wider context of BSM models
and their particle content. By introducing decay modes
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which are not always B/L violating, it is expected that
the result in [23] will be modified when subjected to the
same constraints of CPT and unitarity. It is the study of this
modification and its consequences for present day B/L
violating models which is the main objective of this paper.
In Sec. III, to begin with we shall implement this

assumption at the S-matrix level by demanding that in
the case where the heavy boson X decays only via B
violating interactions, the S-matrix elements ðS0ÞfX ¼ δfX,
where S0 denotes the part of the S matrix which contains
only B conserving interactions. Expanding the S-matrix
order by order in B violating couplings αB, we then show
that the net CP violation generated is zero toOðα2

B
Þ, which

of course, is tantamount to rederiving the result in [23]
(case 1 in Sec. III below). Next, we relax the assumption
and examine the consequences (case 2, Sec. III).

III. SYSTEMATIC EXPANSION OF THE SMATRIX
IN B/L VIOLATING COUPLINGS

We first split the S matrix into two parts,

S ¼ S0 þ ι ~T; ð13Þ

where S0 includes the identity element of the total S matrix
and also processes represented by graphs with only B
conserving interactions. ~T contains processes described by
graphs with B violating interactions to first order or higher
and B conserving interactions to all orders. Using this
expansion in Eq. (5) we arrive at the following relation
between S0 and ~T:

~T ¼ S0 ~T
†S0 þ ιS0 ~T

† ~T ¼ S0 ~T
†S: ð14Þ

In terms of the elements of the S and T matrices, we
therefore see that

~TXf ¼
X
i;j

ðS0ÞXið ~T†ÞijSjf: ð15Þ

From Eq. (15) we get

j ~TXfj2 ¼
X
i;j;k;m

ðS0ÞXi ~T�
jiSjfðS0Þ�Xk ~TmkS�mf: ð16Þ

Denoting all B violating coupling constants by αB, we
expand the quantity ~T in a perturbation series in this
coupling constant,

~T ¼ αB
~T1 þ α2

B
~T2 þ � � � ; ð17Þ

where the quantities ~T1 and ~T2 themselves do not contain
any factors of the B violating coupling constant αB. Thus,

S ¼ S0 þ ιðαB ~T1 þ α2
B
~T2Þ þOðα3

B
Þ; ð18aÞ

i.e.,

Sf̄ X̄ ¼ SXf ¼ ðS0ÞXf þ ιðαB ~T1 þ α2
B
~T2ÞXf þOðα3

B
Þ;
ð18bÞ

where in Eq. (18b) we have used CPT conservation, as
usual, to rewrite Sf̄ X̄ as SXf.

A. Case 1: Where the initial particle decays
only by B violating interactions

If the initial particle X and its CP conjugate particle X̄
decay only via B violating interactions, i.e.,

ðS0Þf̄ X̄ ¼ ðS0ÞXf ¼ δXf; ð19Þ

we get, using Eq. (19) in (16),

X
f∈B

j ~TXfj2 ¼
X
f∈B

X
j;m

~T�
jXSjf ~TmXS�mf ð20aÞ

¼
X
f∈B

�
ð ~T�

fX
~TfXÞ − ι

X
m

~T�
fX

~TmX
~T�
mf þ ι

X
m

~T�
mX

~Tmf
~TfX

þ
X
j;m

~T�
jX
~Tjf

~TmX
~T�
mf

�
; ð20bÞ

where
P

f∈B represents the sum over all final states f with a
given baryon number B. In going from Eq. (20a) to (20b),
we have expanded S in accordance with Eq. (13) and
summed over the δαβ as appropriate. We can carry over the
first sum in the rhs of Eq. (20b) to the other side of the
equality, and use CPT as required, to obtain the important
difference in the partial decay widths of the CP conjugate
processes violating baryon numbers by ΔB ¼ B − BðXÞ
and ΔB̄ ¼ −B − BðX̄Þ units, respectively:

X
f̄∈−B

j ~Tf̄ X̄j2 −
X
f∈B

j ~TfXj2

¼
X
f∈B

�
−ι
X
m

~T�
fX

~TmX
~T�
mf

þ ι
X
m

~TfX
~T�
mX

~Tmf þ
X
j;m

~T�
jX
~Tjf

~TmX
~T�
mf

�
: ð21Þ

We now expand ~T order by order in αB according to
Eq. (17) and evaluate this difference. The results of the
calculation to Oðα2

B
Þ and Oðα3

B
Þ are enumerated below.

To Oðα2
B
Þ: It is easy to see that each of the three sums in

the rhs of Eq. (21) gives a contribution that is at least to
Oðα3

B
Þ. Hence, the Oðα2

B
Þ contribution to the lhs is zero.

Since the tree graph must contain one B violating vertex, an
Oðα2

B
Þ contribution to the difference in jTfXj2 can only

come from the interference of such a tree graph with a loop
graph also containing, at most, one B violating vertex.
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Thus, this result is consistent with the results of the
Nanopoulos-Weinberg theorem, and shows that graphs to
the first order in αB do not contribute to the CP violating
difference.
ToOðα3

B
Þ and higher: TheOðα3

B
Þ contribution to the CP

violating difference comes from the first two sums in the
rhs [37] and is given by

X
f̄∈−B

j ~Tf̄ X̄j2 −
X
f∈B

j ~TfXj2

¼ α3
B

X
f∈B

X
m

2ℑðð ~T1Þ�fXð ~T1ÞmXð ~T1Þ�mfÞ

þOðα4
B
Þ: ð22Þ

The leading contribution in αB to the CP violating
difference is, therefore, to the third order and, as is evident
from Eq. (22), comes due to the interference of a tree level

graph with its only vertex being B violating and a loop
graph with two B violating vertices.

B. Case 2: Where the initial particle can decay both
through B conserving and B violating interactions

We now study, in a similar context, the case where the
initial particle X may decay via B conserving and B
violating channels to the final states. This translates, in
terms of S-matrix elements, to the condition

ðS0Þf̄ X̄ ¼ ðS0ÞXf ¼ δXf þ ιðT0ÞXf; ð23Þ

with ðT0ÞXf ≠ 0, and likewise for ðS0ÞfX. We carry out a
similar calculation as in Sec. III A, using Eq. (23) in (16).
We expand

P
f̄∈−Bj ~Tf̄ X̄j2 −

P
f∈Bj ~TfXj2 order by order in

αB and read out the Oðα2
B
Þ terms in the expansion. Thus, to

Oðα2
B
Þ, we find that

X
f̄∈−B

j ~Tf̄ X̄j2 −
X
f∈B

j ~TfXj2 ¼ −ια2
B

X
f∈B

ð ~T1ÞfX
X
m

ððT0ÞXmð ~T1Þ�fm þ ð ~T1Þ�mXðT0ÞmfÞ

þ ια2
B

X
f∈B

ð ~T1Þ�fX
X
m

ððT0Þ�mfð ~T1ÞmX þ ðT0Þ�Xmð ~T1ÞfmÞ: ð24Þ

We would now like to compare the CP violating difference
in case 2 given by Eq. (24) with that found for case 1 given
by Eq. (22). Since, to start with, we have assumed that
ðT0ÞXm ≠ 0, and since T0 contains only B conserving
interactions, we have BðXÞ ¼ BðmÞ. But, as B has to be
finally violated in the decay of X, BðXÞ ≠ BðfÞ. Therefore,
we arrive at the conclusion that BðmÞ ≠ BðfÞ which
implies that ðT0Þmf ¼ 0 ¼ ðT0Þ�mf. Using this result, we
find that

X
f̄∈−B

j ~Tf̄ X̄j2 −
X
f∈B

j ~TfXj2

¼ α2
B

X
f∈B

X
m

2ℑðð ~T1Þ�fXðT0ÞmXð ~T1Þ�mfÞ

þOðα3
B
Þ; ð25Þ

i.e., a nonzero contribution to Oðα2
B
Þ, unlike in Eq. (22),

where we had only obtained nonzero contributions to
Oðα3

B
Þ and higher. Here we have used the approximate

equality of ð ~T1Þ�ij and ð ~T1Þji, since their difference is higher
order in αB and similarly for ðT0Þ�ij and ðT0Þji. Note the
very similar form of Eqs. (22) and (25). The important
difference, however, is that a baryon number violating
vertex in case 1 has been replaced by a baryon number
conserving vertex in case 2, thereby inducing a correspond-
ing change in the transition amplitudes αB

~T1 → T0 in the

respective expressions. Since B/L violating couplings in
almost all models are constrained to be small, this replace-
ment allows for the possibility of generating a higher
degree of CP violation than would perhaps have been
possible with B/L violating decays alone. The example
below demonstrates this explicitly.

IV. A TOY MODEL IN BARYOGENESIS

To illustrate the main idea of this paper (i.e., case 2 in
Sec. III B), we consider a toy model for baryogenesis,
following an example in Kolb and Turner [38]. The model
involves two superheavy bosons X and Y, whose B violating
out-of-equilibrium decays can generate the necessary B and
CP violations. For the following discussion we assign
baryon numbers of X and Y to be BðXÞ ¼ BðYÞ ¼ 0.
The relevant terms in the Lagrangian are given by

L ¼ g0XXf
†
1f1 þ g0YYf

†
1f1 þ g1Xf

†
2f1 þ g2Yf

†
2f1 þ H:c:

ð26Þ
Here, fi (i ¼ 1, 2) denote fermions carrying distinct nonzero
baryon numbers and equal Uð1Þem charges. Both bosons
have zero Uð1Þem charge. In the above Lagrangian, g0X and
g0Y are B conserving real couplings, while g1 and g2 are B
violating and complex. Now, consider the B violating
process

X → f̄1 þ f2; ð27Þ
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where the leading CP violating contribution to the decay
width comes from the interference of the tree and loop
diagrams in Fig. 1. These interference terms in the decays of
X and X̄ are given by

ΓðX → f̄1 þ f2Þ ¼ g1g0Xg�2g0YIXY þ c:c:

ΓðX̄ → f1 þ f̄2Þ ¼ g�1g0Xg2g0YIXY þ c:c:; ð28Þ

where IXY , denoting the loop factor, can have a nonzero
imaginary part when f1 and f2 are lighter than the X boson
and can go on shell inside the loop. The resulting CP
violation in X decays will then be

ϵX ¼ 4g0Xg0Yℑðg1g�2ÞℑðIXYÞ
ΓX

; ð29Þ

which is nonzero in general [here, ΓX ¼ ΓðX → f̄1 þ f2Þþ
ΓðX̄ → f1 þ f̄2Þ]. Similarly, the decays of the Y boson will
lead to a CP violation as well, which is given by

ϵY ¼ 4g0Xg0Yℑðg2g�1ÞℑðI0YXÞ
ΓY

: ð30Þ

As long as the X and Y bosons have different masses,
the total CP asymmetry is nonzero, and the resulting B
asymmetry is as follows:

ΔB ¼ ðB2 − B1Þ × ½4g0Xg0Yℑðg1g�2Þ�

×

�
ℑðIXYÞ
ΓX

−
ℑðI0YXÞ
ΓY

�
: ð31Þ

Thus, as expected from our general arguments in the
previous section, once a heavy particle has both B conserv-
ing and violating modes of decay, we can generate a B
asymmetry which involves graphs of only first order in B
violation, and therefore, the interference term is only second
order in such couplings [in the above example, ΔB is
proportional to ℑðg1g�2Þ�. In the Appendix, we reexpress
the standard Nanopoulos-Weinberg example in terms of our
formulation, where, by considering a boson, X, that does not
have any B conserving decay mode, we verify that the B
asymmetry consequently generated is indeed zero up to
second order in B violation. Therein we also discuss an

example from Kolb and Turner [38], where additional B
violating decay modes of X help generate an asymmetry at
higher orders in B violation.

V. A MODEL IN LOW-SCALE LEPTOGENESIS

After considering the above toy model in baryogenesis
which demonstrates the primary result of our paper in a
very simple example, in this section we give a very brief
sketch of a more realistic model in leptogenesis, inspired by
the work of Kayser and Segre [39]. In particular, our goal
here is to construct an ElectroWeak-Symmetry-Breaking-
scale (EWSB) leptogenesis model utilizing both the idea of
introducing scalar quartic couplings in the loop graphs as in
Ref. [39], as well as having both L conserving and L
violating decay modes as discussed in case 2 in Sec. III B.
We introduce two right-handed Majorana neutrinos N1

and N2 with masses in the electroweak scale such that
MN1

> MN2
. Additionally, we introduce another scalar

doublet, Φ2 (apart from the SM Higgs Φ1); henceforth,
h will represent the SM-like Higgs boson, while Hþ will
represent the charged Higgs boson from the extended
Higgs sector. This leads to the following possible decay
modes for the N1:

N1 → l− þHþ ð32Þ
N1 → N2 þ h: ð33Þ

Consequently, the decay in Eq. (32) will arise out of a
Yukawa-type interaction and the decay in Eq. (33) can arise
from a coupling of the form N1N2S (all of which are SM
gauge singlets) after electroweak symmetry breaking,
whereby the singlet S can mix with the neutral components
of the doublet scalars. Due to the Majorana nature of the
heavy right-handed neutrinos, depending on the L-number
assignment, either the decay in Eq. (32), or its conjugate
process (N1 → lþH−), or both will violate L number,
while the decay in Eq. (33) will always be L conserving
[since LðN1Þ ¼ LðN2Þ].
The final ingredient in our model is a quartic coupling

between the scalar doublets, of the form λðΦ†
1Φ1ÞðΦ†

2Φ2Þ,
which, after EWSB, will give rise to trilinear scalar
couplings. With this understanding, we consider the
diagrams for the process in Eq. (32), as shown in Fig. 2.

FIG. 1. Tree level and one-loop diagrams for the decay X → f̄1 þ f2. Similar diagrams also apply for the decay of the Y boson.
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The coupling notations also follow Fig. 2. The relevant
interference term is given by

ΓðN1 → lþH−Þ ¼ g2g1g�3g4IN1
þ c:c: ð34Þ

Here, the Yukawa couplings g2 and g3 are complex in
general, while g1 and g4 are real. The kinematic loop factor
has been denoted by IN1

. The resulting CP violation is then

ϵN1
¼ 4g1g4ℑðg2g�3ÞℑðIN1

Þ
ΓN1

; ð35Þ

where

ΓN1
¼ ΓðN1 → l−HþÞ þ ΓðN1 → lþH−Þ ∝ jg2j2: ð36Þ

Therefore, with the simplifying assumption that jg2j ∼ jg3j,
we see that the magnitude of the Yukawa coupling actually
cancels out from the CP violation:

ϵN1
≃ 4g1g4δℑðIN1

Þ
ðMN1

=8πÞ ; ð37Þ

where the factor δ ¼ sinðϕ2 − ϕ3Þ comes from the differ-
ence of phases of g2 and g3. We have also used ΓN1

∼
jg2j2MN1

=8π in writing the above expression. Now, let us
estimate the magnitudes of the various terms in Eq. (37):
(1) g1: The N1N2S coupling is dimensionless, and

assumed to be of Oð1Þ. Therefore, g1 is essentially
determined by the mixing of the singlet S with the
neutral components of the Higgs doublets. For
simplicity, we assume that S dominantly mixes with
the SM-like lighter Higgs state recently discovered
at the LHC. In that case, the measurement of the
Higgs properties puts an upper bound on this mixing
sin α < 10−2. Hence, we can safely take g1 ≃ 10−2.

(2) g4: Since g4 arises after EWSB from the Higgs quartic
coupling discussed above, we have g4 ∼ λv sin β,
with v ¼ 246 GeV, and tan β ¼ v1=v2 denotes the
ratio of the vacuum expectation values of the neutral
CP-even components of Φ1 and Φ2, respectively. In
an electroweak scale model for leptogenesis, MN1

is
also of the order of v. And therefore, the factor of

MN1
=8π in the denominator will roughly cancel out

the factor v sin β in the numerator.
(3) ℑðIN1

Þ: This loop factor is found to be

ℑðIN1
Þ ≈ 1

π

MN2

M2
N1

1

1þ ξ2
log

�
1 − ξþ ξ2

ξ

�
; ð38Þ

where ξ ¼ ðMH�=MN1Þ2. Considering the present con-
straints on a charged Higgs boson mass, we can safely
takeMHþ ≃ 300 GeV. This leads to a value for the loop
factor Oð10−3–10−4Þ, for MN2

< MHþ < MN1
, and

MN1
∼ 500 GeV.

(4) δ: This phase factor has a maximum value of 1.
Therefore, for our order of magnitude estimate, we finally
obtain

ϵN1
∼ 10−5λ: ð39Þ

For generating a sufficient lepton asymmetry (which is
converted to the required baryon asymmetry by the
sphaleron processes), one requires ϵN1

¼ Oð10−6Þ. Thus,
we need a quartic coupling of λ ¼ 0.1, which is a likely
value (especially in the light of the recent Higgs mass
measurement, whereby the SM Higgs quartic can be
estimated to be ∼0.13). It is to be noted that the phase
factor δ vanishes if ϕ2 ¼ ϕ3. Hence, the couplings of the
two right-hand neutrino mass eigenstates N1 and N2 to the
charged lepton l should have different phases in order to
obtain a nonzero ϵN1

.
This rather schematic discussion illustrates the feasibility

of having models of electroweak scale leptogenesis where
the amount of CP violation is not directly related to the
neutrino Yukawa couplings, which, in most low energy
(TeV) leptogenesis models, are usually constrained to be
small, but rather to the relatively unconstrained quartic
Higgs couplings in a two Higgs doublet model. A detailed
study of the model is beyond the scope of the present paper,
and we leave it to future work. However, it is important to
emphasize the role played by the L conserving decay
channel here—the absence of such a channel would have
entailed one to look for leptogenesis involving graphs
with higher order L violating couplings within the purview
of this model, possibly requiring two or more loops
and therefore suppressing the generated CP violation
significantly.

FIG. 2. Tree level and one-loop diagrams for the decay N1 → l−Hþ.
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VI. REMARKS AND CONCLUSION

We have expanded the interaction amplitude in a
perturbation series in the B/L violating coupling αB,
in order to show the nontrivial implication of the
Nanopoulos-Weinberg theorem in the case where B/L
assignments are naturally and consistently such that the
initial particle may decay by B/L conserving interactions
in addition to B/L violating interactions. In particular,
it turns out that in such cases, the asymmetry generated
due to B/L violating decays may be augmented by B/L
conserving interactions in the loop graphs, in a way that
deceptively appears contrary to the consequences of
the Nanopoulos-Weinberg theorem. This reinterpretation
of the theorem has significant implications for models of
baryogenesis and leptogenesis by opening up channels
which allow for the generation of CP violation that might
have been earlier ignored with the intention of subscribing
to the theorem’s stringent requirements. Additionally,
the replacement of a B/L violating coupling by a B/L
conserving one, as discussed above, may allow for
enhanced generation of CP violation since the former
is typically constrained by experiment to be small. As is
well known, the generation of “sufficient” CP asymmetry
remains an issue not just in the Standard Model but in
most extensions of it as well. We have illustrated our main
result by constructing a toy model in baryogenesis from
out-of-equilibrium decays of heavy bosons.
In addition to setting up new models for B/L genesis

employing B/L conserving channels as we have shown, it
might be an interesting exercise to reanalyze some currently
proposed models of baryogenesis and leptogenesis in the
light of this interpretation. As an example of this approach,
we have considered a recently proposed model of lepto-
genesis which generates a CP asymmetry only at the two-
loop level. By studying a simple variation of this model
obtained by slightly altering its particle content in a way
which allows B/L conserving decays, we have shown that
it is possible to generate sufficient CP asymmetry at the
one-loop level.
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APPENDIX: EXAMPLES IN BARYOGENESIS TO
DEMONSTRATE THE NANOPOULOS-

WEINBERG THEOREM

Typically, the contribution to baryon asymmetry gen-
erated by the particle X with baryon number BðXÞ ¼ BX
and total decay width ΓX, due to its transition to final states
f with BðfÞ ¼ Bf ≠ BX, is given by

ϵX ¼
X
f

ðBf − BXÞ
ΓðX → fÞ − ΓðX̄ → f̄Þ

ΓX

∝
X
f

ðBf − BXÞ
X
m

ℑðT�
fXTmXT�

mfÞ: ðA1Þ

We consider two examples to illustrate the implications
of the Nanopoulos-Weinberg theorem. First, we consider a
model in which a heavy scalar boson X with baryon
number BX ¼ 0 can decay via a B violating interaction
to a pair of fermions f1 and f2, while another scalar heavy
boson Y can decay only via separate B conserving
interactions to both the fermions. The Lagrangian for the
model is given below:

La ¼ g1Xf
†
2f1 þ g2Yf

†
1f1 þ g3Yf

†
2f2 þ H:c: ðA2Þ

The possible tree and one-loop diagrams for the decay
process X → f̄1f2 are shown in Fig. 3. Both the tree and
one-loop graph have one B violating vertex each (vertex
with coupling constant g1 in both graphs). One can easily
calculate the asymmetry generated, ϵX, in the decay of
X due to the interference of the two graphs and find
that

ΓðX → f̄1f2Þ ¼ jg1j2g2g3ðIXY þ I�XYÞ; and ðA3aÞ

ΓðX̄ → f1f̄2Þ ¼ jg1j2g2g3ðIXY þ I�XYÞ; ðA3bÞ

which means that

ϵX ∝ ΓðX → f̄1f2Þ − ΓðX̄ → f1f̄2Þ ¼ 0: ðA3cÞ
Here, we have represented only the contribution to the
decay width arising due to the interference between a one-
loop graph and a tree graph by Γ. The kinematic factor
arising out of the integral over the loop momentum is
denoted by IXY, which can be complex if the fermions in the
loop are kinematically allowed to go on shell. As a result of
Eq. (A3c), the asymmetry generated due to X decays in this
model, which is proportional to the CP violation, also
becomes zero. This is, clearly, what we expect from the
Nanopoulos-Weinberg theorem, as the only contributions
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to the B violating decay X → f̄1f2 come from processes
represented by graphs to the first order in B violation.
We next consider a model in which both the superheavy

bosons X and Y can decay only via B violating interactions
to fermion pairs. The interaction Lagrangian for this model
is given by

Lb ¼ g1Xf
†
2f1 þ g2Xf

†
4f3 þ g3Yf

†
1f3 þ g4Yf

†
2f4 þ H:c:;

ðA4Þ
where each fermion fi has a different and unique B number
Bi. The baryon asymmetry generated out of the decays of
the superheavy scalars X and Y in this model has been
extensively studied in the literature (see, e.g., [38]). The
graphs at the tree and one-loop levels that contribute to the
decay X → f̄1f2 are shown in Fig. 4; the loop graph in this
case has three B violating vertices.
It is easy to see that the asymmetry generated in this case

is nonzero:

ϵ12X ¼ 4ðB2 − B1ÞℑðIXYÞℑðg�1g2g�3g4Þ
ΓX

; ðA5Þ

where, as usual, IXY denotes a factor arising out of
integration over the loop momentum. One can similarly
see that the asymmetry generated due to the decay X →
f̄3f4 is given by

ϵ34X ¼ 4ðB4 − B3ÞℑðIXYÞℑðg1g�2g3g�4Þ
ΓX

: ðA6Þ

The total asymmetry due to all possible B violating decays
of X is, thus,

ϵX ¼ ϵ34X þ ϵ12X

¼ 4ððB4 − B3Þ − ðB2 − B1ÞÞ
ΓX

× ℑðIXYÞℑðg1g�2g3g�4Þ ≠ 0: ðA7Þ

This is also what is expected from the Nanopoulos-
Weinberg theorem, since the one-loop contribution to the
B violating decays in this case are of the third order in B
violation.

FIG. 4. Tree and one-loop graphs for the decay X → f̄1f2 due to the Lagrangian Lb.

FIG. 3. Tree and one-loop graphs for the decay X → f̄1f2 due to the Lagrangian La.
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