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Transcriptional regulation of intermediate progenitor cell
generation during hippocampal development
Lachlan Harris1, Oressia Zalucki1,2, Ilan Gobius2, Hannah McDonald1, Jason Osinki3, Tracey J. Harvey1,
Alexandra Essebier4, Diana Vidovic1, Ivan Gladwyn-Ng5,6, Thomas H. Burne2,7, Julian I. Heng5,6,
Linda J. Richards1,2, Richard M. Gronostajski3 and Michael Piper1,2,*

ABSTRACT
During forebrain development, radial glia generate neurons through
the production of intermediate progenitor cells (IPCs). The production
of IPCs is a central tenet underlying the generation of the appropriate
number of cortical neurons, but the transcriptional logic underpinning
this process remains poorly defined. Here, we examined IPC
production using mice lacking the transcription factor nuclear factor
I/X (Nfix). We show that Nfix deficiency delays IPC production and
prolongs the neurogenic window, resulting in an increased number of
neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib)
resulted in a severe delay in IPC generation while, conversely,
overexpression of NFIX led to precocious IPC generation.
Mechanistically, analyses of microarray and ChIP-seq datasets,
coupled with the investigation of spindle orientation during radial glial
cell division, revealed that NFIX promotes the generation of IPCs via
the transcriptional upregulation of inscuteable (Insc). These data
thereby provide novel insights into the mechanisms controlling the
timely transition of radial glia into IPCs during forebrain development.
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INTRODUCTION
The coordinated proliferation and lineage-specific differentiation of
neural progenitor cells plays an integral role in the formation of the
mammalian cerebral cortex. The primary neural progenitor cells that
generate the neurons of this structure are the radial glia, which
develop from neuroepithelial cells around embryonic day (E) 10.5
in rodents (Anthony et al., 2004; Mori et al., 2005). Since the large
number of neurons generated during development come from a
relatively small initial population of progenitor cells, the radial glial
cell pool is first amplified by undergoing symmetric proliferative
divisions, also known as self-expanding divisions. Subsequently,
radial glial cells undergo asymmetric divisions to give rise to either a
neuron that migrates directly to the cortical plate (direct

neurogenesis), or, more frequently, an intermediate progenitor cell
(IPC) (indirect neurogenesis) (Götz and Huttner, 2005; Huttner and
Kosodo, 2005). IPCs are morphologically different from radial glia
in that they are delaminated from the adherens junctional belt at the
ventricular surface of the brain (Noctor et al., 2004). The majority of
cortical neurons arise through the production, expansion and
differentiation of IPCs (Haubensak et al., 2004; Sessa et al., 2008).

The timely generation of IPCs is required for normal neuron
number in the postnatal brain. Despite the importance of IPCs, our
understanding of the mechanism by which asymmetric division of
radial glia is coordinated to ensure timely IPC production is limited.
In the classical model of neural stem cell division, inferred largely
from work in Drosophila melanogaster, large changes in spindle
orientation result in the asymmetric inheritance of the apical
membrane into one daughter cell and an asymmetric cell fate
(Knoblich, 2008). However, the vast majority of radial glial cell
cleavage planes in the mammalian telencephalon are perpendicular
to the ventricular surface, and deviate only slightly from this angle.
As a result, the apical membrane typically segregates into both
daughter cells (Konno et al., 2008; Asami et al., 2011; Shitamukai
et al., 2011). Therefore, it is unlikely that unequal segregation of the
apical membrane accounts for IPC- and neuron-generating divisions
in the mammalian cortex. Rather, one proposed model is that small
fluctuations in cleavage plane orientation (reviewed by Matsuzaki
and Shitamukai, 2015) lead to changes in cell volume and
intracellular organelle inheritance to promote IPC production
(Wang et al., 2009).

The argument that small fluctuations in spindle orientation
promote IPC production largely comes from loss- and gain-of-
function studies of the mammalian homolog of theD. melanogaster
adaptor protein Inscuteable (INSC) (Konno et al., 2008; Postiglione
et al., 2011; Petros et al., 2015). INSC regulates the spindle
orientation of radial glia and IPC production in a gene dose-
dependent manner, whereby loss of Insc reduces oblique divisions
and IPC number, whereas high levels of Insc expression increase
oblique divisions and IPC number (Postiglione et al., 2011; Petros
et al., 2015). Currently, it remains unclear whether INSC-dependent
spindle orientation directly regulates IPC production or whether
another INSC-dependent mechanism might regulate the
development of IPCs. However, a pivotal question that arises
from these data is how Insc expression itself is regulated during
cortical development to facilitate IPC development.

Transcription factors of the Nuclear factor one (Nfi) family
(Nfia, Nfib, Nfix) play a crucial role in astrogliogenesis. Mice
lacking Nfix exhibit markedly reduced numbers of astrocytes
throughout the embryonic cerebral cortex and cerebellum (Piper
et al., 2011; Heng et al., 2014). In addition to promoting astrocyte
lineage progression, individual Nfi knockout mice also exhibit
elevated numbers of progenitor cells and delayed expression ofReceived 9 June 2016; Accepted 28 October 2016
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neuronal markers within the ammonic neuroepithelium of the
presumptive hippocampus during embryonic development (Piper
et al., 2010, 2014; Heng et al., 2014). From these findings we
posited that NFIs could play a previously unrecognized role in the
production of IPCs. Here, we use the ammonic neuroepithelium of
mice lacking Nfix and Nfib as a model to investigate this
hypothesis. We demonstrate that NFIs are autonomously
required by radial glia for timely IPC production, and that NFIs
directly activate the expression of Insc, providing novel insight
into the cellular processes governing the transition of radial glial
cells to IPCs during hippocampal development.

RESULTS
NFIX is expressedby radial glia and IPCsduring hippocampal
development
To investigate whether NFIX promotes indirect neurogenesis and
IPC production during the development of the cerebral cortex, we
focused predominantly on the ammonic neuroepithelium of the
hippocampus. This region was chosen for two reasons; first, NFIX
expression within the ventricular zone (VZ) and subventricular zone
(SVZ) of the cerebral cortex exhibits a gradient, such that expression
is highest in the caudomedial cortex, particularly within the
presumptive hippocampal primordium (Fig. 1A,B); second,
newly generated neurons from the ammonic neuroepithelium
(predominantly pyramidal neurons) migrate only a short distance
radially before settling in the cornu ammonis (CA) region (Altman
and Bayer, 1990), rendering it a simpler model of development than
the six-layered neocortex.
Previous studies have demonstrated that neural progenitor cells

in the hippocampal neuroepithelium express NFIX during
development from at least E13.5 onwards (Heng et al., 2014);
however, the cell type-specific identity of these cells has not been
established. The transition of radial glia to IPCs during development
is demarcated by the sequential expression of PAX6 then TBR2

(EOMES) (Englund et al., 2005). We classified radial glia as PAX6+

TBR2– rather than using PAX6 expression alone as a marker for
these cells, thereby excluding newborn radial glia-derived IPCs that
also express low to moderate levels of PAX6 (Arai et al., 2011).
Co-immunofluorescence at E14.5 (Fig. 1C) revealed that radial glia
express NFIX (209/209 cells), as did the vast majority of IPCs
(TBR2+ nuclei; 208/209 cells). Moreover, the expression of NFIX
was maintained in radial glia and IPCs throughout the stages of the
cell cycle, including mitosis (Fig. S1). This same expression pattern
was also observed at E13.5 and E15.5 (Fig. S1).

Delayed IPC development in Nfix−/− mice
We have previously reported elevated numbers of PAX6+ cells
(indicative of increased numbers of radial glial cells) and delayed
neuronal differentiation in the hippocampus of Nfix−/− mice at
E16.5 (Heng et al., 2014). It remained unclear, however, when these
developmental defects first become apparent and which stage of the
lineage transition from a stem cell to a mature neuron is affected in
these mice. Using PAX6 and TBR2 colabeling, we investigated how
the numbers of radial glial cells in the ammonic neuroepithelium of
Nfix−/−mice change from the onset of hippocampal neurogenesis at
E13.5 to the peak of neurogenesis at E15.5. Relative to controls, we
found significantly more radial glia (PAX6+ TBR2–) inNfix−/−mice
at E13.5, E14.5 and E15.5 (Fig. 2A-E). Moreover, the magnitude of
the change was smallest at E13.5 (P=0.022) and progressively
increased at E14.5 (P=0.0096) and E15.5 (P=0.014), from which
we infer that the lack of Nfix culminates in an ongoing (rather than a
temporally restricted) delay in the transition of radial glia into IPCs.
In support of this, we found fewer IPCs at E13.5 in Nfix−/− mice
than in controls (P=0.00013) (Fig. 2F), demonstrating that radial
glia generate IPCs less efficiently in these mice. By E14.5 and
E15.5, the total number of IPCs in Nfix−/− mice was comparable to
that in wild type (Fig. 2F), probably because the increased size of
the radial glial pool resulted in an increase in the absolute number of
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Fig. 1. NFIX is expressed in
hippocampal radial glia and IPCs.
(A,B) NFIX immunohistochemistry at
E13.5 in the mouse telencephalon.
(A′,B′,A″,B″) Higher magnification of the
boxed regions in A,B, with dashed lines
demarcating the ventricular zone
(VZ)/subventricular zone (SVZ) and
marginal zone (MZ). (C) NFIX
immunofluorescence within the
presumptive hippocampus at E14.5.
Dashed lines indicate the boundary
between the VZ and SVZ. NFIX
(magenta) colocalizes with both PAX6
(red) and TBR2 (green). NFIX+ radial glia
and IPCs were identified as per the key to
the right. Scale bar in A: A,B, 800 µm;
A′,A″,B′,B″, 80 µm; C, 50 µm.
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IPC-generating divisions. However, measured as a proportion of all
cell types in the VZ/SVZ, the number of IPCs remained reduced at
E15.5 in Nfix−/− mice (data not shown).
Collectively, these data suggest that Nfix-deficient radial glial cells

undergo increased self-expanding divisions and reduced
IPC-generating divisions during early hippocampal development. To
examine this further, we performed birth-dating experiments
by injecting time-mated dams with the DNA analog BrdU at
E13.5 before sacrificing embryos 24 h later, thereby labeling all
proliferating cells (predominantly radial glia) thatwere inS-phase at the
time of injection, as well as their progeny. We found that 24 h later (at
E14.5), therewere substantially fewer IPCs generated by BrdU-labeled
radial glia in Nfix−/− mice than in controls (Fig. 2G; P=0.0001).
The impaired IPC development observed in Nfix−/− mice could

potentially occur as a result of increased direct neurogenesis from
radial glia, similar to that observed inElp3 conditional knockout mice
(Laguesse et al., 2015). To determine whether this was the case we
performed a 48 h BrdU chase experiment (labeling with BrdU from
E13.5). Therewere significantly fewer BrdU+ cells that had exited the
cell cycle (BrdU+ Ki67–) in mutant mice relative to controls at E15.5
(P=0.00016; Fig. 2H-J). This argues that the impaired IPC
development in Nfix−/− mice is not offset by an increase in direct
neurogenesis. Indeed, a significantly greater number of BrdU+ cells
remained as PAX6+ TBR2− radial glia at E15.5 (P=2.2×10−5). These
data, coupled with the expansion of the radial glial population from
E13.5-E15.5, support the hypothesis that Nfix-deficient radial glia
undergo more self-expanding divisions at the expense of IPC
development during this stage of hippocampal development.

Nfix-deficient radial glia have a longer S-phase
We next posited that Nfix-deficient radial glial cells should display
cellular characteristics associated with fewer IPC-generating
divisions. Interestingly, a recent study revealed that radial glia
committed to neurogenic divisions have a shorter S-phase (1.8 h)
than radial glia during self-expanding divisions (8 h) (Arai et al.,
2011). To further assess if NFIX promotes IPC production, we
measured S-phase duration as a proxy for the frequency of neurogenic
divisions. We hypothesized that the population of Nfix-deficient
radial glia would exhibit a longer average S-phase due to the
reduction in neurogenic divisions. To test this, we performed
consecutive injections of the S-phase markers EdU and BrdU at
E14.5 to determine the relative rate of progression through S-phase, as
well as cell cycle duration (see Materials and Methods, Fig. 3A-C)
(Martynoga et al., 2005).We identified radial glia as TBR2− nuclei in
the VZ, defined as the region apical to the thick band of TBR2+ cells
(Fig. 3C). Consistent with our hypothesis, Nfix−/− radial glia had a
significantly longer S-phase than wild-type radial glia (P=0.025;
Fig. 3D). Total cell cycle duration in Nfix−/− radial glia was not
significantly different (P=0.051; Fig. 3E), nor was G1/G2/M phase
length (P=0.11; Fig. 3F). Thus, the increased S-phase duration
further indicates that Nfix−/− radial glia undergo proportionally fewer
IPC-generating divisions during the period of peak neurogenesis.

Overexpression of NFIX in vivo promotes IPC and neuron
generation
If loss of NFIX impairs IPC generation, then NFIX overexpression
should result in an increased rate of IPC and neuronal
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Fig. 2. Increased numbers of radial
glia and delayed IPC generation in
the hippocampus of Nfix−/− mice
from E13.5-E15.5. (A-D) DAPI
staining (white) in wild-type and
Nfix−/− mice at E13.5 and E15.5.
(A′-D′) Higher magnification of the
boxed regions in A-D, showing DAPI
(white), PAX6 (red) and TBR2 (green)
staining, with dashed lines
demarcating the VZ/SVZ. (E,F) Cell
counts of (E) radial glia and (F) IPCs
from E13.5-E15.5 in wild-type and
Nfix−/− mice. Mean±s.e.m. of seven,
eight and five embryos at E13.5,
E14.5 and E15.5, respectively.
*P<0.05, **P<0.01, ***P<0.001,
ANOVA. (G) Cell counts of the
proportion of total BrdU+ cells
expressing TBR2 in wild-type and
Nfix−/− mice at E14.5 following a BrdU
chase at E13.5. Mean±s.e.m. of five
embryos. ***P<0.001, t-test.
(H,I) DAPI (white), BrdU (red) and
Ki67 (green) staining in wild-type and
Nfix−/− mice at E15.5 following a BrdU
chase at E13.5. (J) Cell counts reveal
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PAX6+ TBR2– or Ki67– in wild-type
and Nfix−/− mice. Mean±s.e.m. of five
embryos ***P<0.001, ANOVA. Scale
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differentiation. To investigate this, we used in utero electroporation
to overexpress an HA-tagged mouse NFIX construct containing a
bicistronic GFP reporter (NFIX pCAGIG) (Heng et al., 2014) or
vector-only control (pCAGIG) in the presumptive hippocampus of
wild-type CD1 mice at E12.5 (Fig. 4A,B). At E14.5 we found that
NFIX overexpression led to a significantly higher percentage of

electroporated cells becoming IPCs (P=0.037) and neurons
(P=0.016), while fewer cells remained as radial glia
(P=1.8×10−5), as compared with electroporated cells in the
control condition (Fig. 4C-E). Importantly, co-staining for the
neuronal marker TBR1 revealed that all neurons were located basal
to the band of TBR2+ cells, demonstrating that NFIX
overexpression did not induce gross neuronal migration errors
(data not shown). Together, these data are supportive of a role for
NFIX in promoting the commitment of radial glia into IPCs.

Loss of four Nfi alleles results in a more severe IPC
phenotype
We have thus far demonstrated that Nfix-deficient radial glia
generate IPCs with reduced efficiency. Despite this, Nfix−/− mice
lack the gross morphological abnormalities often associated with
mouse models in which radial glial populations are expanded and
there is decreased neurogenesis (Chenn and Walsh, 2002; Farkas
et al., 2008). For example, these phenotypes are usually associated
with increased tangential length of the cortex and reduced radial
thickness. We therefore questioned whether the loss of additional
Nfi alleles would result in a more severe phenotype. We removed
four Nfi alleles by generating conditional floxedNfix andNfibmice,
which were then crossed to a mouse line expressing a tamoxifen-
activated form of Cre recombinase under the control of the
ubiquitous Rosa26 promoter. Time-mated dams were then
injected with tamoxifen (two sequential injections, at E10.5 and
the other at E11.5) to delete Nfix and Nfib, and embryos were
analyzed at E15.5. We found that Cre-expressing Nfixfl/fl; Nfibfl/fl

(hereafter Nfixfl/fl; Nfibfl/fl; cre) embryos were almost entirely devoid
of NFIX and NFIB immunoreactivity (Fig. 5H,I), whereas cre-
negative animals retained NFIX and NFIB expression (Fig. 5E,F).
In Nfixfl/fl; Nfibfl/fl; cre animals, the tangential length to radial width
ratio of the presumptive hippocampus was markedly increased
(251%) compared with control animals (P<0.0001), as was that of
the neocortex (P=0.025) (Fig. 5A-C). The length/width ratio of the
Nfixfl/fl; Nfibfl/fl; cre hippocampus was also significantly larger than
in Nfix−/− mice (P=0.0008), suggestive of a more severe phenotype
than in Nfix−/− animals (Fig. 5C). Furthermore, cellular analysis
revealed that, compared with controls, Nfixfl/fl; Nfibfl/fl; cre animals
had a greater increase in radial glial cell number (PAX6+ TBR2−;
P=0.0006; Fig. 5D) than Nfix−/−mice (Fig. 2E) at E15.5. Moreover,
Nfixfl/fl; Nfibfl/fl; cre animals had a 50% reduction in IPC number at
E15.5 (P=0.0002; Fig. 5D), whereas in Nfix−/− mice the IPC
number did not differ significantly from that of wild type at this
age (Fig. 2F). Together, these data demonstrate that the loss of
additional Nfi alleles results in morphological and cellular
phenotypes associated with reduced IPC production.

During development, the cell-cell interactions between different
progenitor populations is important for regulating the balance
between the self-expansion of radial glia or their commitment to IPC
and neuronal differentiation (Namihira et al., 2009). Owing to the
ubiquitous expression of NFIs by radial glia during cortical
development, it is possible that NFIs promote the generation of
IPCs by regulating the expression of extrinsic signaling molecules
that affect the fate of neighboring radial glial cells (non-cell-
autonomous effect), rather than the host cell itself (cell-autonomous
effect). Distinguishing between these scenarios could provide
important insight into the mechanisms through which NFIs drive the
generation of IPCs from radial glia. To analyze these possibilities,
we took advantage of the different DNA recombination efficiencies
of the floxed Nfix and Nfib alleles (Fig. S2). The reduced
recombination efficiency of the Nfib floxed allele resulted in a
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stochastic effect whereby, in random areas of the cortex, both Nfix
alleles had recombined after administration of tamoxifen whereas
both Nfib alleles had not. The result was that, at E15.5, Nfixfl/fl;
Nfibfl/fl; cre cortices were sparsely patterned with NFIX– NFIB+

clones (Fig. 5E-K). We took advantage of this serendipitous
occurrence to determine whether NFIs were cell-autonomously
required by radial glia for IPC development. Were this the case, then
NFIX– NFIB+ clones should show increased numbers of IPCs
compared with the cells surrounding the clone. Conversely, a non-
cell-autonomous requirement for NFI would predict that the number
of IPCs within NFIX– NFIB+ clones would be similar to that in the
surrounding cells. We stained Nfixfl/fl; Nfibfl/fl; cre hippocampi for
NFIB, NFIX and TBR2, and analyzed the proportion of cells within
NFIX– NFIB+ clones that were IPCs (TBR2+). Within these NFIX–

NFIB+ clones there was a greater proportion of IPCs compared with

immediately adjacent NFIX– NFIB– regions (P=0.0029; Fig. 5J-L).
These data, together with our results from overexpressing NFIX
through in utero electroporation (Fig. 4), support a model in which
NFIs are autonomously required by radial glia for normal IPC
development.

Insc is a target for transcriptional activation by NFIs during
hippocampal development
What are the transcriptional mechanisms through which NFIs
promote IPC production? To address this question, we analyzed
existing microarray datasets that examined alterations in gene
expression within the entire hippocampal primordium of E16.5
Nfix−/− (Heng et al., 2014), Nfib−/− (Piper et al., 2014) and Nfia−/−

(Piper et al., 2010) mice. In these datasets there were 668, 1893 and
1099 misregulated genes relative to wild-type controls, respectively
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(±1.5-fold change, P<0.05). To focus our search, we further filtered
these data using a number of stringent parameters. First, we refined
our analysis to only include genes misregulated in all threemicroarray
datasets. We took this approach because it is likely that NFIs promote
IPC production through a common transcriptional mechanism; this is
supported by previous data highlighting the functional similarity of
NFIs in the development of other cortical phenotypes (Vidovic et al.,
2015), the additive effects of deleting NFIX and NFIB on IPC
development (Fig. 5), and our analysis of the microarray datasets,
which revealed that a highly significant proportion of genes are
commonly misregulated across each of the three datasets (Table S1).
Next, we only included genes with a greater than ±2.5-fold change
(Fig. 6A, Table S2). Finally, we used a recently derived chromatin
immunoprecipitation and sequencing (ChIP-seq) dataset (performed
using a pan-NFI antibody on embryonic stem cell-derived neural
stem cell cultures) to identify which of these remaining genes had a
promoter region bound by an NFI protein (Fig. 6B) (Mateo et al.,
2015). After this final filter, only six candidate genes remained in the
analysis pipeline (Fig. 6C). Crucially, one of these was Gfap, an
established target of NFI transcriptional activation in vitro (Namihira
et al., 2009) and in vivo (Heng et al., 2014), highlighting the
effectiveness of our filters. Ncam1, which regulates neural cell
adhesion andmigration, was alsomisregulated, as were three genes of
unknown function in central nervous system development (Rasd2,
Entpd2, Il16).
Significantly, the final gene in the analysis pipeline was the

mammalian homolog of Drosophila insc. Because Insc promotes
IPC production during mouse cortical development (Postiglione
et al., 2011), we inferred that NFIs might activate Insc expression,
and that the downregulation of Insc in Nfi null mice (Fig. 6C)
contributes to the IPC phenotype observed within these lines.

NFIs activate Insc promoter-driven transcriptional activity
To investigate whether NFIs activate transcription of Insc, we first
validated the microarray results from Nfix−/− E16.5 hippocampi
(Heng et al., 2014). Using qPCR we determined that there was a
∼50% reduction in hippocampal Insc mRNA compared with that in
wild-type littermates at E16.5 (P=0.05; Fig. 6D). Importantly, Insc
was also downregulated in the medial cortex (hippocampal
primordium and medial neocortex) of Nfix−/− mice at E13.5, when
the IPC phenotype of these mice first becomes apparent (P=0.044).
Next, we verified the capacity of NFI proteins to physically bind

to the Insc promoter by performing an in vivo ChIP assay on tissue
isolated from E14.5 forebrains using a pan-NFI antibody. The ChIP
assay revealed enrichment of NFI protein binding at a region in the
Insc promoter that corresponds to both the NFI dyad consensus site
(P=0.05; Fig. 6E) and the NFI ChIP peak detected by Mateo et al.
(2015) in vitro.
Finally, we asked whether NFIs could active Insc promoter-

driven transcriptional activity. A region of the Insc promoter, which
included the dyad consensus site, was cloned upstream of the
luciferase gene (Fig. 6F,G). Co-transfection of the Insc luciferase
construct with an NFIX expression plasmid in Neuro2a cells
revealed that NFIX strongly activated Insc promoter-driven
transcriptional activity (P=1.8×10−6; Fig. 6H). Likewise, NFIA
(P=0.0001) and NFIB (P=0.0026) also enhanced Insc promoter-
driven transcriptional activity (Fig. 6H).

NFI-deficient radial glia phenocopy the cleavage plane
defects of Insc knockout mice
If the downregulation of Insc contributes to the impaired generation
of IPCs in Nfix−/− mice, then we would anticipate that the spindle

orientation and cleavage plane deficits seen within Insc conditional
knockout mice (Postiglione et al., 2011) would be recapitulated
within the radial glia of Nfix−/− mice. We assessed cleavage plane
orientation of the dividing progenitor cell relative to the ventricular
surface (Fig. 6I-L). At E14.5 in wild-type mice, 71% of radial glia
divided with a vertical cleavage plane (the angle between the
cleavage plane and the ventricular surface was between 90° and
60°), whereas 23.5% of radial glia divided with an oblique division
plane (between 60° and 30°; Fig. 6M). Consistent with previous
reports (Postiglione et al., 2011; Insolera et al., 2014), mitotic radial
glia with a horizontal cleavage plane (between 30° and 0°) were
rare, occurring in only 4.7% of cells (Fig. 6M). In Nfix−/− mice,
however, the vast majority of radial glia divided with a vertical
cleavage plane (89.9%), and the proportion of oblique divisions was
greatly reduced (10.1%) (Fig. 6N). Moreover, no radial glial cell
was observed to divide with a horizontal cleavage plane in Nfix−/−

mice. Similarly, inNfixfl/fl;Nfibfl/fl; cre radial glia at E15.5, 98.4% of
radial glia divided with vertical cleavage plane, 1.6% with an
oblique cleavage plane, and no cells were observed dividing
horizontally (Fig. 6O). This phenotype is reminiscent of the
cleavage plane phenotype of Insc conditional knockout mice, where
there are substantially fewer oblique divisions, and horizontal
cleavage planes are not seen (Insolera et al., 2014). Thus, the data
support a model whereby downregulation of Insc in NFI-deficient
mice results in fewer oblique divisions in radial glia.

In vivo rescue of IPC number in Nfix−/− radial glia through
INSC overexpression
If NFIX promotes IPC development, in part or wholly through
activating Insc expression, then overexpressing INSC in Nfix−/−

radial glia should help restore IPC generation to wild-type levels. To
test this hypothesis, we used the CRISPR/Cas system to delete Nfix
from radial glia within the ammonic neuroepithelium of embryonic
CD1 wild-type mice. After electroporation at E12.5 with plasmids
encoding Nfix-CAS9 and pCAGIG (knockout condition) or
lacZ-CAS9 and pCAGIG (control condition), embryos were
assessed for NFIX expression. In the knockout condition, only
8% of electroporated (GFP+) cells retained NFIX immunoreactivity
compared with 96% in the control (Fig. S3). We then assessed
TBR2 expression, and found proportionally fewer TBR2+ GFP+

cells in the knockout compared with the control condition (P=0.03),
reminiscent of our findings usingNfix−/−mice (Fig. 7A-D). Finally,
for the rescue condition, we co-electroporated the Nfix-CAS9
plasmid with INSC pCAGIG (Fig. S3). In this rescue condition
there was an increased proportion of TBR2+ GFP+ cells compared
with the knockout condition (P=0.023). Moreover, the number of
TBR2+ GFP+ cells in the rescue condition was not significantly
different from that of the control condition (P=0.62) (Fig. 7A-D).
Thus, Insc overexpression in Nfix−/− radial glia was sufficient
to restore IPC numbers to wild-type levels, confirming that
NFIX regulation of INSC contributes to IPC production during
hippocampal development.

A prolonged neurogenic window results in increased neuron
number in the hippocampus and neocortex of P20 Nfix−/−

mice
What effects do the increased self-expanding divisions of radial glia
and the delayed IPC generation have on the late embryonic phenotype
of Nfix−/− mice? We had previously observed that the reduction in
TBR2+ cells in the Nfix−/− hippocampus was not permanent, so that
at E18.5 there were greater numbers of these cells than in wild-type
mice (Heng et al., 2014). This suggested that the expansion of the
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radial glial population in the presumptive hippocampus of Nfix−/−

mice during early development would sustain the pool of radial glia
and prolong the period of neurogenesis, thereby resulting in an overall
greater production of neurons.
We investigated this by immunostaining wild-type mouse

hippocampal sections for PAX6 and TBR2 at E18.5. This
revealed very few radial glia or IPCs in the ammonic
neuroepithelium, signaling the end of hippocampal neurogenesis.
By contrast, in Nfix−/− mice at E18.5 the radial glial (P=2.9×10−5)
and IPC (P=1×10−5) populations were ∼2.5-fold and ∼3.5-fold
larger than in the control, respectively (Fig. 8A-C). We then asked
whether this increase in radial glia and IPC number culminated in
the increased production of CA pyramidal neurons in the postnatal
hippocampus. Counts of the mature neuronal marker NeuN

(Rbfox3) at postnatal day (P) 20 revealed significantly more
neurons within both the CA1 and CA3 regions of the mutant
compared with the controls (P=0.0011; Fig. 8D-F). Moreover, we
tracked the fate of E18.5 progenitor cells by injecting pregnant dams
with BrdU and immunostaining for BrdU and NeuN in Nfix−/− and
wild-type mice at P20. In wild-type mice there were very few
neurons in the P20 CA regions that were born at E18.5 (BrdU+

NeuN+). Remarkably, however, the number of late-born neurons in
Nfix−/− mice was ∼10-fold higher (P=0.0002; Fig. 8D-F), which is
likely to have contributed to the overall greater number of CA
neurons. Additionally, we found a significantly greater number of
S100β+ astrocytes in the stratum oriens of postnatal Nfix−/− mice
(P=0.0107; Fig. S4). Despite the increases in neuron and glial
number in these regions, the overall size of the hippocampus was
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not significantly different in Nfix−/− mice compared with controls,
probably because the dentate gyrus, as previously described (Heng
et al., 2014), is much smaller in these mutant mice.
Given that postnatal Nfix−/− mice have a dorsoventral expansion

of the cingulate cortex and neocortex (Campbell et al., 2008), we
asked whether the increased neuronal generation observed in the
postnatal hippocampus was evident within the broader dorsal
telencephalon, and so may contribute towards this phenotype. At
E18.5 we saw similar phenotypes within the neocortex as in the
hippocampal ammonic neuroepithelium, with increased radial glial
(P=0.031) and IPC (P=0.0002) numbers compared with controls,
although the phenotype was substantially less severe than that
observed in the hippocampus (Fig. S5A-C). BrdU labeling at E18.5
also revealed significantly more late-born neurons (BrdU+ NeuN+)
in the upper layers of the neocortex (P=0.0167; Fig. S5D-F). Thus,
the prolonged neurogenic period of Nfix−/− mice is likely to
contribute to the increased dorsal-ventral size of these regions.
Collectively, these findings highlight the crucial role that NFIX

plays in promoting indirect neurogenesis within the developing
dorsal telencephalon, significantly enhancing our understanding of
the transcriptional mechanism underpinning the development of
this brain region.

DISCUSSION
Studies have begun to reveal the factors that drive the progression
of radial glia into IPCs during development (Farkas et al., 2008;
Sessa et al., 2008; Saffary and Xie, 2011). For example, loss of the
transcription factor PAX6 from radial glia downregulates the
expression of the microtubule-associated protein SPAG5 and, in
turn, radial glia undergo more divisions with oblique cleavage
planes and generate more basal mitoses (Götz et al., 1998; Asami
et al., 2011). However, these basal mitoses retain the hallmarks of
radial glial cells, indicating that PAX6 regulates the delamination
of radial glia progenitors from adherens junction complexes,
but does not regulate other key features of IPC differentiation.
Likewise, HES transcription factors inhibit the neurogenic
divisions of radial glia by repressing proneural genes (Mizutani
et al., 2007; Pierfelice et al., 2011), but it is unclear how this
repression directly affects the maintenance of apical-basal polarity,
cell cycle progression, or other aspects of radial glial cell biology.
In this study, we have uncovered a novel role for members of the
NFI transcription factor family in orchestrating the transition of
radial glia to IPCs. Although NFIs have previously been shown to
be important for astrogliogenesis and stem cell maintenance in the
neocortex and hippocampus, here we reveal that NFIX-mediated
activation of Insc expression promotes the timely generation of
IPCs.
The function of INSC has been extensively studied during

D. melanogaster neurogenesis. INSC acts in D. melanogaster
neuroblasts as an adaptor protein, linking two protein complexes
that assemble at the apical cell cortex to control spindle orientation
(Wodarz et al., 1999; Schaefer et al., 2000). The control of mitotic
spindle orientation by INSC during neuroblast division leads to
unequal inheritance of the cell fate determinants Prospero, Numb
and Brat to the basal daughter cell and results in neuronal
differentiation (Knoblich, 2008). There is a single insc homolog
in mice (Katoh and Katoh, 2003). INSC is expressed at very low
levels within the developing cerebral cortex, which is perhaps why
changes in INSC expression result in only modest fluctuations in
spindle orientation in mice compared with flies. These modest
fluctuations in spindle orientation are, however, correlated with
large increases in IPC number with increased INSC expression, and

vice versa (Postiglione et al., 2011). Despite the clear relationship
between the level of Insc expression and the rate of IPC production
in the mouse cortex, the mechanism through which Insc expression
is regulated within the cortex has, until now, remained unclear.

Althoughwe found that the impaired IPC development and spindle
defects of Nfix-deficient radial glia closely mirror those of Insc
conditional knockout mice during early development (Postiglione
et al., 2011), there are some important differences between these
mutants. One of these differences is that the number of radial glial
cells in Nfix-deficient mice is substantially increased during early
development compared with controls. By contrast, although the radial
glia in Insc conditional knockout mice were quantified using only
PAX6 as a marker (thereby including newborn IPCs that retain PAX6
expression), there were no gross changes in the number of radial glia
in these mice. As a corollary to this, we found that the expansion of
radial glia inNfix−/−mice sustained the pool of radial glia progenitors
into late development, thereby ensuring an overall increase in the
number of neurons in the hippocampal CA1/CA3 neuronal layers and
neocortex, whereas the neocortical neuron number in Insc conditional
knockout mice was reduced (Postiglione et al., 2011). These
differences are likely to be explained by the diverse cohort of genes
that are likely to be under NFI transcriptional control, in addition to
Insc. For example, we have previously shown that NFIs can repress
genes involved in stem cell maintenance during cortical development,
such as Sox9, Ezh2 and Hes1 (Piper et al., 2010, 2014; Heng et al.,
2014). Therefore, although the downregulation of Insc contributes to
the impaired IPC generation in Nfix null mice, the misregulation of
these additional factors probably explains the expansion of the radial
glial pool beyond that observed following loss of Insc alone. NFIX is
likely to have functions in cell types other than radial glia that could
also account for differences between these mouse lines. For example,
NFIX is expressed by IPCs. Does NFIX regulate the differentiation of
IPCs to mature neurons, and if so, does this contribute to the
accumulation of IPCs at E18.5? Future studies using a Tbr2- or
Dcx-driven cre could address this question.

Our data further highlight the pleiotropic roles of NFIs during
forebrain development. How NFI proteins promote the generation
of IPCs by activating Insc promoter-driven transcription, while
repressing genes involved in stem cell maintenance, and also being
crucial in astrocytic lineage progression, is a fascinating and open
question. Future studies aimed at identifying the genome-wide
chromatin binding profile of NFIs in purified populations of neural
stem cells, neurons and glia across developmental timewill lead to a
broader understanding of how these transcription factors fulfil these
functions during development.

MATERIALS AND METHODS
Animal ethics
The work performed in this study conformed to The University of
Queensland’s Animal Welfare Unit Guidelines for Animal Use in Research
(AEC approval numbers QBI/353/13/NHMRC and QBI/355/13/NHMRC/
BREED) and those of the IACUC at Roswell Park Cancer Institute. All
experiments were performed in accordance with the Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes, and were
carried out in accordance with The University of Queensland Institutional
Biosafety Committee.

Animals
Nfix−/− and Nfix+/+ littermates used in this study have been described
previously (Campbell et al., 2008). ConditionalNfix andNfib alleles, each of
which contains loxP sites flanking exon 2 of the respective gene were
generated as described previously (Messina et al., 2010; Hsu et al., 2011).
The conditional lines were then bred together to produce the double
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conditional strain (Nfixfl/fl; Nfibfl/fl), which was subsequently crossed to
Rosa26-CreERT2 mice (#008463, The Jackson Laboratory). The Nfixfl/fl;
Nfibfl/fl; cre nomenclature is used to reflect the fact that theNfib allele did not
recombine as efficiently. Animals of either sex were used.

In utero electroporation
In utero electroporation was performed as previously described (Suarez
et al., 2014), with minor modifications whereby 0.5-1 µl of plasmid DNA
was injected into one lateral ventricle and electroporated caudomedially into
the presumptive hippocampus using 35 V. Plasmid expression constructs
were pCAG IRES GFP (pCAGIG) or NFIX pCAG IRES GFP (NFIX
pCAGIG). For the rescue experiment, gNfix-CAS9, glacZ-CAS9, INSC
pCAGIG and pCAGIG constructs were used. For details of plasmid
construction, see the supplementary Materials and Methods.

Measurement of cleavage plane orientation in Nfix−/− radial glia
To analyze cleavage plane orientation within radial glia, we stained sections
for phospho-histone H3 (PHH3), α-tubulin and with DAPI. Sections were
imaged using a 63× objective on a spinning disk confocal microscope
through a depth of 10 µm (consecutive 1 µm z-steps). Hippocampal radial
glia undergoing mitosis were identified as PHH3-positive cells located at the
ventricular surface of the ammonic neuroepithelium. For each cell three
angle measurements were taken from adjacent z-stacks and averaged.
Because the metaphase plate of radial glia rocks extensively until anaphase
(Haydar et al., 2003; Sanada and Tsai, 2005), only cells that were in
anaphase or telophase were analyzed, as revealed by chromosomal (DAPI
and PHH3 staining) and mitotic spindle arrangement (α-tubulin staining).
We measured cleavage plane orientation by the angle created by the vector
that runs parallel to the ventricular surface and the vector that runs through
the cleavage plane of the dividing cell.

Immunofluorescence and immunohistochemistry
Embryos were immersion fixed at E14.5 or younger in 4%
paraformaldehyde (PFA) or perfused transcardially (E15.5 and older) and
sectioned for immunohistochemistry using the primary and fluorescently
conjugated secondary antibodies described in detail in the supplementary
Materials and Methods.

Nfix−/− mouse hippocampal cell counts
For each section (two sections per animal) cell counts were performed from
two 100 µm sampling fields, spanning the width of the hippocampal
primordium (E13.5-E18.5) or neocortex (E18.5) as described in the
supplementary Materials and Methods.

Nfix−/− mouse birth-dating experiments
BrdU birth-dating experiments were performed using a single low dose (50
mg/kg) or high dose (200 mg/kg) injection. For the low dose, dams were
injected at E13.5 or E18.5 and examined 24 h or 20 days later, respectively.
For the high dose, dams were injected at E13.5 and examined 48 h later. Cell
counts were then performed as described in the supplementaryMaterials and
Methods.

Measurement of cell cycle kinetics in Nfix−/− radial glia
Mean cell cycle (Tc) and S-phase (Ts) durations were determined by a dual-
pulse labeling method whereby EdU (50 mg/kg) and 1 h later BrdU (50 mg/
kg) were injected into pregnant dams, before the animals were sacrificed
1.5 h post EdU injection. Counts of EdU+ and BrdU+ cells were then
performed to determine Tc and Ts as described in the supplementary
Materials and Methods and Fig. S6.

Nfixfl/fl; Nfibfl/fl; Rosa26-CreERT2 tamoxifen treatment and cell
analysis
Animals were injected with 2 mg tamoxifen dissolved in corn oil at E10.5
and E11.5 before being immersion fixed in PFA at E15.5. Cell counts were
performed as in Nfix−/− mice, except for the clonal analysis, where a
minimum of two clones per animal were assessed regardless of their rostral-

caudal or lateral position within the hippocampus. Cellular analysis of these
clones is described in the supplementary Materials and Methods.

Quantitative real-time PCR (qPCR)
The medial cortex (hippocampal primordium and medial neocortex) of
E13.5 embryos or the entire hippocampus of E16.5 embryos was dissected
and snap frozen. After RNA extraction (RNeasy Micro Kit, Qiagen) and
reverse transcription (Superscript III, Invitrogen), qPCR was performed
using SYBR Green (Qiagen) using 500 nM of forward and reverse primers.
Primer sequences and further technical details are provided in the
supplementary Materials and Methods.

Reporter gene assays
DNA was transfected into Neuro2A cells (1×104 cells) in a 96-well plate
using Lipofectamine 2000 (Invitrogen), andCypridina luciferase was added
to each transfection as an internal control. After 24 h, luciferase activity was
measured using a dual-luciferase system (Switchgear Genomics), as
described in the supplementary Materials and Methods.

ChIP-qPCR
A putative ChIP peak within the Insc promoter was identified by analysis of
a published ChIP-seq dataset (supplementary table S3, NFI tab, in Mateo
et al., 2015). E14.5 forebrains were dissociated and fixed in 1%
formaldehyde for 8 minutes. Nuclei were lysed and chromatin sonicated
using the Bioruptor Pico (Diagenode) to 100-500 bp. Immunoprecipitation
was performed with 8 µg goat anti-NFI (sc-30918, Santa Cruz) or 8 µg
goat IgG control (AB-108-C, R&D Systems) antibody coupled to 40 μl
Protein G Dynabeads (10003D, Thermo Fisher Scientific). Enrichment of
NFI at the Insc promoter was calculated relative to the IgG control using the
delta CT method, and normalized to a negative control primer set. For
primer sequences and further details see the supplementary Materials and
Methods.

Statistical analyses
Student’s t-tests were performed when comparing two groups (n>4) or a
Mann-Whitney U-test (n=3). For comparisons of more than two groups,
ANOVA was performed followed by multiple comparisons analysis
(corrected using the Holm-Šídák method) using a pooled estimate of
variance if appropriate (Prism 6.0, GraphPad). See the supplementary
Materials and Methods for further details.
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Supplemental Data 

Microarray 
pairwise 
comparison 

Number of unique 
misregulated genes 
(>1.5 Fold change) 

Number of shared 
misregulated genes 
(>1.5 Fold Change) 

P value 

Nfix–/– and Nfib–/–

E16.5 
hippocampus 

Nfix (430), Nfib 
(1645) 248  P < 1*10-320

Nfix–/– and Nfia–/–

E16.5 
hippocampus 

Nfix (466), Nfia 
(887) 212  P < 1*10-320 

Nfib–/– and Nfia–/–

E16.5 
hippocampus 

Nfib (1162), Nfia 
(431) 731 P < 1*10-320 

Supplementary Table 1: Pairwise comparisons of Nfi–/– hippocampal 

microarrays using hypergeometric tests 

List of unique genes and shared genes  (>1.5 fold change) upon comparing Nfix–/– and 

Nfib–/– microarrays, Nfix–/– and Nfia–/– microarrays, Nfib–/– and Nfia–/– microarrays. 

The P value for each comparison was determined using a hypergeometric test.  
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Gene name Fold change E16.5 
Nfix–/– Hipp 

Fold change E16.5 
Nfib–/– Hipp 

Fold change E16.5 
Nfia–/– Hipp 

Adra2a  -4.054  -3.464  -3.770 
Ca3  -3.028  -6.553  -4.450 
Caln1  -3.833  -2.530  -2.518 
Cpne9  -8.373  -8.293  -7.267 
Entpd2  -4.641  -6.316  -5.740 
Fn1  2.618  3.401  2.833 
Gal  -4.976  -4.996  -5.430 
Gfap  -6.838  -7.294  -17.330 
Grp  -9.031  -8.705  -11.420 
Hey2  2.647  2.933  2.571 
Il16  -2.919  -2.986  -3.087 
Il31ra  2.769  2.646  2.710 
Insc  -2.739  -5.659  -6.452 
Kcnk1  -4.154  -3.053  -3.723 
Ncam1  -2.799  -3.817  -5.102 
Rasd2  -2.940  -6.018  -4.421 
Sphk1  -2.875  -2.552  -2.700 

Supplemental Table 2: Common misregulated genes in Nfi–/– hippocampal 

microarrays, related to Figure 6. 

List of genes misregulated >2.5 fold change (p <0.05) in all three E16.5 hippocampal 

datasets: Nfix–/– (Heng et al., 2014), Nfib–/– (Piper et al., 2014) and Nfia–/– (Piper et al., 

2010). 
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Supplementary Figure 1: NFIX is expressed during mitosis, related to Figure 1.  

(A) NFIX immunofluorescence at the level of the hippocampus at E14.5. Dashed 

lines demarcate the ventricular zone (VZ)/subventricular zone (SVZ). NFIX 

(magenta) colocalizes with the mitotic marker PHH3 (green). Red arrowheads 

indicate radial glia undergoing mitosis and green arrows indicate IPCs undergoing 

mitosis. Scale bar (in A): A, 50 µm. Quantification of the percentage of NFIX+  (B) 

apical and basal mitoses, (C) radial glia and (D) IPCs at E14.5. (E) The percentage of 

radial glia and (F) the percentage of IPCs that are proliferating in wild-type and Nfix-/- 

mice from E13.5-E15.5. Graphs depict mean ± SEM of at least 4 embryos. 
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Supplementary Figure 2. Incomplete recombination of Nfibfl/fl allele in Nfixfl/fl; 

Nfibfl/fl; Rosa26creERT2 mice upon tamoxifen administration, related to Figure 5. 

(A) qPCR DNA analysis of Nfibfl/fl recombination efficiency in Nfixfl/fl; Nfibfl/fl; cre 

mice and Nfixfl/fl; Nfibfl/fl controls from lung tissue. Black bars depict percent of allele 

that is not recombined, and white bars depict percentage of allele that is recombined.  

(B) qPCR DNA analysis of Nfixfl/fl recombination efficiency as performed in (A). 
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Supplementary Figure 3. Validation of gNfix-CAS9 and INSC pCAGIG 
constructs 

(A-A”) DAPI (white), GFP (green) and NFIX (magenta) in E15.5 CD1 wild-type 

mice electroporated at E12.5 with gNfix-CAS9 and pCAGIG constructs. Arrows 

indicate electroporated cells that are negative for NFIX. (B) Cell counts of the 

proportion of electroporated cells expressing NFIX in the control condition (glacZ-

CAS9 and pCAGIG) and knockout condition (gNfix-CAS9 and pCAGIG). (C) DAPI 

(white), GFP (green) and INSC (red) in Neuro2A cells transfected with INSC 

pCAGIG and analysed 48h later. Arrow indicates transfected cell expressing high 

levels of INSC, arrowheads indicate low endogenous levels of INSC in non-

transfected cells (arrowheads). Scale bar (in C”): A 18.5µm, B 22µm. 
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Supplementary Figure 4. Increased astrocyte number in the stratum oriens of 

P15 Nfix–/– mice, related to Figure 8. 

(A) and (B) show DAPI (white) and S100ß (red) in wild-type and Nfix-/- hippocampi 

at P15, with the dashed lines demarcating the boundary of ammons horn (CA) 

neuronal layer and the stratum oriens (SO) neuropil. (C) Cell counts of the number of 

S100ß+ astrocytes in the SO layer. Graphs depict mean ± SEM from 4 embryos *p < 

0.05 (t test). Scale bar (in B): A, B 40 µm. 
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Supplementary Figure 5. Prolonged neurogenic window increases neuron 

number in the neocortex of Nfix-/- mice, related to Figure 8 

(A) and (B) show DAPI (white) staining in wild-type and Nfix-/-  neocortices at E18.5. 

The boxed regions in (A) and (B) are shown at a higher magnification in (A’) and 

(B’) respectively, showing DAPI (white), PAX6 (red) and TBR2 (green) expression, 

with the dashed lines demarcating the ventricular zone (VZ)/subventricular zone 

(SVZ) boundary. (C) Radial glia and IPC counts in the E18.5 cortex of wild-type and 

Nfix-/- mice. Graphs depict mean ± SEM of 5 embryos * p < 0.05, *** p < 0.001 (t 

tests). (D) and (E) show DAPI (white) staining in wild-type and Nfix-/-  neocortices at 

P20, with arrows spanning the neocortex from pial surface to the ventricular surface. 

The boxed regions in (D) and (E) are shown at a higher magnification in (D’) and (E’) 

respectively, showing BrdU-positive cells (green), which were birthdated at E18, and 

NeuN staining (magenta), in the upper layers of the cortical plate. (F) Quantification 

of the number of BrdU+NeuN+ layer II/III cells in wild-type and Nfix-/- mice. Graphs 

depict mean ± SEM of 5 embryos * p < 0.05 (t test). Scale bar (in A) A, B 200 µm; 

A’, B’ 50 µm; C, D 375 µm; C’, D’ 62.5 µm. 
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Supplementary Figure 6: Sampling areas for hippocampal cell counts, related to 

Figures 2-4. 

(A-D) Representative rostral and caudal E14.5 coronal sections of Nfix+/+ (A, C) and 

Nfix–/– (B, D) mouse brains stained with DAPI (white). To perform the cell counts 

described in this manuscript, we analysed a rostral and a caudal section for each 

animal at each age investigated. For each section the number of immunopositive cells 

in two equally spaced 100 µm sampling columns spanning the dorsal-ventral width of 

the ammonic neuroepithelium (boxed areas in A-D) were quantified.  

Scale bar (in A): A,B  250 µm, C, D 300 µm.  
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Supplementary Materials and Methods 

Immunofluorescence and immunohistochemistry 

Embryos were immersion-fixed at E14.5 or younger in 4% paraformaldehyde (PFA) 

or perfused transcardially (E15.5 and older) with phosphate-buffered saline (PBS), 

followed by 4% PFA, then post-fixed for 48-72 h before long term storage in PBS at 

4°C. Brains were embedded in noble agar and sectioned in a coronal plane at 50 µm 

using a vibratome (Leica, Deerfield, IL). Sections were mounted on slides before 

heat-mediated antigen retrieval was performed in 10 mM sodium-citrate solution at 

60°C for 20 min (for GFP and TBR2 immunostaining) or 95°C for 15 min (for all 

other co-immunostaining). A standard fluorescence immunohistochemistry protocol 

was then performed. Briefly, sections were covered in a blocking solution for 2 h 

containing 2% normal serum and 0.2% Triton-X-100 made in PBS. The primary 

antibodies were diluted in this blocking solution and incubated with the sections 

overnight at 4°C. The following day the primary antibodies were detected with 

fluorescently conjugated secondary antibodies diluted in block for 2 h. When dual or 

triple labelling was being performed the secondary antibodies used were derived from 

the same species to prevent cross-species reactivity. Sections were then 

counterstained with DAPI (Invitrogen, Carlsbad, CA) and coverslipped using DAKO 

fluorescent mounting media. Chromogenic immunohistochemistry using 3,3’-

diaminobenzidine was performed as above but with a goat anti-rabbit biotin-

conjugated secondary antibody. The reaction was visualised by incubating the 

sections in avidin-biotin complex (ABC elite kit; Vector Laboratories, Burlingame, 

CA) for 1 h, followed by a nickel-DAB solution, and was terminated by washing 

multiple times in phosphate buffered saline when a purple precipitate had formed.  

Primary antibodies 

The primary rabbit species antibodies used were anti-PAX6 (AB2237 1/400, 

Millipore, Billerica, MA), anti-NFIX (AB101341 1/500, Abcam Cambridge, UK), 

anti-NFIB (HPA003956 1/200 Sigma-Aldrich, St Louis, MO) anti-PHH3 (#06-570 

1/200, Millipore), anti-NeuN (EPR12763 1/800, Abcam), anti-TBR2 (ab23345, 

1/800, Abcam), anti-S100ß 647 (ab1961175, 1/400, Abcam) and anti-INSC (gift from 

Juergen Knoblich) (Zigman et al., 2005). The primary mouse species antibodies used 

were anti-BrdU (G3G4 1/100, DHSB, Iowa city, IA), anti-NFIX clone 3D2 
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(SAB1401263 1/400, Sigma-Aldrich), anti-NeuN (MAB377 1/150, Millipore) and 

anti-alpha-tubulin (ab7291 1/400 Sigma-Aldrich). The primary rat species antibodies 

used were anti-Ki67 FITC clone SolA15 (11-5698-80 1/400, San Diego, CA), anti-

EOMES (TBR2) Alexa Fluor® 488 (53-4875-82 1/400, Ebioscience). The primary 

chicken species antibody used was anti-GFP (A10262, 1/500, Thermo Fisher 

Scientific). 

Nfix–/– mouse hippocampal cell counts 

For counts of PAX6+ TBR2– nuclei and TBR2+ nuclei the number of immunopositive 

cells from two 100 µm sampling fields, spanning the width of the hippocampal 

primordium, positioned along the medial to lateral extent of the hippocampal 

ammonic neuroepithelium (E13.5-E18.5) or neocortex (E18.5) were counted. This 

analysis was completed at two different levels along the rostrocaudal axis for each 

brain examined. Fluorescent images were captured using a 20X objective on a Zeiss 

inverted Axio-Observer fitted with a W1 Yokogawa spinning disk module and 

Hamamatsu Flash4.0 sCMOS camera using 3i Slidebook software (Denver, CO). 

Nfix–/– mouse birth-dating experiments 

Two birth-dating experiments were performed with 5-bromo-2’deoxyuridine (BrdU, 

Sigma-Aldrich) in this study. In the first experiment, pregnant dams were injected 

with low-dose (50 mg/kg) or high-dose (200 mg/kg) BrdU at E13.5 and embryos were 

perfused 24 h or 48 h later, respectively. The 200 mg/kg dose, while high, has been 

used in previous studies (Kempermann et al., 1997; Cameron and McKay, 2001; Seib 

et al., 2013) and has been demonstrated to be within the upper range of acceptable 

doses for such experiments (Wojtowicz and Kee, 2006). This dose of BrdU ensured 

the continued labelling of radial glia despite multiple rounds of cellular division 

during this period. The number of BrdU+ cells that labeled as PAX6+ TBR2– or Ki67– 

at E15.5 was calculated as a proportion of the total number of BrdU+ cells. Cell 

counts were performed from two 100 µm sampling fields spanning the width of the 

hippocampal primordium at two different levels along the rostrocaudal axis of the 

ammonic neuroepithelium. Fluorescent sections for this experiment were imaged 

using a 40X objective on a spinning disk confocal microscope. In the second birth-

dating experiment, pregnant dams were injected with a standard dose (50 mg/kg) of 

BrdU at E18.5 and the resulting litter was collected at P20. This dose of BrdU was 

Development 143: doi:10.1242/dev.140681: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



sufficient to label neurons generated at E18.5. The total number of BrdU+NeuN+ cells 

in CA neuronal layers, and layer II/III of the neocortex was then calculated from a 

100 µm sampling field. For the CA counts this was performed on three different 

levels along the rostrocaudal axis of the brain, in both the CA1 and CA3 neuronal 

layer and averaged. The neocortical counts were performed on single section at the 

level of the corpus callosum. Fluorescent sections for this experiment were imaged 

using a 20X objective on a spinning disk confocal microscope. For both birth-dating 

experiments the pattern of BrdU staining depended on the chromatin structure at time 

of fixation, and was pan-nuclear during S-phase or in post-mitotic cells, and punctate 

during G2/M phase, thus BrdU+ cells were scored as any nuclei showing nuclear 

immunoreactivity regardless of the staining pattern.  

Measurement of cell cycle kinetics in Nfix–/– radial glia 

The mean total cell cycle (TC) and synthesis (S) phase duration (TS) of radial glia in 

the ammonic neuroepithelium at E14.5 was determined using a dual-pulse labeling 

protocol modified from the methodology presented by Martynoga and colleagues 

(2005). Briefly, pregnant dams were injected with 50 mg/kg of 5-ethynyl-2’-

deoxyuridine (EdU), followed 1 h later with 50 mg/kg BrdU. At 1.5 h post-EdU 

injection the dam was sacrificed and embryos immersion-fixed in 4% PFA. Sections 

were stained for BrdU, EdU, TBR2 and DAPI. Fluorescent sections were imaged 

using a 40X objective on a spinning disk confocal microscope, and cell counts were 

performed from two 100 µm sampling fields at each of two different levels along the 

rostrocaudal axis per brain (Supp Fig. 6). Radial glia were then identified as TBR2–

nuclei located in the ventricular zone. The pattern of BrdU and EdU staining depends 

on the chromatin structure at time of fixation, and is pan-nuclear during S-phase, and 

punctate during G2/M phase. BrdU+ and EdU+ radial glia were therefore scored as 

any nuclei showing immunoreactivity for these markers regardless of the staining 

pattern. The TS of radial glia is equal to the injection interval of 1 h multiplied by the 

ratio of radial glia that remain in S-phase to the number of radial glia that leave S-

phase prior to BrdU injection, given by the equation TS = 1*(EdU+BrdU+/EdU+BrdU–

). The TC of radial glia is equal to TS divided by the proportion of radial glia that are in 

S-phase, given by the equation Tc = TS/(BrdU+/BrdU–). 

Development 143: doi:10.1242/dev.140681: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Nfixfl/fl; Nfibfl/fl; Rosa26-CreERT2 tamoxifen treatment and cell analysis 

Nfixfl/fl; Nfibfl/fl dams time-mated to Nfixfl/fl; Nfibfl/fl; cre sires were injected with 2 mg 

of tamoxifen dissolved in corn oil (10 mg/ml) at E10.5 and E11.5, and the embryos 

were collected at E15.5 and immersion-fixed in PFA. Quantification and imaging of 

total hippocampal PAX6+ TBR2– nuclei and TBR2+ nuclei was performed from two 

100 µm sampling fields spanning the width of the hippocampus from two different 

levels along the rostrocaudal axis of the ammonic neuroepithelium. Fluorescent 

sections were imaged for this experiment using a 20X objective on a spinning disk 

confocal microscope. For analysis of NFIX–NFIB+ clones in the hippocampus of 

Nfixfl/fl; Nfibfl/fl; cre mice, sections were imaged using a 40X objective, on a spinning 

disk confocal microscope, through a depth of 10 µm (consecutive 1 µm z-steps). The 

z-stack was then flattened and the analysis was performed so that the proportion of 

NFIB+ nuclei expressing TBR2 in the VZ/SVZ was compared to an adjacent region 

where VZ/SVZ nuclei were NFIX– NFIB–. A minimum of two NFIX–NFIB+ clones 

were analyzed per animal.  

Quantitative real-time PCR (qPCR) 

The E13.5 medial cortex (hippocampal primordium and medial neocortex) or entire 

E16.5 hippocampal primordium of Nfix-/- and Nfix+/+ littermates were microdissected 

and snap frozen. RNA was extracted (RNeasy Micro Kit, Qiagen, Valencia, CA) and 

reverse transcription was performed using Superscript III (Invitrogen) with 1 µg of 

total RNA using random hexamers according to manufactures protocol. qPCR was 

performed using SYBR green (Qiagen) and 500 nM of the Insc forward primer (5’ 

CACTTTGCTCCTAGCTTCTGGA 3’) and reverse primers 

(5’CCCAATCTGCAGCAATGCCT 3’). Expression of Insc in Nfix-/- and Nfix+/+ 

littermates is expressed relative to the housekeeping gene Glyceraldehyde-3-

phosphate dehydrogenase (Gapdh), which is presented as proportion of Gapdh 

transcript levels. Each sample at E13.5 (n = 5) and E16.5 (n = 3) was also performed 

in technical triplicate.  

Plasmid construction 

Two CRISPR constructs encoding a single gRNA against the bacterial lacZ gene or 

mouse Nfix gene were used in this study. For the lacZ construct a previously 

published gRNA sequence targeting lacZ (5’TGCGAATACGCCCACGCGATCGG; 
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underlined nucleotides, PAM motif) was used (Platt et al., 2014; Kalebic et al., 2016). 

To design a gRNA against the mouse Nfix gene, we used software from DNA 2.0 to 

generate a gRNA sequence that recognises within exon 2 of Nfix 

(5’TGAGTTCCACCCGTTTATCGAGG). DNA oligonucleotides encoding the lacZ and 

Nfix gRNA sequences (as above but excluding the PAM motif) were then ligated into 

the pD1321-AP plasmid (DNA2.0). In this plasmid the hU6 promoter controls 

expression of the gRNA, and a CAG promoter controls the expression of the CAS9-

2A-PaprikaRFP cassette. For the rescue experiment a construct expressing full-length 

mouse INSC was generated by PCR amplifying the INSC open reading frame from 

IMAGE clone 4211657 into pCAGIG as described elsewhere (Petros et al., 2015). 

Other constructs used in this study were full-length NFIX pCAGIG, NFIB pCAGIG 

and NFIA pCAGIG constructs (Piper et al., 2010; Piper et al., 2011; Piper et al., 

2014). 

Reporter gene assays 

The constructs used in the luciferase assays were NFIX pCAGIG, NFIB pCAGIG and 

NFIA pCAGIG expression constructs, an empty vector control pCAGIG and a 

luciferase construct (1358 base pairs) spanning –1078 base pairs to +279 base pairs 

from the transcriptional start site (TSS) of the mouse Insc promoter (UCSC genome 

browser track uc009jii.2, GRCM38/mm10). DNA was transfected into Neuro2A cells 

(1*104 cells) in a 96 well plate using Lipofectamine 2000 (Invitrogen), and Cypridina 

luciferase was added to each transfection as an internal control. After 24 h luciferase 

activity was measured using a dual luciferase system (Switchgear Genomics, Menlo 

Park, CA). Each condition, for each experiment, was performed in technical triplicate, 

and the experiment itself was replicated 5 times. Neuro2A cells were purchased from 

Sigma, and had been authenticated and tested for contamination. 

Analysis of ChIP-seq dataset 

The peaks from the ChIP-seq experiment using a pan-NFI antibody that was 

performed on embryonic stem cell-derived neural stem cells (Mateo et al., 2015; 

Supplementary Table 3, NFI tab) were annotated to the nearest gene using 

ChIPSeeker (Yu et al., 2015). Specifically, the following command was 

used: annotatePeak(chipPeaks, tssRegion = c(-3000, 1000), TxDb = txdb) where 

'chipPeaks' is the bed file containing the locations of all peaks and 'txdb' 
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is TxDb.Mmusculus.UCSC.mm9.knownGene (Carlson and Maintainer, R package 

version 3.2.2). The 'distance to TSS' value in the resulting annotation file was used to 

refine the search to identify NFI proteins bound 5000 base pairs downstream (a 

minimum distance of -5000 base pairs) or 1000 base pairs upstream (a maximum 

distance of 1000 base pairs) of a TSS. The resulting genes associated with the NFI 

bound TSSs were then cross-referenced with the genes identified as misregulated in 

all three microarray datasets to identify key NFI target genes. 

ChIP-qPCR 

Whole E14.5 mouse forebrains were dissociated and fixed in 1% formaldehyde for 8 

minutes. Nuclei were lysed and chromatin sonicated using 8 cycles (30s ON/30s OFF) 

of the Bioruptor Pico (Diagenode, Belgium) so that the majority of chromatin was 

between 100-500 base pairs in length. Immunoprecipitation was performed with 8 µg 

of goat anti-NFI (sc-30918, Santa Cruz) or 8 µg of goat IgG (AB-108-C, R&D 

Systems) control antibody coupled to 40 ul of Protein G Dynabeads (10003D, Thermo 

Fisher Scientific). DNA purification was performed using Qiagen PCR purification 

kit. ChiP-DNA was quantified using SYBR Green qPCR. A primer set for the Insc 

promoter was used (Forward: 5’TTAGCATCAAGAGCTCAGGACATT, Reverse: 5’ 

TGCCAAGAAAAGACAGTTCACCA) as well as a negative control primer set in a 

gene desert region devoid of histone modification marks and transcription factor 

binding (Active Motif, #71011). Enrichment of NFI in the INSC promoter was 

calculated relative to IgG control using the delta CT method, and was further 

normalised to the negative control primer set to negate non-specific enrichment 

caused by residual, undersonicated chromatin. All primers for ChIP-PCR were used at 

a final concentration of 300 nM. 

Statistical analyses 

Sample size was determined to provide 80% power, and a type I error rate of 5% for 

the expected effect size, which varied per experiment. Two-tailed unpaired Students t 

tests were performed when comparing two groups. For experiments with comparisons 

between more than two groups ANOVAs were first performed, followed by multiple 

comparisons analysis, where a pooled estimate of variance was used if appropriate, 

and statistical significance was corrected for using the Holm-Sidak method in Prism 

6.0 (Graphpad). All data that was analysed using Students t tests was performed with 
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a minimum sample size of 4 and assumed to be normally distributed. For analysis of 

the Insc qPCR data at E16.5, and ChIP-qPCR data, a sample size of 3 was analysed. 

In this case we did not assume a normal distribution of the data and, as such, we 

performed a one-sided Mann-Whitney U test in Prism 6.0. Because the test was based 

on a directional hypothesis (validating existing microarray or sequencing data), the 

one-sided test was justified. When the sample size is 3, the minimum p-value 

achievable from this nonparametric test is 0.05. All data analysis was performed blind 

to the genotype. 
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