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Abstract: Hysteresis is a nonlinear effect that shows up in a wide variety of engineering and
scientific fields. The identification of hysteretic systems from input-output data is an important
but challenging question, which has been studied by using both tailored parametric white-box
identification methods as by using black-box identification methods. The white-box modeling
approach is by far the most common in identifying hysteretic systems, and has the advantage
of resulting into an interpretable model, but it requires to be adjusted to a specific hysteresis
model. A black-box approach can be used more universally, but results in models containing
many parameters that cannot easily be interpreted. In the current paper, we propose a two-step
identification procedure that combines the best of the two approaches. We employ the Bouc-Wen
hysteretic model to generate data that is used for identification. The system is identified using
a black-box polynomial nonlinear state-space identification procedure. We reduce the number
of parameters in this model by applying a polynomial decoupling method that results in a more
parsimonious representation. We compare the full black-box model with the decoupled model
and show that the proposed method results in a comparable performance, while significantly
reducing the number of parameters.

Keywords: Polynomial Nonlinear State-Space, Hysteretic System, Bouc-Wen, Tensor
Decomposition, Canonical Polyadic Decomposition, Decoupling Multivariate Polynomials

1. INTRODUCTION

Hysteresis is encountered in a variety of science and en-
gineering fields, such as electromagnetism, aerodynamics,
structural engineering, and even biology, ecology and psy-
chology (Oh et al., 2009; Bernstein, 2007; Noël et al.,
2017). The effect of hysteresis is caused by the property
of multistability, and is typically expressed in a nonlinear
memory effect (Oh et al., 2009; Noël et al., 2017).

System identification of hysteretic systems is challenging
because dynamic nonlinearities act upon non-measurable
internal state variables (Noël et al., 2017). So far, identi-
fication methods for hysteretic systems have mostly been
limited to white-box techniques, which assume that the
data satisfy a specific model for hysteresis (Noël et al.,
2017). The main limitation of white-box identification
procedures is that they need to be tailored to a certain
(hysteresis) model structure, whereas a real-life identifica-
tion task may require a prohibitively complicated model
description. Recently, a black-box identification approach
has been proposed in Noël et al. (2017), which tackles
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the task by employing a polynomial nonlinear state-space
identification procedure. This approach can be applied
without requiring a hysteresis model assumption, as it di-
rectly aims at minimizing a cost function that involves the
(possibly weighted) distance between the model outputs
and the measured data. A disadvantage of the black-box
approach is that one loses physical intuition, since the
parameters cannot be given a meaningful interpretation,
and moreover, often a (very) large number of parameters
needs to be estimated.

The approach we develop in this paper tries to combine
the benefits of black-box and white-box approaches. We
start from a polynomial nonlinear state-space (PNLSS)
identification approach to identify a hysteretic system
(Noël et al., 2017). Since the number of parameters in a
PNLSS model increases quickly, it is beneficial to reduce
this by including prior knowledge, which can be done for
instance by transferring the nonlinearity into the feedback
loop (Noël and Kerschen, 2013), or by employing other
basis functions, such as splines, radial basis functions, or
neural networks (Marconato et al., 2014). In the current
paper, we will transform the PNLSS model into a simpler
description by applying the approach of Dreesen et al.
(2015b) to decouple the nonlinear part of the PNLSS



model using a tensor decomposition method. This results
in a state-space description in which the nonlinearities are
contained into univariate (one-to-one) polynomials that
operate on a linear combination of the state variables and
the input, rather than multivariate polynomials from all
state variables and the input to all state updates and the
output.

The remainder of this paper is organized as follows. In
Section 2 an algorithm for PNLSS estimation is presented.
The decoupling method is presented in Section 3. The
results for PNLSS and decoupling methods are compared
in Section 4. In Section 5 we draw the conclusions and
point out open questions for future work.

2. POLYNOMIAL NONLINEAR STATE-SPACE
(PNLSS)

Polynomial nonlinear state-space system identification was
introduced in Paduart et al. (2010) and further developed
by Van Mulders and Vanbeylen (2013); Van Mulders
et al. (2012); Paduart et al. (2006); Marconato et al.
(2014). The PNLSS algorithm is introduced in detail in
Paduart (2007); Paduart et al. (2010). Here the algorithm
is reviewed in brief.

2.1 PNLSS model

For a single-input single-output system, the PNLSS model
is given by the equations

x(t+ 1) = Ax(t) + bu(t) + Eζ(x(t), u(t)),

y(t) = cTx(t) + du(t)︸ ︷︷ ︸
linear state-space model

+ fT η(x(t), u(t)),︸ ︷︷ ︸
polynomials in x and u

(1)

where u(t) ∈ R, y(t) ∈ R and x(t) ∈ Rn denote the input,
output and state vector at time instance t, respectively.
The linear part of the state-space model is defined by
A ∈ Rn×n (the state transition matrix), b ∈ Rn, c ∈ Rn,
and d ∈ R. The matrix E ∈ Rn×nζ and vector f ∈ Rnη
represent the polynomial part of the model and contain
the coefficients of state-input monomials in the state and
output equation, respectively. The number of monomials
in ζ and η are denoted by nζ and nη, respectively. The
nonlinear part is represented by polynomials containing
all possible monomials of degree d or less, not including
constant terms nor linear terms, as they are already
captured by the linear state-space part. For example, for
a second-order system with one input the monomials of
degree two are

ζ(x, u) = η(x, u) =
[
x21 x1x2 x1u x

2
2 x2u u

2
]
, (2)

and the elements of E and f are the corresponding
coefficients. It can be verified (Paduart et al., 2010) that
the total number of coefficients of nonlinear terms is given
by (

(n+ 1 + d)!

d!(n+ 1)!
− n− 2

)
(n+ 1), (3)

where it is assumed that ζ and η contain the same mono-
mials, and both constants and linear terms are discarded.

2.2 Identification

The identification of the polynomial nonlinear state-space
model is as follows (Paduart et al., 2010):

1. Find the best linear approximation (BLA) (Pintelon
and Schoukens, 2012; Schoukens et al., 2012) of the

system under test as the transfer function ĜBLA and
its total covariance σ̂GBLA .

2. Based on this BLA, calculate the initial estimates
of A, b, c, and d by using a linear subspace system
identification procedure (Pintelon, 2002).

3. The parameters A, b, c, d, E, and f are tuned by
running a Levenberg-Marquardt optimization (Pad-
uart et al., 2010).

3. DECOUPLING POLYNOMIAL FUNCTIONS

Polynomial nonlinear state-space models are flexible and
can capture severe nonlinear effects. However, the number
of parameters to be estimated is often very high as it
grows combinatorially with the polynomial degree and
the number of variables (see (3)). Therefore, attributing
physical intuition to PNLSS models is not straightforward.

3.1 A decoupled PNLSS model

A simpler PNLSS model may be obtained by decoupling
the polynomial functions, that is, by linearly transforming
states and input in such a way that the multivariate
polynomials in the PNLSS model are decoupled into
univariate polynomials. The decoupling method of Dreesen
et al. (2015a) computes such a decoupled representation by
means of the canonical polyadic decomposition (CPD) of
a 3-dimensional matrix or tensor (see Carrol and Chang
(1970); Harshman (1970); Kolda and Bader (2009)).

The polynomial decoupling method results in a new poly-
nomial nonlinear state-space as

x(t+ 1) =Ax(t) + bu(t) +Wxg

(
V T

[
x(t)
u(t)

])
,

y(t) = cTx(t) + du(t) + wTy g

(
V T

[
x(t)
u(t)

])
, (4)

where Wx and wTy are the linear transformation matrices
(more precisely, matrix and vector) for transforming the
nonlinear polynomial functions in the PNLSS equation and
V is the transformation matrix for transforming states
and inputs. For self-containment, the following paragraphs
review the algorithm of Dreesen et al. (2015a) using the
notation of the PNLSS model.

Notice that the procedure of Section 2.2 results in an n+1
to n multivariate polynomial vector function (represented
by E) as well as an n + 1 to 1 multivariate polynomial
vector function (represented by f). From here on, we
treat them jointly as a single n + 1 to n + 1 multivariate
polynomial vector function as

p(x(t), u(t)) =

[
Eζ(x(t), u(t))
fT η(x(t), u(t))

]
, (5)

where p is a function that maps n + 1 variables to n + 1
outputs. Furthermore, let the vector s be defined as
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Fig. 1. The outcome of the decoupling procedure. A multi-
variate polynomial vector function is decomposed into
a linear transformation V , followed by a set of parallel
univariate polynomials g1, . . . , gr, and another linear
transformation W .

s =

[
x(t)
u(t)

]
, (6)

where s ∈ R(n+1)×1. We denote by p(s) the original
multivariate polynomial function, which is decoupled into
r univariate polynomials as

p(s) = Wg(V T s), (7)

where

g
(
V T s

)
=


g1(s̃1)
g2(s̃2)

...
gr(s̃r),

 , (8)

with the univariate functions g1(s̃1), . . . , gr(s̃r) operate on
the transformed variables s̃i = vTi s and the functions gi
have a fixed user-chosen degree d. Fig. 1 shows the result of
the decoupling algorithm. Corresponding to the definition
of s, the matrix W is defined as

W =

[
Wx

wTy

]
, (9)

such that[
Eζ(x(t), u(t))
fT η(x(t), u(t))

]
=

[
Wx

wTy

]
g

(
V T

[
x(t)
u(t)

])
. (10)

The decoupling method of Dreesen et al. (2015b) relies on
the fact that the Jacobian of p is given by the expression:

J(s) = W diag(g1(vTi s), . . . , gr(v
T
r s))V

T , (11)

where vi denotes the ith column of V . By considering (11)
in a set of sampling points s(k), the question of finding
the transformation matrices V and W amounts to solving
a simultaneous matrix diagonalization problem, which is
essentially what the CPD computes.

3.2 Summary of decoupling algorithm

The decoupling algorithm is adopted from Dreesen et al.
(2015b) and is briefly summarized here.

1. The Jacobian of the polynomial vector function p
is evaluated in a set of N sampling points s(k), for
k = 1, 2, . . . N , which are drawn from a random
normal distribution.

2. The Jacobian matrices are stacked into an (n+ 1)×
(n+ 1)×N tensor (see Fig. 2). We have thus

Jijk =
∂pi(s

(k)
j )

∂sj
. (12)

3. This tensor is decoupled using the CPD as follows
(also see Fig. 2)
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+ ⋅ ⋅ ⋅ +

𝐡𝟏

𝐰𝟏
𝐯𝟏

𝐡𝒓

𝐯𝒓𝐰𝒓

≈

𝑛 + 1

𝑛 + 1

𝑁

Jijk ≈
r∑
`=1

wi` vj` hk`, (13)

where W and V follow immediately from the CPD
and

hk` = g`
′(s̃

(k)
` ), (14)

is the derivative of the univariate function g` evalu-

ated in sampling points s̃
(k)
` , for k = 1, . . . , N .

4. For the `th branch g′`(s̃`), we solve the following
polynomial fitting

(s̃
(1)
i )1 (s̃

(1)
i )2 · · · (s̃

(1)
i )d−1

(s̃
(2)
i )1 (s̃

(2)
i )2 · · · (s̃

(2)
i )d−1

...
...

(s̃
(N)
i )1 (s̃

(N)
i )2 · · · (s̃

(N)
i )d−1


 c′i,2

...
c′i,d−1

 =


h1i
h2i
...

hNi

 ,
(15)

leading to the coefficients of g′`. Notice that, again,
the constant and linear terms are not considered.

5. Solving the symbolic integration

g`(s̃`) =

∫
g′`(s̃`)ds̃`, (16)

determines the functions g` up to the correct value of
the integration constants.

The result of this algorithm is a decoupled nonlinear state
space model with (2n+d+1)r nonlinear parameters. Notice
that the number of parameters now increases linearly with
the degree as opposed to the combinatorial increase for the
multivariate polynomials in (3).

This decoupled model can be used as an initialization for
further tuning V , W and the coefficients of the g` in order
to minimize the output error. Furthermore, the degree d of
the nonlinearity can now be increased without introducing
a prohibitively large number of parameters.

It should be noted that the decoupling algorithm does not
guarantee that the decoupled PNLSS model is stable. If
the decoupled model would be unstable for the estimation
data set, the optimization of the model parameters can-
not be done as the Jacobians needed for the Levenberg-
Marquardt optimization routine are obtained by simulat-
ing nonlinear state-space models with the same dynamics
as the PNLSS model (Paduart et al., 2010). A practical
workaround for this problem is to either re-initialize the
decoupling algorithm by regenerating a collection of N
sampling points, or to initialize the elements of Wx or the
coefficients of the polynomials g` as zeros. In the latter
case, the dynamics in the state equation are linear and can
be guaranteed to be stable in bounded-input, bounded-
output sense.

4. RESULTS

This section illustrates the decoupling approach presented
in the previous section on a Bouc-Wen hysteretic system.
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Fig. 2. Decoupling multivariate polynomials is done by
collecting the Jacobian matrices in a set of sampling
points and stacking them into a 3D tensor. The
simultaneous matrix diagonalization of the Jacobian
matrices is equivalent to the CPD of this 3D tensor,
and returns the transformation matrices V, W and
information about the internal functions g`.

In Noël et al. (2017) the system is introduced and the
reason why the PNLSS model is needed is introduced
in detail. The system is introduced briefly here and the
results of the PNLSS model on the Bouc-Wen hysteretic
benchmark (Noël and Schoukens, 2016) with and without
applying the decoupling approach are compared.

4.1 The system under test

The hysteretic system under study is simulated through
Bouc-Wen model which is described by the following
differential equations

mLÿ + cLẏ + kLy + z(y, ẏ) = u(t),

ż(y, ẏ) = αẏ − β(γ |ẏ| |z|ν−1 z + δẏ |z|ν), (17)

where cL, and kL are the parameters of the linear restoring
force contribution, and α, β, γ, δ, and ν are the parameters
of the Bouc-Wen hysteresis loop (Bouc, 1967; Wen, 1976),
and (Roberts and Spanos, 1990).

4.2 Comparison

The benchmark provides two test data sets, one with a
random phase multisine input and the other one with a
swept sine input. The Bouc-Wen model is excited with
random phase multisine input force (u(t)) with standard
deviation levels of 50 N and 55 N. The latter is used for
generating the Full PNLSS model to avoid extrapolation
problem which results usually to an unstable model (either
the Full PNLSS or the decoupled model). The final goal is
to achieve a good model performance for a 50 N excitation.

The excitation signal has twenty phase realizations and
seven periods and flat power spectrum in the frequency
band [5 150] Hz. The first two periods are discarded for
transient removal, and just the last five periods are taken
into account for estimation. The BLA analysis of the

system proposes to have third order dynamics (Noël et al.,
2017).

For the Full PNLSS model the nonlinearities are of second
and third degree. The nonlinearity in the output equation
is zero (F = 0). The decoupled model has three branches
(r = 3) and the degree of the polynomials is increased to
eleven (d = 11) in each branch. The extracted models (Full
PNLSS and decoupled PNLSS) are tested on the test data
set from the benchmark data (Noël and Schoukens, 2016).

The estimated models are compared based on their RMS
error on the test data:

eRMSt =

√√√√ 1

Nt

Nt∑
t=1

(ymod(t)− yt(t))2, (18)

(Noël and Schoukens, 2016), where ymod(t) is the output
of the model, yt(t) is the output of the test data and Nt
is the number of samples in the last period of the test
data (Nt = 8192 for the multisine and Nt = 15300 for
the swept sine). Both models are tested on the test data
and the RMS errors (eRMSt) are 1.8703× 10−5 (multisine)
and 1.2024× 10−5 (swept sine) for the Full PNLSS model
and 1.8996× 10−5 (multisine) and 1.4019× 10−5 (swept
sine) for the decoupled model. The decoupled model has a
slightly higher RMS error than that of the PNLSS model
on the test data, but the decoupled model only has 67
parameters, while the Full PNLSS model has 106.

The results on the test data are plotted in Fig. 3 and Fig. 4.
Fig. 3 shows the output spectrum (blue), error of linear
model (cyan), the error of the PNLSS model (green) and
the error of the decoupled model (red) in the frequency
domain. The decoupled model shows a slightly higher error
than Full PNLSS near the resonance frequency, while in
other frequencies it shows more or less the same error as
Full PNLSS. A comparison of RMS error of the multisine
excitation for both models also shows the decoupled model
error is slightly worse, but negligible (1.57 %).

In Fig. 4 both models are tested on the swept sine data.
The swept sine frequency band is [20 50] Hz, with sweep
rate of 10 Hz/min. The figure shows errors of linear (blue),
PNLSS (green) and decoupled (red) models in the time
domain. The decoupled model error time series is almost
the same as Full PNLSS error time series, even in the
transient region.

5. CONCLUSION

The Bouc-Wen system’s behavior is captured by the Full
PNLSS model. A decoupled PNLSS model reaches a simi-
lar accuracy (1.57 % higher than the RMS error of PNLSS
model) for the random phase multisine excitation with
lower amplitude data, while the number of parameters in
the decoupled model is less than two third of the number of
parameters in the Full PNLSS model (67 instead of 106).
The order of the polynomials in the decoupled model can
also be increased without having the problem of blowing
up the number of parameters, as it is the case for the
Full PNLSS model. The connection between the hystere-
sis loop’s characteristics and the properties of univariate
polynomial (gi) functions can be a part of future study.



Fig. 3. The output spectrum (blue), the error of linear
model (cyan) and the error of PNLSS (green) for
second and third degree monomials of states and
inputs in state updates (F = 0), and the error for the
decoupled model with three branches with eleventh
degree polynomials (red).
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Noël, J.P. and Schoukens, M. (2016). Hysteretic bench-
mark with a dynamic nonlinearity. In Workshop on
nonlinear system identification benchmarks, pp. 7-14,
Brussels, Belgium.

0 2 4 6 8 10 12 14 16
x 104

-6

-4

-2

0

2

4

6 x 10-4

Samples

m

 

 

Error linear model
Error PNLSS model
Error decoupled model

0 2 4 6 8 10 12 14 16
x 104

-5

-4

-3

-2

-1

0

1

2

3

4

5 x 10-5

Samples

m

 

 

Fig. 4. Top: The error in the time domain for the linear
model (blue), for the PNLSS (green) and the error of
decoupled PNLSS (red) for second and third degree
monomials of states and inputs in state updates
(F = 0), and the error for the decoupled model
with three branches with eleventh degree polynomials
(red). Bottom: Zoom of the top figure to differentiate
the error time series of decoupled and Full PNLSS
models.

Oh, J., Drincic, B., and Bernstein, D.S. (2009). Nonlinear
feedback models of hysteresis. IEEE Control Systems
Magazine, 100–119.

Paduart, J. (2007). Identification of Nonlinear Systems
using Polynomial Nonlinear State Space Models. Ph.D.
thesis, Vrije Universiteit Brussel (VUB).

Paduart, J., Lauwers, L., Swevers, J., Smolders, K.,
Schoukens, J., and Pintelon, R. (2010). Identification
of nonlinear systems using polynomial nonlinear state
space models. Automatica, 46, 647–656.

Paduart, J., Schoukens, J., Pintelon, R., and Coen, T.
(2006). Nonlinear state space modelling of multivariable
systems. In 14th IFAC Symposium on System Identifi-
cation, Newcastle, Australia.

Pintelon, R. (2002). Frequency-domain subspace system
identification using non-parametric noise models. Auto-
matica, 38, 1295–1311.



Pintelon, R. and Schoukens, J. (2012). System Identifi-
cation: a Frequency Domain Approach. John Wiley &
Sons, Inc.

Roberts, J.B. and Spanos, P.D. (1990). Random vibration
and statistical linearization. John Wiley & Sons Ltd.

Schoukens, J., Pintelon, R., and Rolain, Y. (2012). Master-
ing System Identification in 100 Exercises. John Wiley
& Sons, Inc.

Van Mulders, A. and Vanbeylen, L. (2013). Comparison
of some initialisation methods for the identification of
nonlinear state-space models. In IEEE International In-
strumentation and Measurement Technology Conference
(I2MTC), Minneapolis, MN, 807–811.

Van Mulders, A., Vanbeylen, L., and Schoukens, J. (2012).
Robust optimization method for the identification of
nonlinear state-space models. In IEEE International In-
strumentation and Measurement Technology Conference
(I2MTC), Graz, Austria., 1423–1428.

Wen, Y.K. (1976). Method for random vibration of hys-
teretic systems. Journal of the engineering mechanics
division, 102.2, 249–263.


