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Introduction

The kinematics of oscillating bluff bodies in a fluid flow have been a hot research
topic for decades. Most important are the potentially harmful vortex-induced
vibrations (VIVs) where the structure is excited by alternating vortex shedding
in its wake. Classical examples are the vibration of chimney stacks exposed to
wind, pipelines on the sea-bed excited by the ocean currents or water tubes in
heat exchangers [1].

For these kind of fluid-structure interactions, typically an analytical solution
cannot be found. Yet accurate predictions of the kinematics and the resulting
dynamics are vital during for instance a design process, in monitoring applications
or for control. Obtaining predictions with high fidelity have so far been restricted
to solving the Navier-Stokes equations via computation fluid dynamic (CFD) sim-
ulations or to performing experiments. Both approaches are cumbersome and, in
the case of CFD, requires a lot of computing power. These drawbacks make the
current methods disadvantageous towards many intended applications where only
limited time and resources are available to assess a certain risk.

What is needed is an efficient and powerful model, flexible enough to span a
wide domain in parameter space with a single set of coefficients. A task for which,
we believe, system identification can be a very powerful tool.

Work description

The challenges in modelling the system at hand are, however, substantial. First
off all, fluid-structure interactions are inherently nonlinear [2]. Moreover is VIV
a self-excited yet self-limited oscillation, resulting in a stable limit cycle [3]. In
addition, the vortex shedding behaviour is known to be hysteretic of nature [4].

In this work, a novel approach to modelling flow problems by applying state-of-
the-art nonlinear identification techniques is proposed. The powerful framework
of nonlinear state-space models is explored and put to the test.
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Two approaches are proposed and compared. On the one hand, the nonlinear
functions of the state-space equations are formed out of multi variate polynomials
of the state variables and the input (f and g in Eq.1).{

x(t+ 1) = Ax(t) + By(t) + f(x(t), y(t))

Cy (t) = Cx(t) + Dy(t) + g(x(t), y(t))

(1a)

(1b)

Where y(t), the displacement of the structure, is the input to the system, and
Cy(t), the force coefficient of the resultant force in the y-direction, is the output.
Since no prior knowledge is used in construction these general nonlinear functions
we will refer to this approach as the black-box modelling approach. Identification
of such a model consists of 3 steps:

• First a nonparametric estimate of the best linear approximation is con-
structed.

• Using linear identification techniques, estimates of the coefficients in the
linear part (A,B,C,D) are derived.

• Finally, nonlinear optimisation is used to optimise all coefficients, including
the nonlinear terms.

In the second approach, the nonlinear functions will be build up out of a delib-
erate choice of basis functions. In this case nonlinear functions of the output will
be used. {

x(t+ 1) = Ax(t) + By(t) + h(y(t))

Cy (t) = Cx(t) + Dy(t)

(2a)

(2b)

As inspiration for the nonlinear basis functions in terms of the output (h in Eq.
2), we will rely on the literature of heuristic modelling attempts of VIV, which
typically were in the form of a Van der Pol equation [5] [6] [7]. The second approach
will be referred to as the grey-box approach. Identifying such a structure is done
using a 2-step approach:

• Use nonlinear subspace identification to directly obtain a nonlinear initial
model.

• Use nonlinear optimisation to remove systematic errors.

The advantage of constructing these tailored nonlinear basis functions lies in a
enormous reduction in the number of model parameters [8].

Both approaches will be demonstrated on data acquired from the Van der Pol
model equation. In a second step the methods are applied to data obtained from
CFD simulations of vortex shedding behaviour.
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Preliminary results

Both approaches are demonstrated on data obtained from the nonlinear Van der
Pol equation (Eq. 3).

C̈y + µΩaut(γC
2
y − 1)Ċy + Ω2

autCy = bẏ (3)

Where Cy represents the non-dimensional force coefficient (output), y is the dis-
placement (input) and Ωaut is the autonomous angular frequency (with faut = 3
Hz in this case). Validation result for both the black and the grey-box modelling
approach are plotted in Fig. 1.

Both approaches are able to accurately capture the dynamics of the Van der Pol
equation. The grey-box approach is, however far less computationally expensive
and results in a system with far less parameters.

Bibliography

[1] C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annual Review
of Fluid Mechanics 28 (1996) 477–539.

[2] R. E. D. Bishop, A. Y. Hassan, The lift and drag forces on a circular cylinder
oscillating in a flowing fluid, in: Proceedings of the Royal Society of London
A, Vol. 227, 1963, pp. 51–75.

[3] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, A universal concept
in nonlinear sciences, Cambridge University Press, New York, 2001.

[4] R. Govardhan, C. H. K. Williamson, Modes of vortex formation and frequency
response of a freely vibrating cylinder, Journal of Fluid Mechanics 420 (2000)
85–130.

[5] G. V. Parkinson, Mathematical models of fluid-induced vibrations of bluff bod-
ies, Flow-induced structural vibrations., Springer, 1974.

[6] I. G. C. R. T. Hartlen, Lift-oscillator model of vortex-induced vibration, Jour-
nal of Engineering Mechanics Division 96 (5) (1970) 577–591.

[7] M. L. Facchinetti, E. de Langre, F. Biolley, Coupling of structure and wake
oscillators in vortex-induced vibrations, Journal Of Fluids And Structures 19
(2004) 123–140.
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Figure 1: Validation results of the black-box (a) and grey-box (b) modelling ap-
proach of the Van der Pol equation.
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