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ABSTRACT

Though it is a crucial step for most identification methods in nonlinear structural dynamics, nonlinearity location
is a sparsely addressed topic in the literature. In fact, locating nonlinearities in mechanical systems turns out to
be a challenging problem when treated nonparametrically, that is, without fitting a model. The present contribution
takes a new look at this problem by exploiting some recent developments in the identification of dynamic networks,
originating from the systems and control community.
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1 INTRODUCTION

The identification of linear dynamic networks has attracted increasing attention over the past few years. An example of linear
network is displayed in Fig. 1. It consists of three nodes, where the signal wi(t) measured at node i is the sum of the applied
reference signal ri(t), the noise signal vi(t) and the outputs yi,k(t) of the linear blocks Gi,k(jω) that point towards it. The majority
of the contributions in the field has so far dealt with obtaining consistent estimates of linear block dynamics under different noise
assumptions [1−3]. In a recent study [4], some research attention has eventually been turned to the detection and location of
nonlinearities in networks using linear approximation techniques.

Approximating nonlinear systems for topology detection is not a new idea and various approaches exist [5, 6], but a common
thread is the definition of an optimality criterion for the approximation that holds within a given class of systems and under a
certain class of excitation signals. In the present work, the Best Linear Approximation (BLA) of Volterra nonlinear systems is
exploited, assuming Gaussian excitation signals [7]. Applying the BLA to mechanical systems has already proved successful
for nonlinearity detection [8, 9]. In this contribution, by interpreting mechanical systems as dynamic networks and following the
methodology introduced in Ref. [4], and described in Section 2, we extend the use of the BLA in structural dynamics to nonlinearity
location. A demonstration on a three-degree-of-freedom system is proposed in Section 3.
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Figure 1: An example of a linear dynamic network with three nodes and four linear dynamic blocks.

2 METHODOLOGY

The key assumption to a proper application of the BLA framework is that noise must only corrupt output measurements [7]. This
prevents one from directly calculating the BLA from node to node in a dynamic network setting. To circumvent this issue, a
three-step methodology is followed, leading a rigorous nonlinearity detection and location procedure.

2.1 Step 1: BLA analysis from references to nodes

The first step consists in calculating a multi-input, multi-output (MIMO) BLA from all references to all nodes. It is defined from
reference k to node i as the transfer function Si,k

BLA(jω) providing the best linear approximation of the nonlinear network dynamics
in least-squares sense, i.e.
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The expectation Er,v {•} is taken with respect all possible realisations of the reference signal rk and noise signal vi, within the
considered signal class. In Eq. (1), reference and node signals are assumed to be zero-mean.

Eq. (1) allows one to calculate a noise-free linear approximation w̄i(jω) of the node signal wi(jω) that writes

w̄i(jω) =

nw
∑

k=1

Si,k
BLA(jω)rk(jω). (2)



2.2 Step 2: BLA analysis from nodes to nodes

A second MIMO BLA analysis is carried out in between nodes, considering as inputs the noise-free node signals from Eq. (2),
and taking into account the direct contributions of the references. This results in BLA estimates Gi,k

BLA(jω) from node i to node
k of the form

Gi,k
BLA(jω) = argGi,k min Er,v
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Node signals can now be simulated using the node-to-node linear approximate description Gi,k
BLA(jω) of the network dynamics,

leading to the relation

¯̄wi(jω) = ri(jω) +

nw
∑

k=1, 6=i

Gi,k
BLA(jω)wk(jω). (4)

2.3 Step 3: Residual analysis and nonlinearity location

By comparing the simulated node signals ¯̄wi(jω) and the corresponding measurements wi(jω) over multiple periods and reali-
sations, a residual analysis can be conducted. Let P and M be the number of measured periods and realisations of the network
signals, and ¯̄w

[m,p]
i (jω) and w

[m,p]
i (jω) be the simulated and measured node signals over period p of realisation m, respectively.

The variances of the total distortions σ2
t , noise distortions σ2

n and nonlinear distortions σ2
nl in the residual are then separated

following the expressions [10]

σ2
t (jω) =

1

P

1

M − 1

P
∑

p=1

M
∑

m=1

(

e
[m,p]
i (jω)−

1

P

M
∑

m=1

e
[m,p]
i (jω)

)2

; (5)

σ2
n(jω) =

1

M

1

P − 1

M
∑

m=1

P
∑

p=1

(

e
[m,p]
i (jω)−

1

P

P
∑

p=1

e
[m,p]
i (jω)

)2

; (6)

σ2
nl(jω) = σ2

t (jω)− σ2
n(jω), (7)

where
e
[m,p]
i (jω) = ¯̄w

[m,p]
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The comparison along the frequency axis of the three variance levels σ2
t (jω), σ

2
n(jω) and σ2

nl(jω) provides a quantitative way of
detecting and locating nonlinearities in any network arrangement of linear dynamic subsystems.

3 APPLICATION TO A THREE-DEGREE-OF-FREEDOM MECHANICAL SYSTEM

The present section illustrates the methodology described in Section 2 considering the three-mass system of Fig 2. The physical
parameters and modal properties of the system are listed in Tables 1 and 2, respectively. A cubic spring is introduced between
mass 3 and the ground. Multisine excitations are applied to the three masses, and displacements are processed as output data.
Multisines are periodic signals with a user-defined amplitude spectrum and randomly-chosen phases [11]. In this application,
they excite the system in the 5-100 Hz band with a root-mean-square amplitude of 50 N . Response signals are generated using
a nonlinear Newmark integration algorithm with a sampling frequency of 5000 Hz, and numerical experiments are repeated over
10 periods and 30 realisations with 8192 measured samples per period. The resulting displacement time signals are corrupted
with white Gaussian noise with a signal-to-noise ratio of 40 dB.

The result of the residual analysis performed through Eqs. (5-7) is shown in Fig. 3. The spectra of the signals ¯̄wi(t) and the
noise levels are displayed using grey and black lines, respectively. The total and nonlinear distortions are plotted using orange
crosses and blue squares, respectively. It is easily concluded from these three graphs that mass 3 in Fig. 3 (c) is the only node
in the system connected to a nonlinear element. For masses 1 and 2 in Fig. 3 (a-b), the observed total distortion level is fully
explained by the noise disturbances, implying that they are not directly connected to a nonlinearity.
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Figure 2: A three-mass system with one cubic spring connecting mass 3 to the ground.

Parameter Value

m1 1 kg
m2 0.8 kg
m3 1.2 kg
k1 20 103 N/m
k2 35 103 N/m
k3 50 103 N/m
k4 80 103 N/m
knl 1 108 N/m3

c1−4 8 Ns/m

TABLE 1: Physical parameters of the three-mass system.

Mode Frequency (Hz) Damping ratio (%)

1 25.0 2.0
2 44.8 2.7
3 64.8 3.4

TABLE 2: Linear modal properties of the three-mass system.
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Figure 3: Locating nonlinearity in the three-mass system. (a-c) Mass 1-3. The spectra of the signals ¯̄wi(t) and the noise levels
are displayed using grey and black lines, respectively. The total and nonlinear distortions are plotted using orange crosses and
blue squares, respectively.

4 CONCLUSIONS AND PERSPECTIVES

This contribution introduced an original methodology to locate nonlinearities in mechanical systems using random excitation
signals. The proposed technique is fully nonparametric, i.e. it requires no estimation of parameters. It relies on the use of
the Best Linear Approximation (BLA) of the nonlinear dynamics taking place in between the masses of the considered system,
interpreted as a network arrangement of nodes. Its graphical outcome is a frequency-domain plot per measurement location
comparing the amplitude of the nonlinear and the noise distortions, and hence enabling the user to assess quantitatively and
systematically the impact of nonlinearity across the tested structure. Further developments in this research will focus on relaxing
the current need for multi-input, multi-output experiments, through the concatenation of data measured sequentially in single-
input conditions.
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