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Abstract

The objective of the present paper is to provide experimental evidence of isolated reso-

nances in the frequency response of nonlinear mechanical systems. More specifically,

this work explores the presence of isolas, which are periodic solutions detached from the

main frequency response, in the case of a nonlinear set-up consisting of two masses sliding

on a horizontal guide. A careful experimental investigation of isolas is carried out using

responses to swept-sine and stepped-sine excitations. The experimental findings are vali-

dated with advanced numerical simulations combining nonlinear modal analysis and bifur-

cation monitoring. In particular, the interactions between two nonlinear normal modes are

shown to be responsible for the creation of the isolas.

Introduction

In many fields including engineering, physics or chemistry, the concept of resonance is funda-

mental. A resonance, whichever the physical system it affects, results from the frequency-

dependent nature of the system response. When fulfilled, resonance conditions commonly

translate into dynamic oscillations with increasing amplitude as, e.g., in stringed instruments,

ships shaken by the ocean waves or human organs during magnetic resonance imaging. For

mechanical applications in particular, special attention should be paid to the treatment of

structural resonances, as they may cause excessive deformations leading to fatigue and poten-

tially to complete collapse. Structural resonances are thus generally avoided or, if tolerated,

mitigated using vibration absorbers [1, 2].

Under the assumption of linearity, the response of a system at resonance is unique, and a

doubling of the input results in a doubling of the output. A structure operating in nonlinear

regime of motion, on the other hand, may exhibit rich dynamical features in the vicinity of its

resonances [3]. A common symptom of nonlinearity is the dependency of the resonance fre-

quency on the energy introduced in the system, leading to hardening or softening effects and

to the well-known jump phenomenon. The present paper is dedicated to the study of a much

less documented nonlinear phenomenon, called isolated resonance. Isolated resonances are

located at the extremities of so-called isolas, also termed islands or isolated/detached response
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curves, which correspond to closed loops of periodic solutions detached from the main fre-

quency response of the nonlinear system [4].

Isolas can lie inside the main resonance peaks [5], or outside [6, 7]. Isolas and isolated

resonances may thus go easily undetected, whether it be numerically employing classical con-

tinuation techniques, or experimentally. However, an increase in forcing amplitude, or the var-

iation of a system parameter, may cause the merging of the isola with the main frequency

response. The isola merging may lead to dramatic shifts of the resonance frequency and ampli-

tude, as exemplified in [8, 9]. This renders isolas and isolated resonances potentially dangerous

for nonlinear systems. They were found, for instance, to limit the practical applicability of non-

linear absorbers [10, 11]. They were also revealed in other numerical applications, such as

shimmying wheels [12] and structures with cyclic symmetry [13], demonstrating their generic

character.

The unicity and fairly easy predictability of linear resonances is a direct consequence of the

linear normal mode (LNM) theory, which allows a decomposition of linear response into a

superposition of the responses of independent and simpler oscillators [14]. The situation is

contrasted in the study of nonlinear resonances, including both fundamental and isolated res-

onances, which require more advanced theoretical tools. The concept of nonlinear normal

modes (NNMs) was proposed by Rosenberg as a straightforward nonlinear extension of the

LNMs. He defined NNMs as the vibrations in unison, i.e. synchronous oscillations, of nonlin-

ear systems [15]. This definition demands that all material points reach their extreme values

and pass through zero simultaneously. Kerschen et al. extended the Rosenberg’s definition of

NNMs to not-necessarily synchronous, periodic motions of the underlying undamped and

unforced system [16]. An appealing feature of NNMs is that they can be used to predict

approximately the frequency and the deformation shape of a nonlinear system at resonance,

the quality of the approximation depending on the amount of damping in the system. A large

body of literature addresses the qualitative and quantitative analyses of nonlinear phenomena

using NNMs (the interested reader is referred to [17] for a review).

Recent publications reported the presence of isolas in frequency responses of nonlinear sys-

tems featuring 3:1 modal interactions between two of their NNMs [18, 19]. In [20], Kuether

et al. formally established the link existing between modal interactions and isolas through an

energy balance approach, and provided a numerical validation. As of today, however, no

experimental demonstration of this theory has been proposed. Another observation is that, in

the mechanical engineering literature, very few papers have been devoted to the experimental

investigation of isolas. Gourc et al. found isolas while performing targeted energy transfer with

a nonlinear energy sink [10]. In [21], remote attractors were detected in the response of an

impacting pendulum. In [22], Gatti et al. analyzed the dynamics of a nonlinear oscillator

attached to a shaker, and evidenced isolas in some experimental responses. In this context, the

two objectives of the present paper are to realize isolas experimentally in a system featuring a

modal interaction, and to relate isolas and modal interactions through a nonlinear modal

analysis.

The paper is organized as follows. The Case Study section presents the illustrative mechani-

cal application considered in the present work. It comprises two masses sliding on a horizontal

guide and connected to the ground through linear and nonlinear springs. The Nonlinear Nor-

mal Modes section briefly reviews the relations between NNMs and nonlinear resonances, and

introduces an energy balance criterion to predict isolated resonances. The experimental valida-

tion of the presented relations is achieved in the Experimental Realization section, where the

responses of the two-mass test rig to swept-sine and stepped-sine excitations are studied to

reveal isolas, and are compared to numerical simulations. The conclusions of the study are

finally drawn in the last section of the paper.
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Case study: A 2-degree-of-freedom, base-excited, nonlinear

system

In this section, the mechanical system considered throughout the paper for illustration and

validation purposes is introduced, together with its experimental realization.

Numerical representation

Let us consider a system consisting of two masses connected through a linear spring and slid-

ing on a horizontal guide, as shown in Fig 1(a). The physical and linear modal parameters of

the system are listed in Tables 1 and 2, respectively. Two linear but transverse springs are also

attached to mass 1, providing a nonlinear restoring force in the horizontal direction. The dis-

placement of the transverse spring supports is prescribed to impart motion to the two masses.

The mass and linear stiffness coefficients are such that a ratio between the linear natural

Fig 1. Illustrative mechanical system. (a) Schematic representation of the set-up; (b) numerical restoring force of the transverse connection.

https://doi.org/10.1371/journal.pone.0194452.g001

Table 1. Parameters of the numerical model.

m1 (kg) m2 (kg) k1 (N/m) k2 (N/m) k3 (N/m)

3.49 0.46 135.0 261.8 485.6

k (N/m) l (m) λ (-) c1 (Ns/m) c2 (Ns/m)

503.7 3.5 10−2 0.98 2.25 0.085

https://doi.org/10.1371/journal.pone.0194452.t001

Table 2. Linear resonance frequencies and damping ratios computed from the numerical model.

Mode Natural frequency (Hz) Damping ratio (%)

1 1.52 3.33

2 6.46 0.24

https://doi.org/10.1371/journal.pone.0194452.t002
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frequencies of the system of 4.25, that is larger than 3 but slightly smaller than 5, is achieved.

Moderate linear damping is finally introduced on the two vibration modes.

The equations of motion of the system in Fig 1(a) can be derived as

m1€x1 þ c1 _x1 þ k1x1 þ k2ðx1 � x2Þ þ fnlðxÞ ¼ 0

m2€x2 þ c2€x2 þ k2ðx2 � x1Þ þ k3x2 ¼ 0
ð1Þ

where x1 and x2 are the absolute displacements of m1 and m2, respectively, x = x1 − d sin(ωt) is

the displacement of m1 relative to the imposed displacement of the base, k1, k2 and k3 are linear

stiffness coefficients, and c1 and c2 are linear viscous damping coefficients. fnl represents the

horizontal projection of the restoring force associated with the two transverse springs. This

force can be theoretically written as [23]

fnlðxÞ ¼ 2F cos ðyÞ ¼ 2kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2
p

� l0Þ
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2
p ¼ 2k 1 �

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðx=lÞ2
q

0

B
@

1

C
Ax ð2Þ

where F is the restoring force in the direction of a spring, θ is the angle between this direction

and the horizontal, k, l and l0 denote the stiffness, length and natural length of the transverse

chords, respectively, and λ = l0/l is the prestress parameter. The Taylor series expansion of Eq

(2) around 0 reads

fnlðxÞ ¼ 2kð1 � lÞx þ
kl

l2
x3 þ R3ðxÞ ð3Þ

Eq (3) indicates the presence of a linear term in the restoring force that is related to the pre-

stress of the chord, whereas the third-order term in the restoring force increases with λ. This

confirms that limited prestress should be used to increase the nonlinear contribution in the

transverse connection. The nonlinear force term in Eq (2) is depicted over a realistic displace-

ment range in Fig 1(b).

The equations of motion (1) can be rewritten in order to obtain an external forcing vector

fext (ω, t) equivalent to a harmonic base excitation D = d sin (ωt). This can be achieved by

introducing new variables x = x1 − D and y = x2, yielding

m1€x þ c1 _x þ k1x þ k2x � k2y þ fnlðxÞ ¼ � m1
€D � c1

_D � k1D � k2D

¼ dðm1o
2 � k1 � k2Þ sin ðotÞ � dc1o cos ðotÞ

¼ fext;1

m2€y þ c2 _y þ k2y � k2x þ k3y ¼ k2D

¼ dk2 sin ðotÞ

¼ fext;2

ð4Þ

with

fextðo; tÞ ¼ d~f extðo; tÞ; ~f ext o; tð Þ ¼

ðm1o
2 � k1 � k2Þ sin ðotÞ � c1o cos ðotÞ

k2 sin ðotÞ

2

4

3

5 ð5Þ
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Construction of the experimental set-up

An experimental set-up featuring the same properties as the system described in the previous

section was built at Duke University (NC, USA), and is shown in Fig 2. Two masses are

Fig 2. Experimental set-up. (a) Side view; (b) top view.

https://doi.org/10.1371/journal.pone.0194452.g002
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connected together and to the ground through steel extension springs, whose lengths and stiff-

nesses determine the static equilibrium of the system. Two transverse bungee chords are

attached to the first mass to provide a nonlinear restoring force in the direction of motion. All

mass, stiffness and damping elements were adapted by trial and error in order to obtain similar

properties as those of the numerical model presented in Tables 1 and 2.

The displacement of the transverse chord supports is prescribed to impart motion to the

two masses using a Scotch yoke flywheel [23]. The Scotch yoke converts rotational motion into

a unidirectional harmonic displacement d sin (ωt), where d is the base displacement ampli-

tude, and ω the excitation frequency. The frequency ω is limited to 2.8Hz in the present experi-

mental test rig, and the base displacement d is set manually but can be accurately estimated.

Due to the limitation of the excitation frequency, the second mode of the system cannot be

observed in forced conditions to verify its resonance frequency. Instead, the time series of free

decays obtained after six consecutive impacts in Fig 3(a) are utilized to extract the resonance

frequencies of the modes using the wavelet transform in Fig 3(b). The first mode exhibits a

clear hardening, whereas the dependence on energy of the second mode is negligible. The reso-

nance frequency of the second mode at low energy level is 6.45Hz; for the first mode, the reso-

nance frequency is estimated around 1.5-1.6Hz.

Weak second and strong third harmonics of the first resonance frequency can also be

observed in Fig 3(b). Interestingly, the intersection between the third harmonic of the first res-

onance frequency and the second resonance frequency involves an interaction, evidenced

around 6.45Hz in Fig 3(b). This interaction, described in the next section as a modal interac-

tion, is responsible for the distortion in the response of the second mass in Fig 3(a).

Nonlinear normal modes and nonlinear resonances

The present section aims at introducing the fundamental relations between NNMs and nonlin-

ear resonances. Readers interested in a comprehensive review of NNM properties are referred

to [16, 24]. Let us consider the equations of motion of a n-degree-of-freedom (DOF) nonlinear

systems

M€x þ C _x þ Kx þ fnlðx; _xÞ ¼ fextðo; tÞ ð6Þ

where M, C and K are the mass, damping and stiffness matrices, respectively. Vectors x, fnl

and fext represent the displacements, the nonlinear forces and the external forces, respectively.

fext is supposed herein to be periodic with frequency ω.

We define the frequency response of a nonlinear system as a branch of periodic solutions

satisfying the equations of motion (6) for varying values of ω. The NNMs, on the other hand,

are computed as branches of periodic solutions of the underlying undamped and unforced sys-

tem, i.e., periodic solutions of the Hamiltonian system

M€x þ Kx þ fnlðxÞ ¼ 0 ð7Þ

Note that the frequency responses and NNMs depicted in the paper were calculated using

the combination described in [9] of a continuation procedure with the harmonic balance for-

malism. More specifically, each periodic solution was approximated by a Fourier series trun-

cated to a certain order. In this work harmonics up the 9th order were retained, which could

be shown to ensure convergence of the results.

Properties of nonlinear normal modes

The fundamental properties of NNMs directly capture some features of nonlinear systems, as

illustrated in Fig 4 on the 2-DOF numerical system introduced in the Case Study section.
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Frequency-energy dependence. A peculiar property of nonlinear systems is the fre-

quency-energy dependence of their oscillations, e.g., through hardening or softening behav-

iors. The evolution of NNMs along their backbone accounts for this dependence, which can be

conveniently depicted in a frequency-energy plot (FEP).

Fig 3. Free-decay analysis. (a) Accelerations measured on mass 1 (in black) and mass 2 (in orange) in response to three

impacts applied to mass 2 followed by three impacts applied to mass 1; (b) wavelet transform of mass 1 acceleration.

https://doi.org/10.1371/journal.pone.0194452.g003
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The continuation of NNMs is carried out on the 2-DOF system in Fig 4(a), where the FEP

of the two branches related to the first and second modes is depicted. The second NNM is rep-

resented at the third of its dominant frequency, which is relevant because a periodic solution

of period T is also periodic with period 3T. The energy dependence is strong for the first NNM

Fig 4. Fundamental properties of NNMs illustrated on the 2-DOF system. (a) FEP of the in-phase (solid line) NNM,

and out-of-phase (dashed line) NNM represented at the third of its dominant frequency. NNM time series of mass 1

(in black) and mass 2 (in orange) are inset; (b) relation between the first NNM and the fundamental resonance. The

solid lines represent the frequency responses computed at mass 1 for d = 10mm, d = 20mm and d = 30mm, and the

dashed line depicts the projection of the first NNM in the frequency-response amplitude plane.

https://doi.org/10.1371/journal.pone.0194452.g004
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and negligible for the second one. Regarding the mode shapes, the in-phase NNM mostly

involves a motion of mass 1, except near 2.15Hz. Conversely, the shape of the out-of-phase

NNM is barely affected by the energy level, and exhibits larger oscillations of mass 2.

Modal interactions. When progressing along the NNM backbone, harmonics of the fun-

damental frequency are generated by the nonlinearities, and may have a frequency close to the

oscillation frequency of another NNM of the system. In this situation, referred to as a modal

interaction or an internal resonance, a dynamic coupling between the two modes is established

together with an energy transfer. Due to the frequency-energy dependence of NNMs, such

interactions can develop between modes with non-commensurate linear frequencies.

In Fig 4(a), the branch of the first NNM crosses the branch of the second NNM which dom-

inant frequency was divided by 3. This indicates that near 2.15Hz, the contribution of the third

harmonic generated along the first NNM can internally excite the second NNM branch. The

first and second NNMs thus start exchanging energy through a 3:1 modal interaction in this

region, translating into the appearance of a new topological feature called a tongue.

Relations with forced responses. For structures with low damping, the NNM backbone

traces the locus of the nonlinear resonance peaks. This feature is illustrated in Fig 4(b), which

compares the first resonance peak of the 2-DOF system at different levels d of base displace-

ment, with the projection of the first NNM in the frequency-response amplitude plane.

Energy balance formulation

From Fig 4(b), it is clear that the resonant response of a structure can be characterized through

the excitation of the corresponding NNM. As a consequence, recent efforts have been devoted

to determine the parameters of the forcing that appropriates a given NNM. A first analytical

attempt in this direction [25, 26] used the second-order normal form theory to develop a non-

linear extension of the energy balance criterion [14]. Because this method assumes weak non-

linearity, Kuether et al. proposed in [20] a numerical formulation of the energy balance to

tackle strongly nonlinear regimes of motion.

Let us consider a nonlinear system that oscillates in a NNM denoted as x(t). The damping

forces instantaneously exert a distributed force C _xðtÞ and the total energy dissipated over one

period of oscillation T is

Ediss ¼

Z T

0

Pdiss dt ¼
Z T

0

_xðtÞTC _xðtÞ dt ð8Þ

where Pdiss is the power dissipated at any instant. Similarly, an arbitrary harmonic forcing

function fext(t) inputs energy into the system as

Ein ¼

Z T

0

Pin dt ¼
Z T

0

_xðtÞTf extðtÞ dt ð9Þ

where Pin is the power input into the system at any instant. At resonance, since the response

x(t) verifies both Eqs (6) and (7), the energy dissipated by the damping forces must match the

total energy input to the system over the period T [14]. The balance is enforced by setting

Ediss ¼ Ein ð10Þ

Considering the more practical case of a monoharmonic force applied to a single DOF l,
fext(t) = f el sin (ωt), where el is a n × 1 vector of zeros with a value of one at the component l,
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and hence

Pin ¼ _xðtÞTf el sin ðotÞ ð11Þ

The energy balance for a mono-point, monoharmonic forcing can be finally expressed as

f ¼
R T

0
_xðtÞTC _xðtÞ dt

R T
0

_xðtÞTel sin ðotÞ dt
ð12Þ

Fig 5. Energy balance applied to the first NNM of the 2-DOF system. (a) FEP of the NNM; (b) estimate of the base displacement required

to obtain the motion given at each point on the first NNM. The dots indicate the resonances at d = 4.1mm and 5mm, and the diamond

marker locates the creation of new resonances due to the 3:1 modal interaction; (c) close-up of (b).

https://doi.org/10.1371/journal.pone.0194452.g005
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The relation (12) stands for an important result because, given a forcing frequency ω, a spe-

cific NNM x(t) and the damping matrix C, it estimates the forcing amplitude f that excites the

system at resonance with the associated NNM motion.

In the context of the present work, the relation (10) can be rewritten using Eqs (4) and (5)

to assess the evolution of the nonlinear resonances with respect to the base displacement d,

yielding

d ¼
R T

0
ðc1 _x2

1
ðtÞ þ c2 _x2

2
ðtÞÞ dt

R T
0
ð _x1ðtÞ~f ext;1ðo; tÞ þ _x2ðtÞ~f ext;2ðo; tÞÞ dt

ð13Þ

Prediction of fundamental and isolated resonances

The application of the energy balance Eq (13) to the first NNM of the system in Eq (4) is

depicted in Fig 5. If only one resonance can be excited at low base displacements, the folding

of the curve in Fig 5(b), denoted by the diamond marker, results in the appearance of two addi-

tional resonances beyond d = 4.2mm. The presence of this folding is due to the existence of a

modal interaction, near 2.15Hz.

In order to investigate the impact of the additional resonances on the forced response of the

system, Fig 6(a) and 6(b) represent the frequency responses computed at d = 4.1mm and

d = 5mm, respectively. The projection of the NNM curve in the frequency-response amplitude

plane, and the NNM motions detected as resonances in Fig 5(b) are also shown. Fig 6(a) con-

firms that only one resonance related to the main peak can be found; this fundamental

Fig 6. Comparison between the frequency responses at mass 1 and the NNM motions determined from the energy

balance criterion in Fig 5(b) (dots). (a) d = 4.1mm; (b) d = 5mm and close-up. The projection of the first NNM in the

frequency-response amplitude plane is plotted as a dashed line.

https://doi.org/10.1371/journal.pone.0194452.g006
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resonance is accurately detected along the NNM curve. In Fig 6(b), i.e., after the appearance of

the two additional resonances, the main resonance peak is accompanied with an isolated

branch of periodic solutions, also called isola, with isolated resonances at its extremities. It is

stressed that isolas cannot be computed directly from the resonance peak using classical con-

tinuation techniques, and that the bifurcation continuation algorithm described in [9] had to

be employed. Therefore isolas most often remain undetected despite their possibly large ampli-

tude. This illustrates the importance of the prediction capabilities of the energy balance

method to reveal not only fundamental but also isolated resonances.

As the base displacement d is increased, the isola expands both in frequency and ampli-

tude. It eventually merges with the resonance peak in the vicinity of the 3:1 modal interac-

tion, for a value of d between 5mm and 7 mm, as illustrated in Fig 7. The energy balance

curve in Fig 5(b), on the other hand, shows around 2:2 Hz the merging of the fundamental

resonance and of one of the isolated resonances for a base displacement larger than 100 mm.

This discrepancy between the energy balance prediction and the numerical continuation can

be explained by the fact that the merging phenomenon is strongly affected by the damping

forces, and involves higher harmonics of the fundamental frequency that are not considered

in the energy balance.

Fig 7. Merging of the isola with the main frequency response, and close-up. The solid lines represent the frequency responses computed at mass 1 for

d = 4:1 mm, d = 4:5 mm, d = 5mm and d = 7 mm, and the dashed line depicts the projection of the first NNM in the frequency-response amplitude

plane.

https://doi.org/10.1371/journal.pone.0194452.g007
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Experimental realization of isolas

The results in the Nonlinear Normal Modes section confirm the important role played by

modal interactions in the creation of isolas, highlighted by the energy balance formalism. The

purpose of the present section is to validate experimentally these theoretical findings using the

experimental set-up described in the Case Study section.

Detection of isolas in forced responses

The approach followed in this work to reveal the presence of isolas is to record responses to

swept-sine excitations of increasing amplitude. This is carried out in Fig 8 for values of d rang-

ing from 3.3mm to 6mm. When d = 3.3mm, the geometrical nonlinearity at the first mass is

not activated, and the dynamics is predominantly linear. From d = 4mm to 5.7mm, there is an

increase in both amplitude and frequency at resonance, which is followed by the classical jump

to low-amplitude solution. As d becomes closer to 5.7mm, the resonance frequency saturates

near 2.15Hz. Increasing d from 5.7mm to 5.8mm leads to a dramatic increase (18.6%) in the

resonance frequency from 2.15Hz to 2.55Hz. This mechanism, i.e., the saturation of the reso-

nance frequency followed by its sudden shift, is often observed for systems featuring modal

interactions [20, 27]. At that point, a mechanism similar to the one in Fig 7, i.e., the merging of

the main frequency response with an isola, is suspected. Fig 9 depicts the sweep-up and sweep-

down responses of mass 1 for a base amplitude of 5.9mm, i.e., after the suspected merging of

Fig 8. Responses of mass 1 to swept-sine excitations for different values of the base displacement d.

https://doi.org/10.1371/journal.pone.0194452.g008
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the isola. Jumps down and up occur around 2.55Hz and 1.8Hz, respectively, implying that the

system possesses a very large bistable region.

To bring experimental evidence of the isola, time series corresponding to motions on the

detached branch are depicted in Fig 10. To realize these time series, a base excitation of 5mm

and 2.38Hz is considered; according to the results in Fig 8, this frequency is located beyond

the main resonance peak. The system initially vibrates at low amplitude, i.e., on the main fre-

quency response branch, and a series of perturbations is applied to excite the isola. Around

t = 10s, a high-amplitude motion stabilizes, confirming the existence of the isola. From there

on, a sweep up followed by a jump around t = 70s locates the right extremity of the stable por-

tion of the isola at 2.47Hz. Between t = 70s and t = 110s, the excitation is swept back to 2.38Hz,

when a new series of perturbations is applied. At t = 125s, the system is back on the isola, and a

sweep down permits to travel along it until t = 240s. This new jump locates the left extremity

of the stable portion of the isola at 2.16Hz. Since the basin of attraction of the isolated response

shrinks as the limits of its stable part are reached, it may have happened that the system

jumped before the actual change in stability. A solution to this problem would be to perform

stochastic interrogation in the frequency range of interest [23] or experimental continuation

[28, 29], but this was beyond the scope of the present work.

Bifurcation analysis near the modal interaction

As observed in Fig 8, the main resonant response saturates near 2.15Hz before the merging.

Since 2.15Hz is precisely the third of the resonance frequency of the second mode, it is clear

Fig 9. Response of mass 1 to swept-sine excitations with positive (in black) and negative (in orange) sweep rates, for d = 5.9mm.

https://doi.org/10.1371/journal.pone.0194452.g009
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that the merging process takes place in the vicinity of the 3:1 modal interaction between the

in-phase and out-of-phase modes. This experimental result is thus the confirmation that

modal interactions are one possible dynamical mechanism for the creation of isolas. A closer

investigation after merging is carried out in Fig 11, which shows acceleration signals measured

on the two masses near 2.15Hz for d = 5.9mm. A strong modulation of the time series is

observed in Fig 11a and 11b. The wavelet transform in Fig 11(c) reveals the presence of a sig-

nificant third harmonic component, the frequency of which coincides with the frequency of

the out-of-phase mode. We refer the interested reader to S1 and S2 Videos for videos of the

swept-sine responses recorded near the merging region for the isolated (d = 5.7mm) and

merged (d = 6mm) configurations, respectively. Both videos highlight the contributions of the

third harmonic of the excitation frequency.

The response of the two masses to a stepped-sine excitation at 2.17Hz is displayed in Fig 12.

The 3:1 modal interaction is clearly visible in Fig 12(b), whereas the modulation observed in

Fig 11 is repeated in Fig 12(a), which seems to relate to quasiperiodic oscillations with an enve-

lope frequency of 0.1Hz.

Correlation with the numerical model

In Figs 13 and 14, the frequency responses of the model in Eq (1) and their bifurcations are

compared to the experimental swept-sine responses, for d = 5.7mm and d = 5.9mm,

Fig 10. Realization by perturbations of periodic solutions on the detached isola. The amplitude and initial frequency of the base excitation are

d = 5mm and ω = 2.38Hz, respectively. The displacement of mass 1 and the excitation frequency are displayed through black and orange lines,

respectively.

https://doi.org/10.1371/journal.pone.0194452.g010
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Fig 11. Close-up on the merging region. Accelerations of (a) mass 1 and (b) mass 2, and (c) wavelet transform of

mass 2 acceleration in response to swept-sine excitations for d = 5.9mm.

https://doi.org/10.1371/journal.pone.0194452.g011
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respectively. For the sake of clarity, the isola is not represented in the former case. The super-

position of the frequency responses and the experimental time series demonstrate the capabili-

ties of the model to capture the dynamics of the system, especially in the merging region. In

particular, the sudden increase in the displacement of mass 2 in the vicinity of the 3:1 modal

Fig 12. Evidence of the 3:1 modal interaction. (a) Time series for the acceleration of mass 1 (in black) and 2 (in

orange), for d = 5.9mm and ω = 2.17Hz; (b) close-up.

https://doi.org/10.1371/journal.pone.0194452.g012
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interaction is represented, which can be attributed to the energy exchange between the in-

phase and out-of-phase modes. On the other hand, the discrepancies for the amplitudes of the

two masses at the 3:1 modal interaction, at resonance and at low amplitude can be attributed

to the inaccurate estimation of the damping forces.

Fig 13. Comparison between the experimental swept-sine response (in grey), the backbone of the first NNM (in

green) and the frequency response (in black), before the merging, for d = 5.7mm. (a) Mass 1; (b) mass 2. Solid and

dashed line represent stable and unstable solutions along the frequency response, respectively. Fold bifurcations are

signaled via circle markers.

https://doi.org/10.1371/journal.pone.0194452.g013
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Neimark-Sacker (NS) bifurcations are detected in the merging region in Fig 14, and

could explain the modulated oscillations observed in Fig 12. In Fig 15, time integration is per-

formed at 2.196Hz in the unstable region between the third and fourth NS bifurcations. Stable

quasiperiodic oscillations are obtained, which bare strong resemblance with the experimental

time series presented in Fig 12.

Fig 14. Comparison between the experimental swept-sine response (in grey), the backbone of the first NNM (in

green) and the frequency response (in black), after the merging, for d = 5.9mm. (a) Mass 1; (b) mass 2. Solid and

dashed line represent stable and unstable solutions along the frequency response, respectively. Fold and NS

bifurcations are signaled via circle and triangle markers, respectively.

https://doi.org/10.1371/journal.pone.0194452.g014
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Influence of the modal interaction

Experiments and simulations confirmed that the presence of the isola is closely related to the

3:1 modal interaction. Let us now investigate the effects of the modification of the modal inter-

action location. To this end, the NNMs computed for several values of the parameter m2 are

displayed in Fig 16. Increasing the value of m2 is shown to have a limited influence on the first

Fig 15. Quasiperiodic oscillations obtained from time integration. (a) Time series for the accelerations of masses 1

(in black) and 2 (in orange), for d = 5.9mm and ω = 2.196Hz; (b) close-up.

https://doi.org/10.1371/journal.pone.0194452.g015
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mode, but a strong impact on the second mode, which natural frequency decreases. This

involves, in turn, a shift of the 3:1 modal interaction to lower frequencies.

The influence of the modal interaction on the responses of the system is studied both exper-

imentally and numerically in Fig 17. For the reference configuration in Fig 17a and 17b, the

merging of the isola occurs around 2.15Hz. When m2 is augmented up to 0.526kg, the modal

interaction is detected at 2.02Hz (see Fig 17c and 17d). For this configuration, the isola still

exists. Increasing m2 to 0.868kg eventually leads to the disappearance of the 3:1 modal interac-

tion from the frequency response in Fig 17e and 17f.

Fig 16. Influence of m2 on NNM 1 (solid line), and NNM 2 represented at the third of its dominant frequency (dashed line). (a) m2

= 0.464kg (reference); (b) m2 = 0.526kg; (c) m2 = 0.868kg.

https://doi.org/10.1371/journal.pone.0194452.g016
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Fig 17. Influence of m2 on the forced response of mass 1 (left column) and mass 2 (right column), for d = 5.9mm. (a-b) m2 =

0.464kg (reference); (c-d) m2 = 0.526kg; (e-f) m2 = 0.868kg. The experimental swept-sine responses and the numerical frequency

responses are represented with grey and black lines, respectively.

https://doi.org/10.1371/journal.pone.0194452.g017
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As a closing result, Fig 18 illustrates the frequency responses of a 3-DOF model consisting

in the previous 2-DOF system to which a third mass of 0.5kg is added. Although an exhaustive

description of the dynamical behavior of the 3-DOF system is beyond the scope of this work,

Fig 18 shows that increasing the base displacement for this set-up leads to two consecutive

sequences of creation of an isola followed by its merging with the main frequency response.

Interestingly, the first NNM of this system features 3:1 interactions with the second and third

NNM, and both merging occur near these modal interactions.

Conclusions

This paper provided numerical and experimental evidence for the presence of isolated reso-

nances in the vicinity of modal interactions. First, nonlinear modal and frequency response

analyses carried out on the numerical model of a 2-degree-of-freedom system revealed the

appearance of an isola and its merging with the main response near a 3:1 modal interaction.

These simulations also shed light on the remarkable capabilities of the energy balance

approach to predict multiple resonance scenarios.

The numerical observations could be accurately reproduced using an experimental set-up.

The stable portion of an isola and its merging with the fundamental resonance branch were

carefully characterized combining swept-sine and stepped-sine excitations. As a consequence

of the merging, the isola was found to be responsible for a sudden and substantial increase in

the resonance frequency of the in-phase mode.

Fig 18. Double isola scenario observed for a 3-DOF model. The solid lines are the frequency responses computed for d = 3.8mm, d = 5.9mm and

d = 6.5mm, and the dashed line shows the projection of the first NNM in the frequency-response amplitude plane.

https://doi.org/10.1371/journal.pone.0194452.g018
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Overall, this work validated the theoretical finding of [20] that modal interactions are possi-

ble mechanisms for creating isolas, and offered a better understanding of isolas and their influ-

ence on the nonlinear system dynamics.

Supporting information

S1 Video. Isolated configuration. Video of the experimental swept-sine response obtained for

a base displacement d = 5.7mm.

(MP4)

S2 Video. Merged configuration. Video of the experimental swept-sine response obtained for

a base displacement d = 6mm.

(MP4)
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