Enantioselective Synthesis of Vinylglycine Derivatives Using Continuous-Flow Thermolysis

Cyclotron Research Centre (CRC) - A Luxen Center for Integrated Technology and Organic Synthesis (CiTOS) - JC Monbaliu

Nicolas Lamborelle

1. Introduction

• Most straightforward synthesis:

0.28 USD/g

190 USD/g

• Vgl is an interesting building block

2. Background

• Thermolysis step and side-products:

• Previously described methods:

Conventional reflux:

- © Universal glassware
- 😕 Long reaction time at high T
- 😕 T limited by solvent
- 😕 Unusual solvents
- 😕 High quantities of DHB
- 😕 Low ee

Kugelrohr apparatus:

- ③ High ee
- © Low amount of DHB
- ③ No solvent
- 🙁 Low yields
- Poor reproducibility (difficult to control vacuum and T)
- 😕 Not scalable

3. Finding a solution

- Flow chemistry (CHIM9265-1 ^(b))
 - © Pressure control
 - © Temperature not limited by the solvent
 - ③ Usual solvents
 - © Accurate control of residence time & reaction conditions
 - ☺ As soon as Vgl is formed, it is no longer exposed to high T
 - © Larger scale accessible through numbering-up
 - Promote formation of Vgl (kinetic product) over DHB (thermodynamic product).

- Side product formation (DHB + racemization)
 - Rationalization by computational studies

4. Computational studies

computational studies were performed at the B3LYP/6-31+G* level of theory

4. Computational studies

computational studies were performed at the B3LYP/6-31+G* level of theory

4. Computational studies

computational studies were performed at the B3LYP/6-31+G* level of theory

5. Mesofluidic device

Stainless steal L = 6 m $Ø_{ext} = 1/16$ " $Ø_{int} = 500 \text{ }\mu\text{m}$ for optimal heat exchange

	MetO (%)	Vgl (%)	DHB (%)
CBzNH-MetO-OMe	1.2	98.8	0
BocNH-MetO-OMe	/	/	/
FmocNH-MetO-OMe	1.6	98.4	0
NBOCNH-MetO-OMe	2.4	97.6	0
CbzNH-MetO-OBn	1.5	98.5	0
BocNH-MetO-OBn	/	/	/
FmocNH-MetO-OBn	2.1	97.9	0
NBOCNH-MetO-OBn	3.3	96.7	0

6. Conclusion

- We designed and build a mesofluidic device capable of producing 11.5 g.day⁻¹ (190 USD/g) of CbzNH-Vgl-OMe with high yields (~99%) and ee (>95%).
 - Best conditions also work for a **variety of protecting groups**.
- Contrary to batch methods, production can be **continuously monitored** and tune if necessary.
 - Great **reproducibility**
 - Production could be raised simply by **numbering up**.

Thanks for your attention