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Abstract: Transverse vibrations of beams are an interesting topic for numerous
engineering fields. The equations of motion develop under various assumptions
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theory is discussed and the importance of each term of the equation is studied.
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1 Introduction

Transverse vibrations of beams have been extensively studied for a few centuries. This

interest has led to a huge number of research works. The problem is still investigated today

given its large range of applications and for two other reasons. On the one hand, several

assumptions may be formulated to project the most general equations of the theory of

elasticity onto beam, rod or elastica models (Timoshenko and Goodier, 1987). Among the

available beam theories, the well-known model proposed by Bernoulli and Euler relies on

the importance of the bending effect and results in acceptable approximations for a number

of engineering problems. Nevertheless, the model is inaccurate for the higher modes and

non-slender beams. Improvements were then introduced by Lord Rayleigh (1877), Strutt

(1877) and with the ‘shear’ model, through the integration of the rotary inertia and the

shear distortion effects of the cross section, respectively. Finally, Timoshenko (1921, 1922)

proposed a beam theory combining all these effects and giving a more adequate solution to

the problems of higher modes and non-slender beams. On the other hand, the solution of

these equations depends on the boundary conditions. The most classical ones are the ‘free-

free’, ‘clamped-clamped’, ‘hinged-hinged’ or ‘clamped-free’ ends, but other possibilities

exist, as for instance a partially clamped end. There are therefore as many solutions as

combinations of theories and boundary conditions.

Solving the differential equations of motion analytically requires the development of

the so-called frequency equation. Han et al. (1999) detailed these developments for the
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four above-mentioned models and for the classical boundary conditions. Other authors

studied this problem with some specific details in the view of practical applications. Low

(1999, 2000) focused on the frequency analysis of an Euler-Bernoulli beam bearing a

concentrated mass at an arbitrary location and developed a modified Dunkerley formula to

approximate the exact solution with shorter computational time. Because of its increasing

use as robot arms, machines or structures, Bruch and Mitchell (1987), Oguamanam (2003),

Salarieh and Ghorashi (2006) and Ansari et al. (2011) investigated the free vibrations of

an Euler-Bernoulli or a Timoshenko cantilever beam with a rigid tip in the perspective

of studying the behaviour of a flexible member. More recent contributions dealt with

non-homogeneous or cracked beams (Li et al., 2013a; Khaji et al., 2009). The influence

of the support conditions was also considered, as for example Timoshenko beams on

Pasternak foundations (Calio and Greco, 2012) and beams on elastic end support (Li,

2013). A particular attention to forced vibrations of Timoshenko beams was given by

Majkut (2009).

Beside the study of transversally vibrating beams, a similar theoretical approach has

been used to examine the stability of beams. Several research programs have been carried

out over the past 20 years (Farchaly and Shebl, 1995; Esmailzadeh and Ohadi, 2000),

with some focused on shear beams (Zhang et al., 2013), investigating the consequences

of variable sections (Naguleswaran, 2003) or of an elastically restrained base (Hernández-

Urrea and Dario Aristizábal-Ochoa, 2008).

The present paper aims at adding another contribution to the study of transverse

vibrations of beams by determining the frequency equation of two particular cantilever

beam models, using the Timoshenko beam theory. This paper also presents a new

application of the frequency equations for the identification of equivalent mechanical

properties of unreinforced masonry (URM) structural elements. Current procedures for

the assessment of these properties are based on empirical relations between the properties

of the masonry units and joints. New building systems have been however developed

for energy efficiency coupled with economical reasons and still need to be characterised

(da Porto et al., 2009). Defining these properties for the masonry structural elements is

a primary requirement given that the full URM structures are usually modelled at the

macro-scale with the equivalent frame method (Penna et al., 2013). The use of such an

approach is widespread and provides relevant results with an interesting computational

time (Lagomarsino et al., 2013; Braga and Liberatore, 1990; Kappos et al., 2002).

In this perspective, the boundary conditions of simple cantilever beams are here

updated in order to reproduce experimental configurations of specimens tested in the

framework of the European FP7 project SERIES (Mordant et al., 2014). The specimens are

four simple load-bearing clay URM walls with thin-layer glued bed joints and a tongue-

and-groove system as head joints. They have two different aspect ratios, with a length of

2.10 m (corresponding to the ‘long walls’ here under) and 0.72 m (corresponding to the

‘short walls’ here under), respectively. An additional 5-ton steel mass is placed on the walls

and one wall of each aspect ratio includes soundproofing rubber layers located at the base

of the wall and between the wall and the additional mass (Figure 1). These specimens have

been tested on a shake table with a characterisation of their dynamic properties prior to

each shake. The geometry of the tested specimens involves the use of the Timoshenko

beam theory due to the importance of the shear deformability. Interested readers can refer

to Mordant (2016) for details about the specimens and the experimental campaign.

A first model is focused on walls without soundproofing devices and corresponds to

the classical cantilever beam with an additional mass located at the free end (Figure 2b).
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A second model considers the walls with rubber layers and has to particularities due to

these latter:

i the base end is elastically restrained

ii the additional mass is not rigidly connected to the free end (Figure 2c).

Figure 1 Rubber devices used for acoustic performances (see online version for colours)

Figure 2 General sketches of (a) a cantilever beam including an additional mass and flexible
layers, (b) model 1 and (c) model 2 (see online version for colours)

Both translational and rotational flexibilities are considered. For both models, the influence

of the additional mass is studied through

i its size (i.e. its geometry)

ii its relative magnitude referred to the mass of the wall

iii its rotary and translational inertia

iv the distance between its centroid and the beam free end (i.e. the top of the wall).

In particular, the novelty of the second model is to consider a flexible connection between

the free end and the additional mass.

Once the dimensionless frequency equations are obtained, they are used to identify

equivalent mechanical properties of the experimental specimens. This paper being focused

on the identification of the dynamic properties and not the seismic response, only

experimental results in terms of natural frequencies are useful (Mordant, 2016). During

this phase, the walls behave in the elastic range, since they are submitted to a very

low excitation. Then, the importance of the different terms of the frequency equations

is investigated. Finally, equivalent mechanical properties of the tested specimens are

identified and the results are compared to current standard recommendations.
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2 Model description using Timoshenko beam theory

2.1 Equations of motion

The Timoshenko beam theory includes bending, shear distortion and rotary inertia effects.

Two space- and time-dependent fields describe the behaviour of the beam, namely the

transverse displacement v∗ (x∗, t∗) and the angle of rotation due to bending α (x∗, t∗).
Two governing differential equations are derived from Hamilton’s variational principle

ρ∗A∗
∂2v∗

∂t∗2
− k′G∗A∗

(

∂2v∗

∂x∗2
−

∂α

∂x∗

)

= f (x∗, t∗) (1)

ρ∗I∗
∂2α

∂t∗2
− EI∗

∂2α

∂x∗2
− k′G∗A∗

(

∂v∗

∂x∗
− α

)

= 0 (2)

where ρ∗ is the density of the beam, A∗ and I∗ are its cross-sectional area and bending

inertia, k′ is a shape factor, E and G∗ represent the elastic and shear moduli of the

beam, respectively, and f (x∗, t∗) is the transverse applied force per unit length. The used

nomenclature is taken from Han et al. (1999). This set of equations can be made non-

dimensional by introducing

x∗ref = Hw and t∗ref =
1

ω∗

1

= H2
w

√

ρ∗A∗

EI∗
(3)

as a reference length (the length of the beam, i.e. the height of the wall in the following

application) and time (the travelling time of a bending wave along the beam), respectively.

The space and time parameters are therefore normalised as:

x =
x∗

x∗ref
; t =

t∗

t∗ref
, (4)

while the transverse displacement of the beam is scaled as v = v∗

x∗

ref
. Assuming no

transverse force per unit length and a linear elastic, isotropic and homogeneous beam with

a constant cross section, the equations of motion (1) and (2) can be decoupled. With the

dimensionless coordinates, they read

∂4v

∂x4
− Ωa

∂4v

∂x2t2
+
∂2v

∂t2
+Ω2

b

∂4v

∂t4
= 0, (5)

∂4α

∂x4
− Ωa

∂4α

∂x2t2
+
∂2α

∂t2
+Ω2

b

∂4α

∂t4
= 0 (6)

with the dimensionless groups

Ωa =
I∗

A∗H∗2
w

(

1 +
E

k′G∗

)

; Ω2
b =

(

I∗

A∗H∗2
w

)2
E

k′G∗
. (7)

As the form of both differential Eqs. (5) and (6) is the same, the topology of the

unknown fields are also the same. These latter can be expressed in the frequency domain
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by setting v(x, t) = φ(x)ejωt and α(x, t) = ψ(x)ejωt, with ω = ω∗

ω∗

1

the dimensionless

circular frequency and j the unit complex number. This translates the time synchronisation

of the transverse displacement and of the angle of rotation due to bending (Han et al., 1999;

Majkut, 2009). Plugging this ansatz into Eqs. (5) and (6) yields

[

φ
′′′′

+Ωaω
2φ

′′

− ω2φ+Ω2
bω

4φ
]

ejωt = 0 (8)

[

ψ
′′′′

+Ωaω
2ψ

′′

− ω2ψ +Ω2
bω

4ψ
]

ejωt = 0 (9)

where the prime symbol indicates derivatives with respect to x. These fourth-order

homogeneous result in the general solution for the mode shapes φ(x) and ψ(x)

φ = K1e
z1x +K2e

z2x +K3e
z3x +K4e

z4x (10)

ψ = Q1e
z1x +Q2e

z2x +Q3e
z3x +Q4e

z4x (11)

where

z1,2 = ±

√

√

√

√

−
Ωa

2
ω2 −

√

(

Ω2
a

4
− Ω2

b

)

ω4 + ω2 = ∓a (12)

z3,4 =

√

√

√

√±

[

Ωa

2
ω2 −

√

(

Ω2
a

4
− Ω2

b

)

ω4 + ω2

]

=

{

b

b̃
(13)

are the roots of the characteristic polynomial. The variables a, b and b̃ are the dimensionless

wave numbers.

Finally, Eqs. (10) and (11) can be turned into trigonometric or hyperbolic expressions.

Two pairs of solutions are derived from (10) and (11) since z3 and z4 are either real or

imaginary, depending on the circular frequency ω with respect to the critical frequency

ωc = Ω−1
b . When the circular frequency is smaller than the critical frequency (ωΩb ≤ 1),

the spatial (wave) solutions are expressed by:

φ = C1 sin ax+ C2 cos ax+ C3 sinh bx+ C4 cosh bx, (14)

ψ = D1 sin ax+D2 cos ax+D3 sinh bx+D4 cosh bx. (15)

On the contrary, when the angular frequency is larger than the critical frequency (ωΩb ≥ 1),

the solutions read

φ = C̃1 sin ax+ C̃2 cos ax+ C̃3 sin b̃x+ C̃4 cos b̃x, (16)

ψ = D̃1 sin ax+ D̃2 cos ax+ D̃3 sin b̃x+ D̃4 cos b̃x. (17)

The parameters C1, C2, C3, C4 and D1, D2, D3, D4 (resp. C̃1,· · · , C̃4 and D̃1,· · · , D̃4)

in Eqs. (14) and (15) (resp. (16) and (17)) are eight coefficients to be determined to satisfy
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the boundary conditions. These coefficients can however be reduced to four as explained

by Han et al. (1999), observing that they are related by

D1 = −ϕaC2D2 = ϕaC1
(18)

D3 = ϕbC4D4 = ϕbC3

and

D̃1 = −ϕ̃aC̃2D̃2 = ϕ̃aC̃1
(19)

D̃3 = −ϕ̃bC̃4D̃4 = ϕ̃bC̃3

with ϕa = a2+γ2b2

(1+γ2)a , ϕb =
b2+γ2a2

(1+γ2)b , ϕ̃a = a2
−γ2b2

(1+γ2)a , ϕ̃b =
b2−γ2ba2

(1+γ2)b and γ = E
k′G∗

=
2(1+ν)

k′
.

Once the boundary conditions specified, this yields four relations between the four

unknown coefficients C1,· · · , C4 (C̃1,· · · , C̃4, respectively, if ωΩb ≥ 1) which can be

expressed as a matrix. The frequency equation is then obtained by setting the determinant

of this matrix to zero, avoiding the trivial solution corresponding to zero coefficients, and

revealing therefore the natural frequencies of the considered problem.

2.2 Models and boundary conditions

Two models of a cantilever beam are considered herein with specific details. The first

model has an additional mass rigidly connected to the free end of the beam, as shown in

Figure 2b. The second model is sketched in Figure 2c and differs from the first one due

to a partially clamped bottom end and to an elastic connection of the additional mass to

the free end. In the applications considered below, these peculiarities are the consequences

of flexible elements located at the beam ends and modelled by rotational and translational

springs. In both models, the additional mass weighs m∗ [kg] and possesses a rotary inertia

I∗cin [kg.m2]. Moreover, the centroid of the mass is at a distanceH∗

b [m] from the tip end of

the beam. The springs defining the partially clamped end are characterised by a stiffness in

rotationK∗

r,b and in translationK∗

t,b, whileK∗

r,t andK∗

t,t are the stiffness in rotation and in

translation of the springs representing the flexible connection of the additional mass to the

free end. These parameters are scaled in the same manner as above, leading to the following

dimensionless quantities m =
m∗ω∗

2

1
H3

w

EI∗
, Icin =

I∗

cinω
∗
2

1
Hw

EI∗
, Hb =

H∗

b

Hw
, Kr,b = K∗

r,b
H3

w

EI∗
,

Kt,b = K∗

t,b
Hw

EI∗
, Kr,t = K∗

r,t
H3

w

EI∗
and Kt,t = K∗

t,t
Hw

EI∗
.

Details of the beam top with the additional mass are depicted in Figure 3, showing the

contributions of the bending (blue) and shear (red) effects in terms of angle of rotations.

The usual simplification for the shear deformation is given in Figure 3b. Under bending

and shear effects, the centroid of the additional mass is subjected to a rotation α with

respect to the x-axis. The angle γ, representing the shear effects, only impacts the variation

of the transverse displacement along the height. This observation will be useful for the

formulations of the bending moment and shear force.

To be consistent with the Timoshenko beam theory described above, a homogeneous

beam with a linear and indefinitely elastic material and a doubly symmetric cross section is

assumed. The consequences of the specific details are practically translated by modifying
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Figure 3 Details of the model free end (see online version for colours)

the boundary conditions of the classical cantilever beam. These latter are here expressed in

a dimensionless form for the clamped (x = 0) and free (x = 1) ends, respectively,

v = 0 ; α = 0 at x = 0 (20)

M = −α′ = 0 ; V = k′GA (v′ − α) = 0 at x = 1 (21)

with G = G∗H4
w/EI

∗, A = A∗/H2
w and M (x, t) and V (x, t) representing the

dimensionless bending moment and shear force, defined as

M =
M∗

M∗

ref

and V =
V ∗

V ∗

ref

(22)

where M∗ (x∗, t∗) and V ∗ (x∗, t∗) are the bending moment and the shear force and

M∗

ref =
EI∗

Hw

and V ∗

ref =
EI∗

H2
w

(23)

2.2.1 First model

In the first model, the additional mass only influences the conditions at the free end (x = 1),

involving non-zero bending moment and shear force

M = −α′ = mHb (v̈ +Hbα̈) + Icinα̈

V = k′GA (v′ − α) = −m
[

v̈ +Hbα̈−Hbv̈
′ −H2

b α̈
′
]

+ Icinα̈
′ (24)

The magnitude m and inertia Icin of the mass as well as the distance Hb are identified as

the three main parameters characterising the influence of the additional mass. The prime

and dot symbol indicate derivatives with respect to x and t, respectively.
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2.2.2 Second model

In addition to the mass, the presence of flexible devices in the second model affects the

boundary conditions at both ends. On the one hand, the beam base (x = 0) cannot be

considered as clamped anymore. A rotation and a transverse displacement are allowed and

their magnitude depends on the stiffness of the springs

v =
V

Kt,b

=
k′GA

Kt,b

(v′ − α) ;α = −
M

Kr,b

=
α′

Kr,b

. (25)

On the other hand, a relative rotation △α and a relative displacement △v are possible

between the top of the beam and the base of the additional mass due to the elastic

connection. These contributions have to be taken into account and lead to the boundary

conditions at the free end (x = 1)

M = −α′

= mHb

[

v̈ + △̈v +Hb (α̈+△α̈)
]

+ Icin (α̈+△α̈)

= mHb (v̈ +Hbα̈) +mHb

[

k′GA

Kt,t

(v̈′ − α̈) +
Hbα̈

′

Kr,t

]

+ Icin

(

α̈+
α̈′

Kr,t

)

V = k′GA (v′ − α)

= −m [v̈ +△v̈ +Hb (α̈+△α̈)] +mHb (v̈
′ +△v̈′ +Hbα̈

′ +Hb△α̈
′)

+ Icin (α̈
′ +△α̈′) (26)

= −m (v̈ +Hbα̈)−m

[

k′GA

Kt,t

(v̈′ − α̈) +
Hbα̈

′

Kr,t

]

+mHb (v̈
′ +Hbα̈

′)

+mHb

[

k′GA

Kt,t

(v̈′′ − α̈′) +
Hbα̈

′′

Kr,t

]

+ Icin

(

α̈′ +
α̈′′

Kr,t

)

Equations (24)–(26) neglect the second-order effects and the influence of the gravity is

hence not considered.

3 Frequency equations

The frequency equations are established for the case of a circular frequency lower than the

critical frequency (ωΩb ≤ 1). The equations for a circular frequency larger than the critical

one can be obtained by replacing b with jb̃.

3.1 Frequency equation of the first model

Equations (20) and (24) provide some relations between the four unknown coefficients, see

(14). These relations are written in a matrix form as:

Ac :=









0 1 0 1
ϕa 0 ϕb 0
A31 A32 A33 A34

A41 A42 A43 A44























C1

C2

C3

C4















= 0 (27)
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where c is the vector gathering the integration constants of the mode shapes φ(x) and ψ(x).
In matrix A, we have introduced

A31 =
(

aϕa + P̄
)

sin a+ ϕaQ̄ cos a

A32 =
(

aϕa + P̄
)

cos a− ϕaQ̄ sin a

A33 = −
(

bϕb − P̄
)

sinh b+ ϕbQ̄ cosh b

A34 = −
(

bϕb − P̄
)

cosh b+ ϕbQ̄ sinh b

A41 = (a− ϕa)

(

1 +
P̄

k′GA

)

cos a−

(

ω2m

k′GA
+

aϕa

k′GA
Q̄

)

sin a (28)

A42 = − (a− ϕa)

(

1 +
P̄

k′GA

)

sin a−

(

ω2m

k′GA
+

aϕa

k′GA
Q̄

)

cos a

A43 = (b− ϕb)

(

1 +
P̄

k′GA

)

cosh b−

(

ω2m

k′GA
−

bϕb

k′GA
Q̄

)

sinh b

A44 = (b− ϕb)

(

1 +
P̄

k′GA

)

sinh b−

(

ω2m

k′GA
−

bϕb

k′GA
Q̄

)

cosh b

where

Q̄ = ω2
(

mH2
b + Icin

)

; P̄ = ω2mHb. (29)

Setting the determinant of the matrix A to zero leads to the frequency equation. This

equation needs to be solved for ω which lies in a, b, Q̄ andP̄ .

3.2 Frequency equation of the second model

In the second model, based on Eqs. (25) and (26), the frequency equation reads

Ac :=









Â11 1 Â13 1

ϕa Â22 ϕb Â24

A31 Â32 Â33 Â34

Â41 Â42 Â43 Â44























C1

C2

C3

C4















= 0 (30)

where

Â11 = −
k′GA

Kt,b

(a− ϕa)

Â13 = −
k′GA

Kt,b

(b− ϕb)

Â22 =
aϕa

Kr,b

Â24 = −
bϕb

Kr,b

Â31 = A31 −
aϕa

Kr,t

Q̄ sin a+
k′GA

Kt,t

(a− ϕa) P̄ cos a
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Â32 = A32 −
aϕa

Kr,t

Q̄ cos a−
k′GA

Kt,t

(a− ϕa) P̄ sin a

Â33 = A33 +
bϕb

Kr,t

Q̄ sinh b+
k′GA

Kt,t

(b− ϕb) P̄ cosh b (31)

Â34 = A34 +
bϕb

Kr,t

Q̄ cosh b+
k′GA

Kt,t

(b− ϕb) P̄ sinh b

Â41 = A41 −
aϕa

k′GAKr,t

[

aQ̄ cos a− P̄ sin a
]

−
(a− ϕa)

Kt,t

[

ω2m cos a+ aP̄ sin a
]

Â42 = A42 +
aϕa

k′GAKr,t

[

aQ̄ sin a+ P̄ cos a
]

+
(a− ϕa)

Kt,t

[

ω2m sin a− aP̄ cos a
]

Â43 = A43 +
bϕb

k′GAKr,t

[

bQ̄ cosh b− P̄ sinh b
]

+
(b− ϕb)

Kt,t

[

ω2m cosh b+ bP̄ sinh b
]

Â44 = A44 +
bϕb

k′GAKr,t

[

bQ̄ sinh b− P̄ cosh b
]

+
(b− ϕb)

Kt,t

[

ω2m sinh b+ bP̄ cosh b
]

It can be noticed that this second case degenerates into the first model if the stiffnesses

Kt,t, Kr,t, Kt,b, Kr,b tend to infinity.

4 Parametric study of the beam models, frequency equations and mode

shapes

The coefficients of the matrix A, leading to the expression of the frequency equation,

highlight the importance of the geometrical and mechanical properties of the beam through

the dimensionless groups Ωa and Ωb. Additional parameters also influence this equation

due to the presence of an additional mass at the top, such as the mass m and its rotary

inertia Icin as well as the distance Hb from the beam free end to the centroid of the mass.

The second model has four extra parameters. These are the stiffnesses in rotation and in

translation of the material placed at the beam ends, namely (Kr,b, Kt,b) and (Kr,t, Kt,t)

for the base and top ends, respectively. In comparison with the classical cantilever beam,

those parameters obviously add complexity in the frequency equation.

4.1 Comparison of the Euler-Bernoulli and Timoshenko beam models

Equations (5) and (6) express the decoupled equations of motion according to the

Timoshenko beam theory. When Ωa ≪ 1 and Ωb ≪ 1, these equations regularly

degenerate into the equation of motion given by the Euler-Bernoulli (E-B) theory. This

section aims at studying the evolution of the wave numbers a and b (or b̃) as a function

of the dimensionless groups Ωa and Ωb. The variations of these latter are correlated in the

light of the expressions of the wave numbers given in (12) and (13). Indeed, the radicand

of these equations has to be positive, leading to the condition

Ω2
b −

Ω2
a

4
≤

1

ω2
. (32)

Figure 4 gives a mapping of the wave numbers a and b (or b̃), respectively, for a

dimensionless circular frequency ω equal to unity. It shows white areas which correspond
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to couples
[

Ωa; Ω
2
b

]

not complying with the condition (32). Setting the dimensionless

groups Ωa and Ωb to zero provides identical and unit wave numbers (a = b = 1). It

corresponds to the E-B beam theory. In the Timoshenko beam theory, these groups

are however non-zero. Considering the specimens without rubber described by Mordant

(2016) and the mechanical properties as recommended in the Eurocodes, namely E =
1000fk and G∗ = 0.4E, we obtain

Figure 4 Influence of Ωa and Ωb on wave numbers a and b (or b̃) (see online version for colours)

Ωa = 0.0489 ; Ω2
b = 4.4819× 10−4

for the short wall and

Ωa = 0.4159 ; Ω2
b = 0.0324

for the long one. These couples of values are represented in Figure 4 with red and green

points, respectively. The wave numbers are a = 0.9888 and b = 0.9885 for the short wall,

while the wave numbers for the long wall are a = 0.8901 and b = 0.8708. Consequently,

an E-B model is sufficient to model the short wall, whereas a Timoshenko beam is required

for the long wall.

4.2 Parameters related to the additional upper mass

Figure 5 plots the dimensionless frequency equation of the first model considering the

material and geometrical properties of the short wall given in Mordant (2016). The values

of the parameters related to the mass are also derived from the quantities given in this

reference. The mechanical properties of the masonry are chosen according to the Eurocodes

recommendations. These choices result in Ωa = 0.0489 and Ω2
b = 4.4819× 10−4. Several

variations around this nominal configuration are represented:

i no additional mass (yellow)
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ii an upper mass without gap Hb between the beam end and the centroid of the mass

(green)

iii an additional mass without rotary inertia Icin (red)

iv a combination of (ii) and (iii) (black).

Figure 5 Frequency equation with different assumptions (first model) - short wall without rubber
(see online version for colours)

Figure 6 gives the same results in the case of the long wall, whose nominal configuration

is characterised by Ωa = 0.4159 and Ω2
b = 0.0324. Beside the solid curves representing

the Timoshenko model, dashed lines with similar colours represent the frequency

equations obtained by the E-B beam theory (i.e. enforcing Ωa = Ω2
b = 0) under the same

assumptions.

Comparison of the different curves in Figures 5 and 6 shows the importance of the

additional mass. This latter indeed provides more than 90% of the total mass and involves

Figure 6 Frequency equation with different assumptions (first model) - long wall without rubber
(see online version for colours)
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a large decrease of the first circular frequency of the beam. The influence of the gapHb and

the rotary inertia Icin is more important for the short wall than for the long one. Numerical

values are given in Table 1. The variation is effectively higher for the short wall (from

5.3 to 16.2%), whereas it is less significant for the long one (less than 4.9%). Therefore,

the contribution of the rotary inertia and the distance between the top of the wall and the

centroid of the mass has to be considered, especially for the short wall.

Figures 5 and 6 also compare the frequency equations developed when considering

E-B (dashed lines) and Timoshenko (solid lines) beam theories. The fundamental circular

frequencies for both theories are also tabulated in Table 1. Under the assumptions (ii)–(iv),

the relative difference between both theories is lower than 5% regarding the short wall.

This difference ranges between 19 and 30% in the case of the long wall. These values show

that the E-B model can be sufficient for the short wall, but that the Timoshenko model is

necessary for the long wall, as already observed from the graphical representations. The E-

B theory with assumption (i) leads to the same result for both walls. This comes from the

non-dimensional formalism defined in Section 2.

Table 1 Fundamental circular frequency with different assumptions (first model) - numerical
values

Wall Full m = 0 Hb = 0 Icin = 0 Hb = Icin = 0

(i) (ii) (iii) (iv)

Short (Timoshenko) 0.2513 3.1820 0.2648 0.2718 0.2918

Short (Euler-Bernoulli) 0.2579 3.5160 0.2737 0.2829 0.3075

Long (Timoshenko) 0.3560 2.1254 0.3614 0.3660 0.3735

Long (Euler-Bernoulli) 0.4383 3.5160 0.4649 0.4803 0.5215

Regarding the frequency equation obtained with the Timoshenko theory, further studies

on the influence of the different parameters related to the mass have been performed. The

results are given in Figure 7. The influence of the magnitude of the additional mass (top),

of the gap Hb (middle) and of the rotary inertia Icin (bottom) are given for the short (in

blue) and long (in red) walls. The results are in accordance with the values tabulated in

Table 1. For example, values obtained under the assumption of no additional mass (i) or

Hb = 0 (ii) correspond to the intersection of the curves in Figure 7 (top and middle) with

the x-axis. Figure 7 (bottom) provides the tabulated values with Icin = 0 (assumption (iii))

when the ordinate is equal to −1. Again, Figure 7 highlights the higher importance of the

parameters in the case of the short wall. Additional observations can be made: first, the first

circular frequency is very sensitive to variations of the additional mass. The interpretation

of these results has to be carefully done because the specimen total mass varies and any

increment of mass has also consequences on the rotary inertia. Second, the rotary inertia

Icin seems to have the lowest influence on the frequency equation, especially for the long

wall.
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Figure 7 Influence of the parameters related to the mass: (a) Influence of the additional mass at
the top, (b) influence of the distance between the top of the wall and the centroid of the
mass, (c) influence of the rotary inertia of the mass (see online version for colours)

4.3 Parameters related to the stiffness of the base and of the mass-beam

connection

The influence and importance of the presence of rubber layers leading to a beam with an

elastically restrained bottom end and an additional mass elastically connected to the top is

studied by comparing the frequency equation obtained with the assumption of

i a cantilever beam with an additional mass rigidly connected to its free end (first

model case)

ii the same beam with an elastically restrained base

iii the same beam with a mass elastically connected to the top

iv the beam combining the effects of (ii) and (iii).

The material and geometrical properties are those of the short and long walls given

by Mordant (2016). The parameters related to the additional mass are based on the

quantities given in the same reference. The couple of mechanical characteristic of the

rubber (E∗

rubber, G
∗

rubber) are chosen in the range of usual values and but are the same for

the bottom and top ends. The frequency equations are re-normalised with the same circular

frequency than the first model, since the beam is the same.

The results are given in Figure 8 (short wall) and Figure 9 (long wall) and the

comparison is summarised in Table 2 with several observations.

The effect of the rubber layers on the natural frequency is more or less the same for both

walls with a decrease in the fundamental circular frequency around 75%. This conclusion

is mitigated when there is only the elastically connected mass (column 3) given that the

decrease is about 45% for the short wall and 63% for the long wall. Both rubber layers

influence the results, even if placing a rubber layer at the bottom end only (column 4)

leads to a larger decrease. Indeed, Table 2 highlights that adding the soundproofing layer

between the top of the wall and the additional mass in the presence of a layer located at the
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Figure 8 Influence of the stiffness of the base and stiffness of the mass-to-wall connection
(second model) - short wall with rubber (see online version for colours)

base of the wall does not involve a significant drop. Therefore, it can be concluded that the

bottom rubber layer has more influence on the frequency drop. The decreases produced by

the two rubber layers are not additive.

Figure 9 Influence of the stiffness of the base and stiffness of the mass-to-wall connection
(second model) - long wall with rubber (see online version for colours)

Table 2 Fundamental circular frequency with different assumptions (second model) -
numerical value

Wall Without rubber With rubber 1/Kr,b = 1/Kt,b = 0 1/Kr,t = 1/Kt,t = 0

Short 0.2513 0.0600 0.1336 0.0652

Long 0.3561 0.0761 0.1311 0.0906
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4.4 Mode shapes

The roots of the frequency equation provide the natural frequencies of the model. They are

associated with coefficients C1, C2, C3 and C4 (respectively C̃1,· · · , C̃4, if ωΩb ≥ 1) and,

thereby, the mode shapes φ(x) and ψ(x).
The mode shapes related to the first circular frequency for each of the four tested

specimens are represented in terms of displacements φ(x) (Figure 10 top) and rotations

ψ(x) (Figure 10 bottom). These are normalised in such a way that the maximum

displacement (rotation) is equal to unity. Differences in terms of displacements between

the walls without rubber devices are first observed. The mode shape for the short wall

presents a vertical tangent at the base, while the mode shape of the long wall can be well

approximated by a straight line. The shapes in terms of rotations are similar in each case.

Such results are in accordance with previous conclusions, where the short wall could be

considered as a Euler-Bernoulli beam and the shear effect are more significant for the long

wall, requiring therefore a Timoshenko model. A comparison is then made between walls

with the same geometry, but including or not soundproofing rubber elements. The presence

of these latter involves non-zero displacement and rotation at the bottom of the wall. In

particular, the rotation is mainly concentrated at the bottom of the beam, and more or less

constant along the wall. The displacement mode shapes for the short and long walls are

close to a straight line in the presence of rubber devices. It is therefore important not to

directly conclude to the need of a Timoshenko beam model when a straight displacement

mode shape is observed (e.g. short wall), as it may simply result from the compliance with

the end connections.

Figure 10 Modal shapes (top : displacements - bottom : rotations) (see online version for colours)

5 Determination of equivalent mechanical properties of specific structural

elements

The expression of the frequency equation of the Timoshenko beam model depends on

the two dimensionless groups Ωa and Ω2
b , i.e. the ratio of the gyradius of the cross

section, the beam length and the elastic-to-shear moduli ratio. These groups are explicit
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in the governing equations and implicit in the waves numbers a, b and b̃. In the present

contribution, other parameters also play an important role in the model, like the mass

and the geometry of the additional mass (m, Hb and Icin) or stiffness’s involved in

the boundary conditions Kr,b, Kt,b, Kr,t and Kt,t. The determination of some of these

parameters is straightforward, especially for geometrical ones. Regarding URM structures,

others are more difficult to assess because of the heterogeneity of the material (units +

mortar) and the large range of masonry types (clay or concrete units with mortar, glued or

empty joints, etc.).

In the perspective of modelling the URM structural elements with equivalent

homogeneous and isotropic beam elements at a macro-scale (equivalent frame model),

the use of the frequency equation to determine equivalent mechanical properties becomes

relevant. Indeed, the establishment of this equation is based on a beam model with

assumptions on the material similar to what is used in equivalent beam models. Usual

possible ways to estimate the mechanical properties of such elements are the execution

of tests according, for instance, to EN 1052-1 or the use of empirical formulae. These

latter are however derived from experimental tests and cannot cope with the specificities

of every type of masonry. In the experimental campaign used as main reference for the

present contribution, tests on wallets according to EN 1052-1 have been carried out prior

to the dynamic testing by the producer of the masonry units to evaluate the strength of the

masonry but however without including the characterisation of the elastic modulus.

In the following, the frequency equations are used to determine the fundamental

frequency of URM walls without soundproofing devices prior to the shakes. This frequency

is equal to 9.33 Hz and 4.02 Hz for the long and short walls respectively. Due to the lack

of characterisation of the elastic and shear moduli of the masonry, recommendations of the

Eurocodes are first considered. Then, a parametric study is carried out in order to define

the couples of equivalent mechanical properties leading to the undamaged fundamental

frequency obtained by the experiments. Finally, the more relevant couple (E,G∗) is used

as an input for the frequency equation related to walls including rubber and a parametric

study is developed to identify equivalent mechanical properties of the rubber.

5.1 Fundamental frequency using standard recommendations

EN-1996-1-1 advises that (Section 3.7.2.(2)) “In the absence of a value determined by tests

in accordance with EN 1052-1, the short-term secant modulus of elasticity of masonry, E,

for the use in structural analysis, may be taken to be KEfk” and recommends the value

of 1000 for KE . Notice that the value of KE is not divided by 2 to take into account

cracking, as suggested by EN 1998-1 for seismic analysis of URM structures, because

the used experimental results correspond to an undamaged configuration. EN 1996-1-1

also defines the shear modulus G∗ as 40% of the elastic modulus E (Section 3.7.3.(1)). It

follows,

E = 3900MPa; G∗ = 1560MPa. (33)

Substituting these values in the frequency equation corresponding to the simple URM walls

provides the fundamental frequencies tabulated in Table 3. Comparing these results with

the values obtained from the experiments shows a relative difference of 54.71 and 20.24%

for the long and short walls, respectively. The recommendations of the Eurocodes lead

therefore to an overestimation of the mechanical parameters in the case of URM with thin
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bed-layered joints using a tongue-and-groove system for the head joints. The discrepancy

can either come from the assessment of the elastic modulus or from the ratio between the

shear and elastic moduli G∗/E. In the case of masonry with empty vertical joints, the

definition of a unique ratio for the estimation of the shear modulus independently from the

length of the wall is quite surprising. Indeed, the number of joints increases with the length

of the wall and a higher deformability in shear could be expected.

Table 3 Fundamental frequency of URM walls without rubber using the standards
recommendations

Long wall Short wall

Frequency [Hz] 20.82 5.04

Dimensionless frequency [-] 0.057 0.040

5.2 Characterisation of the masonry mechanical properties

Based on the observations in the previous section, a parametric study is performed with

the aim of identifying the couples (E,G∗) that should be used in the frequency equation in

order to recover the eigenfrequencies measured experimentally. Instead of adjusting E and

G∗ separately, we take the advantage of the fact that the ratioG∗/E usually lies in a specific

range. We will therefore identify two parameters, namely the elastic modulus E and the

ratio G∗/E by constraining this identification problem to a unique Young’s modulus for

both long and short walls. This constraint stems from the fact that walls are built using the

same masonry. The vertical empty joints should thus not influence the bending behaviour

and, consequently, the value of the equivalent elastic modulus.

Figure 11 plots the results of this analysis for the long and short walls without rubber.

The blue and red lines are the lieu of the pairs (E,G∗/E) providing, with the Timoshenko

beam model, the same fundamental frequency as that identified from the experiments for

the long and short walls, respectively.

Figure 11 Characterisation of the masonry mechanical properties
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Comparison of the curves in Figure 11 highlights a higher dependency to the G∗/E ratio

of the long wall because its curve shows a more important increase in the elastic modulus

when G∗/E ratio decreases, at least for E & 800 MPa. Such a sensitivity is intuitively

expected, when considering the ratio between the bending and shear deformabilities of the

walls. Indeed, the influence of the latter becomes as important as the former in the case of

the long wal, since they are of the same order of magnitude (Table 4).

This statement is further emphasised in Figures 12 and 13. Figure 12 effectively

illustrates the high dependency to the G∗/E ratio of the results for the long wall, since the

curves differ while they are clearly similar for the short wall (Figure 13).

Table 4 Bending and shear deformabilities of masonry walls

Bending deformability [m/N] Shear deformability [m/N]

Long wall 9.360710−9 9.555710−9

Short wall 2.322610−7 2.787110−8

Figure 12 Dependence to the shear deformability (long wall) (see online version for colours)

Considering the constraint on the equivalent Young’s modulus, this one is identified as

ranging from 2400 to 4000 MPa (see black arrow in Figure 11). For the short wall, it is

most likely around 2450 MPa which agrees with a G∗/E ratio between 1 and 1/3. For the

long wall, this leads to G∗/E ratio lower than 0.1. The considered limits on the interval

[1/3; 1] for the G∗/E ratio correspond to the classical limitation of the Poisson’s ratio.

This ratio relates the elastic and shear moduli and can vary from −1 to 0.5 for a continuous

material. However, such assumption is questionable in the case of masonry with empty

vertical joints and the G∗/E ratio may become lower than 1/3 (Poisson’s ratio virtually

larger than 0.5). This range of values is also observable for other materials (Lee and Lakes,

1997). Moreover, contrary to the bending deformability, the shear deformability might

suffer from size effects (i.e. number of vertical open joints), which are not accounted for
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Figure 13 Dependence to the shear deformability (short wall) (see online version for colours)

in our homogenised Timoshenko beam model, resulting therefore in an equivalent shear

modulus lower for the long wall.

The recommended ratio of 40% given by EN 1996-1-1 appears to be relevant for

walls with a few vertical joints, as for example the short wall. The corresponding

equivalent elastic modulus is about 2465 MPa, which is KE =632 times the characteristic

compressive strength. For longer walls, the ratio G∗/E has to be reduced by 6.25% to take

into account the extra vertical gaps between the units. A lower limit should exist, but its

determination requires more experimental investigations. These conclusions are supported

by the results found by Gregoire (2007) or da Porto et al. (2009). In the latter, uniaxial

and diagonal compression tests were carried out on specimens with average dimensions

of 1000 × 1000 × 300 mm. The masonry bounding was similar to the one considered in

this paper. Indeed, the characteristic compressive strength (NBN-EN 1996-1-1) fk is 5.493

MPa for units of group 2. The authors give an elastic modulus of 4424 MPa, namely 805

fk, and the ratio G∗/E is equal to 17.02%. Another experimental campaign on the same

type of masonry tested in static-cyclic conditions led to the same conclusions (Mordant,

2016). In particular, the equivalent elastic modulus found in this campaign is similar to the

values considered here.

5.3 Characterisation of the rubber mechanical properties

The previous sections deal with the characterisation of the masonry mechanical properties

and the comparison with current standard recommendations. It results in the determination

of acceptable couples of elastic and shear moduli for the first model, leading to the natural

frequency measured experimentally. Among the possible combinations, two will be chosen

as references for the short and long walls, respectively

E = 2465MPa ; G∗/E = 0.4 (short wall) (34)

E = 2465MPa ; G∗/E = 0.0625 (long wall). (35)

Once the masonry mechanical properties are determined and the geometry is clearly

defined, the expression of the frequency equation of the second model has only two
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unknowns left, namely the mechanical properties of the rubber layers, placed at the base

of the wall and between the top of the wall and the additional mass. These properties are

translated via the values of the stiffnessesKr,b,Kt,b,Kr,t andKt,t present in the frequency

equation.

The results presented in Figure 14 provide the coupled values (E∗

rubber, G∗

rubber/
E∗

rubber) giving the first natural frequency measured experimentally. The mechanical

properties of the rubber layers are the same for the top and bottom as the same material is

used. Contrary to the masonry wall, the rubber layers can be considered as a homogeneous

and continuous body. There is therefore a relation between the elastic and shear moduli

through Poisson ratio

G∗

rubber =
E∗

rubber

2(1 + νrubber)
. (36)

For rubber elements, the Poisson’s ratio is close to the incompressibility limit ν = 0.5 and

leads to a G∗

rubber/E
∗

rubber ratio of 1/3. The corresponding elastic modulus is 11.1 MPa

for the short wall and 7.5 MPa for the long one. The long wall also exhibits a greater

dependency on the Poisson’s ratio in comparison to short wall (see Figure 14).

Figure 14 Characterisation of the mechanical properties of the rubber layers

These results are in accordance with the experimental measurements and the producer’s

prescriptions (Mordant, 2016). The difference between the identified values (11.1 and

7.5 MPa) has several causes. On the one hand, the rubber layer works under different

compressive stresses for the short and long walls. It is well known that the rubber exhibits

a lower deformability under a larger stress, hence the rubber placed at the extremities of

the short wall has a larger elastic modulus. On the other hand, the mechanical properties

of the rubber devices show some significant variability due to their manufacturing process,

i.e. they are made of recycled rubber, involving a possible scatter in the properties.

6 Conclusion

This paper is dedicated to the development of the frequency equation of a modified

cantilever beam, using the Timoshenko beam theory. Two models are studied to consider
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the modifications of the classic cantilever beam. The first model consists in a classical

cantilever beam with an additional mass rigidly connected to the free end. The second

one includes an elastically restrained base and a flexible connection between the free end

and the additional mass. These modifications are taken into account through a proper

modification of the boundary conditions. The deduced frequency equations highlight the

importance the dimensionless groups Ωa and Ω2
b which include the geometrical and

mechanical parameters of the beam as well as the stiffness of the base and mass-to-beam

connections. Then, the frequency equations are used to characterise equivalent mechanical

properties of load-bearing clay URM walls including soundproofing devices. Tested on a

shaking table, these walls have glued horizontal joints and empty vertical ones. Rubber

layers are placed at their base and top for acoustic performance reasons. One of the main

outcomes of the experimental tests is the assessment of the natural frequencies of the walls,

based on the measurements of accelerations during white noise identification tests. For the

first model, the characterisation leads to the definition of combined values for equivalent

elastic and shear moduli of the masonry walls, E and G∗, expressed by the combination of

the elastic modulus E and theG∗/E ratio. The second model is focused on the mechanical

properties of the soundproofing devices. Finally, a comparison of the results in terms

of mechanical properties with current standard recommendations for masonry structures

shows an overestimation of the recommended values for the considered type of masonry.

This paper however proves that the modelling of masonry walls thanks to equivalent beam

using the Timoshenko beam theory is possible.
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Nomenclature

Corresponding

Dimensional variables dimensionless variables

A∗ cross-sectional area m2 A = A∗/H2
w

a∗, b∗ , b̃∗ wave number 1/m a, b, b̃ = a∗.Hw, b∗.Hw, b̃∗.Hw

E elastic modulus N/m2

f transverse force per

length

m2

G∗ shear modulus N/m2 G = G∗.H4
w/EI

∗

Hw height of the beam m
H∗

b lever arm m Hb = H∗

b /Hw

I∗ bending inertia of the

beam

m4 I = I∗/H4
w

I∗cin rotary inertia of the

additional upper mass

kg.m2 Icin = I∗cin.ω
∗2
1 .Hw/EI

∗

k′ shape factor −

K∗

t,b base spring translational

stiffness

N/m Kt,b = K∗

t,b.H
3
w/EI

∗

K∗

r,b base spring rotational

stiffness

N.m Kr,b = K∗

r,b.Hw/EI
∗

K∗

t,t top spring translational

stiffness

N/m Kt,t = K∗

t,t.H
3
w/EI

∗

K∗

r,t top spring rotational

stiffness

N.m Kr,t = K∗

r,t.Hw/EI
∗

M∗ bending moment N.m M =M∗.Hw/EI
∗

m∗ magnitude of the

additional upper mass

kg m = m∗.ω∗2
1 .H

3
w/EI

∗

t∗ time s t = t∗.ω∗

1

v∗ transverse displacement

of the beam

m v = v∗/Hw

V ∗ shear force N V = V ∗ .H2
w/EI

∗

x∗ axial coordinate of the

beam

m x = x∗/Hw

α angle of rotation of the

beam due to bending

rad

ρ∗ density of the beam kg/m3 ρ = ρ∗.ω∗2
1 .H

6
w/EI

∗

ω∗ angular frequency rad/s ω = ω∗/ω∗

1


