

Variability of the Black Sea hydrodynamics and biogeochemistry system.

1 4 B. ash Sec. 1

Arthur Capet, IMEDEA April 2014

1 ETTI

Enviromental resources: marine Goods and Services

> The capacity to deliver Goods and Services depend on Environmental status

Goods and Services

- Fisheries
- Biodiversity
- Tourism
- Carbon sequestration

• ... Environmental status

Physics

Circulation and mixing of water masses.

Goods and Services

- Fisheries
- Biodiversity
- Tourism

. . .

Carbon sequestration

Environmental status

• Hydrodynamics

Chemistry and Biology

Cycles of the basic elements of life: Carbon, Nitrogen , Oxygen, Phosphorus, Silicate

Transport and transformation

- Inorganic (nutrients)
- Living (planktons)
- Detrital (dead cells, faeces)

Goods and Services

- Fisheries
- Biodiversity
- Tourism

...

Carbon sequestration

- Hydrodynamics
- Biogeochemistry

Dynamic system

→ Physical and biogeochemical characteristics are variables in Space and Time

Multi-decadal: from 1960 to present

External forcings:

- Atmospheric conditions
- Riverine inputs

Goods and Services

- Fisheries
- Biodiversity
- Tourism

•

Carbon sequestration

- Hydrodynamics
- Biogeochemistry

Pressure on Ecosystem

- Climate change
- Eutrophication
- Invasive species
- Fishing Pressure

...

Benthic habitat destruction

Goods and Services

- Fisheries
- Biodiversity
- Tourism
- Carbon sequestration

- Hydrodynamics
- Biogeochemistry

Pressure on Ecosystem

- Climate change
- Eutrophication
- Invasive species
- Fishing Pressure

. . .

Benthic habitat destruction

Goods and Services

- Fisheries
- Biodiversity
- Tourism
- Carbon sequestration

- Hydrodynamics
- Biogeochemistry

A computer software to reproduce the dynamics of the Black Sea ecosystem

3D mechanistic model

Pressure on Ecosystem

- Climate change
- Eutrophication
- Invasive species
- Fishing Pressure

. . .

Benthic habitat destruction

Goods and Services

- Fisheries
- Biodiversity
- Tourism
- Carbon sequestration

- Hydrodynamics
- Biogeochemistry

Pressure on Ecosystem

- Climate change
- Eutrophication
- Invasive species
- Fishing Pressure

...

Benthic habitat destruction

Goods and Services

- Fisheries
- Biodiversity
- Tourism
- Carbon sequestration

Environmental status

- Hydrodynamics
- Biogeochemistry

Management tools & Environmental Policies

3D

Mode

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain

Biogeochemistry

- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

Outline

Hydrodynamics

Introduction: The Black Sea structure

- Variability from observations: describe
- Variability from model: resolve and explain

Biogeochemistry

Introduction: Hypoxia in the Northwestern shelf

- Model requirements
- Dynamics of hypoxia

A quasi enclosed basin The Bosphorus Strait

→ Large riverine inputs: fresh water and nutrients

 \rightarrow Large riverine inputs: fresh water and nutrients

Northwestern Shelf

- Shallow (<120 m)
- Rich in nutrients
- Rich ecosystem

→ Large riverine inputs: fresh water and nutrients

→ Large riverine inputs: fresh water and nutrients

→ Large riverine inputs: fresh water and nutrients

Northwestern Shelf

- Shallow
- Rich in nutrients
- High biodiversity

Central basin

- Deep (>2000m)
- Poor in nutrients

Circulation

Circulation

Circulation

→ No mixing between surface and deep waters. → No oxygen below 200 m

→ No mixing between surface and deep waters.
→ No oxygen below 200 m

Small active volume + Large influence Area = Sensitivity to changing external forcings

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain

Biogeochemistry

- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

Vertical profiles → Diagnostics

Vertical profiles \rightarrow Diagnostics \rightarrow Spatial variability

Mixed Layer Depth

Vertical profiles → Diagnostics → Spatial variability

Mixed Layer Depth

Vertical profiles → Diagnostics → Spatial variability

Mixed Layer Depth

seasonal distribution

Vertical profiles \rightarrow Diagnostics \rightarrow Spatial variability

Mixed Layer Depth

Correct the bias induced by uneven distribution

Vertical profiles \rightarrow Diagnostics \rightarrow Spatial variability

DIVA detrending analysis

Correct the bias induced by uneven distribution

→ Montlhy climatologies of MLD and CCC

Temporal variability

Temporal variability

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain
 Biogeochemistry
- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

To build a hydrodynamic model you need ...

- Domain: Bathymetry, open boundaries.
- State variables: Temp., Sal., Currents, Elevation, Internal turbulence
- Hydrodynamic equations
- External forcings: River flows, Atmospheric conditions

Model experiment

Objective: Relate the variability of the Black Sea structure to the variability of atmospheric conditions

Long term simulation with realistic forcings: 1960-2000

Model Diagnostics

- Surface
 - Sea surface temperature (SST)
- Water column
 - Mixed layer depth (MLD)
 - Cold intermediate layer Cold content (CCC)
 - Mean kinetic energy (MKE)

Model Diagnostics

- Surface
 - · Sea surface temperature (SST) Satellite
- Water column
 - Mixed layer depth (MLD)
 - Cold intermediate layer Cold content (CCC)
 - Mean kinetic energy (MKE)

Sea Surface Temperature anomalies Model VS Satellite (1985-2000)

The model allows to go back in time

SST respond to large teleconnection patterns with various temporal scales

The model allows to go underwater

CIL cold content : Model VS Profiles

Vertical profiles (DIVA detrending)

The model allows to go underwater

Rim Current intensity

Kinetic energy

Rim Current intensity

Kinetic energy

Atmospheric regimes

38 years = 468 monthly anomalies classified in 6 patterns (Self Organizing Maps analysis)

107 months (23%) C:-0.06

59 months (13%) C:-0.10

T:-0.15

Air temperature anomaly - [°C]

C:0.09

T:0.61

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 Ω (Capet et al. 2012, Deep-Sea Research II)

68 months (15%)

Rim current & winds regime

Anti-Cyclonic patterns

Rim current & winds regime

Anti-Cyclonic patterns

Rim current & winds regime

Cyclonic patterns

0

5

0

Anti-Cyclonic patterns

Atmospheric Anomalies

How times the patterns appears in a two year ?

⁽Capet et al. 2012, Deep-Sea Research II)

Conclusions (Hydrodynamics)

Conclusions (Hydrodynamics) -1/3

- The 3D model reproduces the variability of hydrodynamics with accuracy.
 - Surface variability validated with satellite data.

Internal variability validated vith vertical profiles.

Conclusions (Hydrodynamics) - 2/3

 The Rim current intensity regulates the sensitivity of the Black Sea structure to air temperature.

Conclusions (Hydrodynamics) - 3/3

 The longer persistence of atmospheric anomalies brought the System further from its average state

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain

Biogeochemistry

- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

What is hypoxia?

Why does hypoxia occurs ?

(Capet et al. 2013, Biogeosciences)

(Capet et al. 2013, Biogeosciences)

Seasonal Hypoxia

Oxygen exchange with Atmosphere

Seasonal Hypoxia

(Capet et al. 2013, Biogeosciences)

Seasonal Hypoxia in the BS-NWS

1978

1974

(Capet et al. 2013, Biogeosciences)
Recovery ?

Oxygen records (World ocean atlas, Seadatanet, Black Sea Comission data)

Hypoxic records (<62 mmol O/m³)

Studying Hypoxia with a 3D model

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain

Biogeochemistry

- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

36 State variables

Biogeochemical role of the sediment layer

Biogeochemical role of the sediment layer

Outline

Hydrodynamics

- Introduction: The Black Sea structure
 - Variability from observations: describe
 - Variability from model: resolve and explain

Biogeochemistry

- Introduction: Hypoxia in the Northwestern shelf
 - Model requirements
 - Dynamics of hypoxia

Model validation

Does the model adequatly resolves ... the horizontal distribution the seasonal distribution the interannual distribution the vertical distribution the specific occurrence of hypoxia ... reflected by in situ observations? Model validation

Does the model adequatly resolves ... the horizontal distribution the seasonal distribution the interannual distribution the vertical distribution the specific occurrence of hypoxia ... reflected by in situ observations? Yes, yes, yes, yes and yes

Model Validation : Point-to-point

Merged by months \rightarrow validation of the seasonal cycle

Interannual Model-Data comparison

Interannual Model-Data comparison

Interannual Model-Data comparison

Interannual variability

The H-index

An Index to quantify the intensity of hypoxia as an environmental pressure on ecosystems

The H-index express the spatial extension of hypoxia..

.. modulated by the duration of hypoxia

Interannual variability of Hypoxia

Interannual variability of Hypoxia

What are the drivers of this interannual variability ?

Interannual variability of Hypoxia

Can we exploit this knowledge for management purposes ?

Hypoxia response to N discharge

Hypoxia response to N discharge

These average atmospheric conditions are not valid anymore

Hypoxia response to N discharge

The cost of warming

Economical cost 24 % reduction of nutrient loads

Conclusion (Hypoxia)

Conclusion (Hypoxia) – 1/3

Hypoxia is still ongoing in the Black Sea NWS

Monitoring should be focused on the area, months and depth of known hypoxia occurence

Conclusions (Hypoxia) – 2/3

Hypoxia is intensified by year-to-year accumulation of organic matter in the sediments

Systems with decreasing N \rightarrow Inertia in the recovery process Systems with increasing N \rightarrow Increase of the H/N ratio

Conclusion (Hypoxia) – 3/3

Climate impacts almost as much as eutrophication.

Nutrient reduction policies must account for realistic climatic scenarios

General Conclusions

 The physical model reproduces the variability of the Black Sea internal structure and allows to investigate its sensitivity to atmospheric conditions

 The biogeochemical model allowed us to untangle the complex dynamics of hypoxia and to evidence the specific impact of its main drivers
General Conclusions

- 3D biogeochemical models are essential to understand to complex dynamics of marine ecosystems, in which physical, chemical and biological processes are intimately interconnected
- As such these models are indispensable to allows a sustainable management of the goods and services provided by marine ecosystems and to assess to which extent these are endangered by the synergestic impacts of environmental pressures.

Thank you for your attention ... and questions !

SST anomalies Model VS Satellite (1985-2000)

T and S profiles: Central Basin

Nitracline in the open basin

Role of the sediments layer in biogeochemical budgets on the shelf

Deposition Interval

Time during wich bottom stress is generally lower than the resupsension thresold

Benthic environmental conditions

Validation in the Open basin : Oxygen, Nitrate

Validation in the Open basin : Oxygen Temporal

Interannual variability of Hypoxia

(1) High nitrogen riverine discharge enhance the influx of organic matter to bottom waters (2) High sedimentary organic carbon content enhances the benthic oxygen consumption.

(3) Warm springs

reduce the ventilation and set summer bottom temperature. (4) Warm summers

extend the duration of the stratified period.

Model Validation : Point-to-point

$$D = \frac{1}{\max A(t)} \int_{year} A(t) dt, \qquad \qquad H = \frac{1}{\overline{D}} \int_{year} A(t) dt,$$

$$D = \frac{1}{\max A(t)} \int_{year} A(t) dt, \qquad \qquad H = \frac{1}{\overline{D}} \int_{year} A(t) dt,$$

Recovery ?

Recovery ?

Benthic Model

Benthic remineralisation Remineralised content (in mmolC/m²/s) **Resuspension** sedimenting variables = [fast C stock] . K_{fC} . $f(T^{\circ})$ in particulate form (POM, Diatoms) + [slow C stock] . K_{sc} . f(T°) due to bottom stress W_{POC} is given by Calibrated functions compute from from currents and Cmin and Nmin, the fluxes of **Oxygen**, aggregation model (mainly) waves. ODU, DIC, Ammonium, Nitrate, Silicate, according to benthic conditions Fast remin. C stock Slow Slow remin. S Stock 2D Sed. remin Fast Variables remin. N/C ratio

Application : dynamique de l'hypoxie sur le plateau continental Nord Ouest

Oxygen solubility

The case of Hypoxia

Organic matter accumulates in the sediments

$$C(y+1) = C(y)(1 - \beta(y)) + \alpha(y) \cdot N(y)$$
(8)

$$\beta(\mathbf{y}) = \beta_0 \cdot Q^{T_s^*(\mathbf{y})} \tag{9}$$

$$\alpha(y) = \alpha_0 + \alpha_{\mathrm{Si}:\,\mathrm{N}} \cdot (\mathrm{Si}(y) : \mathrm{N}(y)) \tag{10}$$

l prilebom bne-ot-bne : ? txell