BFM Benthic

Arthur Capet, Paolo Lazzari, Cosimo Solidoro

OGS, Trieste, Italy

October 6, 2016

Processes/Mechanism you need the benthic for:

Retention (part of) primary production mineralized locally

Processes/Mechanism you need the benthic for:

Retention (part of) primary production mineralized locally

Seasonal inertia Delayed remin. reshapes production seasonal cycle

Processes/Mechanism you need the benthic for:

Retention (part of) primary production mineralized locally

Seasonal inertia Delayed remin. reshapes production seasonal cycle

Inter-annual inertia Delayed response to water policies

Processes/Mechanism you need the benthic for:

Retention (part of) primary production mineralized locally

Seasonal inertia Delayed remin. reshapes production seasonal cycle

Inter-annual inertia Delayed response to water policies Denitrification Net N removal (except N_2 fixation)

Processes/Mechanism you need the benthic for:

Retention (part of) primary production mineralized locally

Seasonal inertia Delayed remin. reshapes production seasonal cycle

Inter-annual inertia Delayed response to water policies

Depitrification, Not N removal (except N fixation)

Denitrification Net N removal (except N_2 fixation)

P sequestration Solid P sequestration (Feedbacks!!)

Processes/Mechanism you need the benthic for:
Retention (part of) primary production mineralized locally
Seasonal inertia Delayed remin. reshapes production seasonal cycle
Inter-annual inertia Delayed response to water policies
Denitrification Net N removal (except N₂ fixation)

Biology Filtration, irrigation, turbation, consolidation, production, oxygenation, etc ...

P sequestration Solid P sequestration (Feedbacks!!)

Hypoxia in the Adriatic

We knows that

1. It happened in the Northern Adriatic shelf

Hypoxia in the Adriatic

We knows that

- 1. It happened in the Northern Adriatic shelf
- 2. It happens in the Emilagna-Romana Coastal zone

Fig. 2. Total number (n) of hypoxic events recorded in 1977–2008: (a) spatial distribution in the ERCZ. (b) monthly distribution of hypoxia and strong hypoxia.

BFM benthic module

Previously in BFM, 4 levels of complexity:

- 0. No benthic-pelagic coupling
- 1. Simple return
- 2. Benthic Organisms + intermediate diagenetic model
- 3. Benthic Organisms + diagenetic model

0. No benthic-pelagic coupling

≡ Bath Tub

- No sediment layer
- Sinking OM accumulates in the lower layer
- ▶ All mineralisation process are driven by pelagic formulations

ightarrow Delocalisation of OM remineralization, and pelagic rates instead of benthic rates.

1. Simple Benthic return

Benthic stocks for Organic Matter

- Sinking OM accumulates in the sediments
- Fixed mineralisation rates provide Oxygen and nutrient fluxes
- No burial (except from the standing equilibrium benthic stock when mineralisation = sedimentation)
- No benthic losses (e.g. denitrification, P sequestration): All mineralised fluxes are sent back to the water column

2. Benthic Organisms + Simple Benthic return

Benthic food web includes (all heterotrophs)

H1: Aerobic bacteria

H2: Anaerobic bacteria

Y1: **Epibenthic predators** ~ Megabenthos, acts on surface

Y2 : **Deposit feeders**, feeds on Benth. Detritus + small Benth. Organisms

Y3: Filter feeders, feeds on Pelagic OM and Phy.

Y4 : Meiobenthos: Large aggregation. Small → No effect on sed. mix.

Y5: Infaunal predators "hunt" in the sediments for prey of their size

- Vertical distribution of OM and organism activity.
- No diagenetic modelling (fixed rates, no losses)

2. Benthic Organisms + Simple Benthic return

Benthic food web includes (all heterotrophs)

H1: Aerobic bacteria

H2: Anaerobic bacteria

Y1: **Epibenthic predators** ~ Megabenthos, acts on surface

Y2 : **Deposit feeders**, feeds on Benth. Detritus + small Benth. Organisms

Y3: Filter feeders, feeds on Pelagic OM and Phy.

Y4 : Meiobenthos: Large aggregation. Small → No effect on sed. mix.

Y5: Infaunal predators "hunt" in the sediments for prey of their size

- Vertical distribution of OM and organism activity.
- No diagenetic modelling (fixed rates, no losses)
- Later version of ERSEM (Blackford, 2002) includes Microphytobenthos (diatoms)

- Now includes pore water dissolved state variables: O₂, NO₃, NH₄, PO₄, SiO + Reduction Equivalent
- ▶ No vertical resolution, but analytical resolution for three (variables) layer: Oxic, Suboxic, Anoxic.

- Now includes pore water dissolved state variables: O₂, NO₃, NH₄, PO₄, SiO + Reduction Equivalent
- No vertical resolution, but analytical resolution for three (variables) layer: Oxic, Suboxic, Anoxic.

Figure: Example for phosphate dynamics.

- Now includes pore water dissolved state variables: O₂, NO₃, NH₄, PO₄, SiO + Reduction Equivalent
- ▶ No vertical resolution, but analytical resolution for three (variables) layer: Oxic, Suboxic, Anoxic.
- Bioturbation and bioirrigation derive from benthic organisms
- Benthic losses and burial finally enabled

- Oxygen consumption (miner., nitrif. and oxid. of reduction equivalents) determines oxygen penetration depth.
- Oxygen penetration modifies the nutrient dynamics.
- ➤ The sulphide horizon depth derives from the nitrate module and controls the adsorption properties of Phopshate

Table

Table

panox part of anoxic mineralization (ie. producing ODU)

 p_{anox} part of anoxic mineralization (ie. producing ODU) p_{denit} part of denitrification mineralization (ie. using NO_x)

 p_{anox} part of anoxic mineralization (ie. producing ODU) p_{denit} part of denitrification mineralization (ie. using NO_x) p_{nit} part of produced ammonium nitrified within the sediments

p_{anox} part of anoxic mineralization (ie. producing ODU)

 p_{denit} part of denitrification mineralization (ie. using NO_x)

part of produced ammonium nitrified within the sediments

o_{sid} ratio between potential and effective dissolution (saturation)

p_{anox} part of anoxic mineralization (ie. producing ODU)

 p_{denit} part of denitrification mineralization (ie. using NO_x)

part of produced ammonium nitrified within the sediments

o_{sid} ratio between potential and effective dissolution (saturation)

B1B

- part of anoxic mineralization (ie. producing ODU)
- p_{denit} part of denitrification mineralization (ie. using NO_x)
 - Pnit part of produced ammonium nitrified within the sediments
 - p_{sid} ratio between potential and effective dissolution (saturation)
 - $\rho_{...} = f(O_{2,bottom}, NO_{x,bottom}, NH_{3,bottom}, SiO_{2,bottom}, C_{min})$

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- C,N,O,ODU,P,Si
- ▶ 100 lev. for 50 cm
- non-local irr.
- 2 lability (fixed)
- ▶ in-situ
 - Bottom Water
 - Porosity
 - ▶ Sed. rate

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- ► C,N,O,ODU,P,Si
- ▶ 100 lev, for 50 cm
- non-local irr.
- 2 lability (fixed)
- ▶ in-situ
 - Bottom Water
 - Porosity
 - ▶ Sed. rate

1. Calibrate (extend) OMEXDIA model from observations

OMEXDIA

- ► C,N,O,ODU,P,Si
- ▶ 100 lev. for 50 cm
- non-local irr.
- 2 lability (fixed)
- ▶ in-situ
 - Bottom Water
 - Porosity
 - ► Sed. rate

1. Calibrate (extend) OMEXDIA model from observations

1. Calibrate (extend) OMEXDIA model from observations

- 1. Calibrate (extend) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations

- 1. Calibrate (extend) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations
- 3. Derive functions for B1B

- 1. Calibrate (extend) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations
- 3. Derive functions for B1B

Steady State VS Dynamic

Steady State VS Dynamic

Steady State VS Dynamic

Steady State VS Dynamic

Setup

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- OGSTM CMEMS implementation
- off-line: Realistic clim.
- Mask for CalcBenthicFlag
- ► Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- free-surface partial inclusion
- ► IC

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- free-surface partial inclusion
- ► IC

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- free-surface partial inclusion
- ► IC

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- free-surface partial inclusion
- ► IC

- OGSTM CMEMS implementation
- off-line; Realistic clim.
- Mask for CalcBenthicFlag
- Real case resuspension
 - Waves (CMEMS)
 - Bottom currents (CMEMS)

- free-surface partial inclusion
- ► IC

Steps so far:

- OMEXDIA calibration
- ▶ BFM-B1B
- Framework for BFM-OMEXDIA

Steps so far:

- OMEXDIA calibration
- ▶ BFM-B1B
- Framework for BFM-OMEXDIA

Steps to go:

 BFM-B1B: Climatological Benthic implications in the Adriatic Sea

Steps so far :

- OMEXDIA calibration
- ► BFM-B1B
- Framework for BFM-OMEXDIA

Further Steps:

- MITgcm BFM-B1B for Adriatic
- BFM-OMEXDIA testing and comparison

Steps to go:

 BFM-B1B: Climatological Benthic implications in the Adriatic Sea

Steps so far :

- OMEXDIA calibration
- ► BFM-B1B
- Framework for BFM-OMEXDIA

Further Steps:

- MITgcm BFM-B1B for Adriatic
- BFM-OMEXDIA testing and comparison

Steps to go:

 BFM-B1B: Climatological Benthic implications in the Adriatic Sea

Side Steps:

- ▶ B1B CO₂
- B1B Biology

BOFSTON WHITE GOS. MICEUS.

Heteronevis vagons. Quat. 2. Röbren der Salella im Kalkstein. 3. Terebella Emmalina Quat.

Serpula fusiciularis. Lom. und Serpula trangularis Quat. 5. Hetion: Schmardae Quat.

6. Euros. magnifica Quat. 7. Sabellaria alivolata Sav. 8. Vermiha socialia. (2011).