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ABSTRACT 

 

This paper presents a method to asses hull girder ultimate bending moment distribution, 

taking into account parameters uncertainty. This method is a part of a research activity 

carried out at University of Liege. The method is able to compute four statistical 

moments of ultimate strength distribution: average, standard deviation, skewness and 

kurtosis. Geometry parameters, material parameters and initial imperfections (initial 

deflections and residual stresses) are considered as random variables and a distribution 

is associated to each of them. Ultimate bending moment algorithm is a progressive 

collapse analysis based on Smith method and associated with the load-end shortening 

model proposed by Bureau Veritas and Joint Bulker Project Rules (JBP). In order to 

perform a reliability analysis, this algorithm is coupled with independent perturbations 

method. The advantage is a lower number of simulations compared to the standard 

Monte-Carlo procedure and a good use of the initial information that is available.  

The paper contains also a comparative analysis between the presented method and a 

linear sensitivity analysis performed by the ISSC 2000 “Ultimate Strength” committee 

for a VLCC structure. 
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INTRODUCTION 

 

 

Simulation of the collapse behavior is an 

essential issue in assessing the safety of 

marine structures. An accurate estimate 

of the maximum load-carrying capacity, 

also called ultimate strength, is required 

to determine the maximum load that the 

structure can support. Ultimate strength 

of plates and stiffened panels is a 

complex function of a large number of 

parameters (geometry, material 

properties, and imperfections) and a 

deterministic assessment procedure is 

often not sufficient for practical 

applications.  

The uncertainties related to hull girder 

ultimate strength are usually classified in 

two classes: 

• parameter uncertainties – related to 

physical model (the geometrical 

properties, scantlings of hull 
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components, material properties, 

imperfections,…) 

• model uncertainties – related to 

mathematical model (hypotheses, 

analytical or numerical methods) 

 

Parameter uncertainties could be 

quantified by measurements, but in 

practice available data for a case study is 

often insufficient. Some general models 

were proposed in the literature for plates 

thickness, initial deflection, corrosion 

thickness, residual stress, etc. A 

sensitivity analysis of parameter 

uncertainties on hull girder ultimate 

strength was carried out by the ISSC 

2000 IV.2 Committee [1] and it was 

found that the most influential 

parameters are yielding stress of the 

material and plate and stiffener 

thicknesses.  

Model uncertainties could be defined as 

the gap (or ratio) between the numerical 

results and the actual value of the 

ultimate strength obtained via full scale 

tests or model tests. A study on model 

uncertainties was recently proposed by 

Moan and al. [2] using several tests on 

box-girders models, simplified models 

and scale models. However, the number 

of available tests published until now 

seems to be still insufficient to perform 

an accurate statistical estimation of hull 

girder ultimate strength model 

uncertainty for different types of ships.  

Different reliability-based methods to 

assess ultimate strength of ships were 

published in recent years [3]. In all the 

cases, ultimate bending moment 

distribution is evaluated using two 

statistical moments (mean and standard 

deviation) or assuming to have a defined 

shape. Teixeira and Guedes-Soares [3] 

proposed a log-normal distribution with 

a 10 – 15% standard deviation for 

tankers and bulk carriers. 

It is known that target probability related 

to ultimate strength limit state of ships is 

less than 10
-7

 in many cases, so it is 

crucial to model accurately the ultimate 

bending moment distribution and 

particularly its tails. For this purpose, it 

is important to take into account the 

third and mainly the fourth statistical 

moments of this distribution (skewness 

and kurtosis).  

This paper presents a methodology to 

compute four statistical moments of 

ultimate strength distribution taking into 

account parameter uncertainty related to 

scantlings and material properties. A 

computer code, PRO-HULLST was 

developed and an application on a 

VLCC structure is presented below. 

 

 

STATISTICAL MOMENTS OF A 

DISTRIBUTION 

 

Generally, a random variable X is 

associated with a function called 

probability distribution – f(X) (see Fig1). 

It is usual to model this distribution by 

several statistical moments, as follows: 
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The first moment is the mean value of X; 

the moments greater than 1 are 

expressed as centered moments, 

relatively to the mean value. Using 

equations (2) – (4), it is easy to define 

the following parameters: 
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In this convention, skewness coefficient 

is negative for a left dissymmetry 

distribution and zero for a symmetric 

distribution. The kurtosis coefficient has 

a value greater than 1.80 for usual 

distribution function and less than 1.80 

for multi-modal distributions (β2=3 for 

Gauss distribution).  

 

 

INDEPENDENT PERTURBATIONS 

METHOD 

 

One major difficulty of reliability based 

methods is the computation of statistical 

parameter of the response (output) as a 

function of statistical distributions of the 

input variables. Analytical methods are 

used only for simple cases and usually 

for a linear behavior of the structural 

model. For complex non-linear problems 

involving a large number of parameters, 

as ultimate strength analysis of ship 

structure, two classes of methods are 

generally used: Monte-Carlo simulation 

and perturbations method.  

In practice, Monte-Carlo method is 

limited when the structural model is 

sophisticated and the target probability is 

very low. Perturbations methods are 

often based on Taylor developments and 

limited to two statistical moments. 

Independent perturbations method 

proposed in this paper take into account 

four statistical moments by modeling 

each input variable distribution by three 

weighting points (see Fig 2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X1, X2, X3 – values of variables 

P1, P2, P3 – associated probabilities. 

 

Each weighting point is defined by a 

variable value and an associated 

probability. In order to respect four 

moments of the distribution, five 

conditions are imposed to these 

quantities: 
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Fig.1 : Distribution of random variable X 
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Fig.2 : Model of variable X distribution 
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A particular solution of equations system 

(8) is chosen by fixing the value of the 

central point X2 at the distribution mean 

m1. 

 

X2 = m1           (9) 

 

The solution of the non-linear equations 

system (8) is obtained using the Newton 

method. Obviously, the four statistical 

moments of the input variable 

distributions are supposed to be known. 

If it is impossible to calculate skewness 

and kurtosis by the statistical treatment 

of available data, the law of maximal 

information entropy should be used. This 

law imposes a symmetrical distribution 

if skewness is unknown and a kurtosis 

corresponding to Gamma function.  

If input variables are considered 

independents, the four statistical 

moments of response (ultimate bending 

moment) distribution could be calculated 

using the value of the response at the 

central point of each input variable and 

the perturbation of each lateral point: 

 

MC = M (X12, X22,…, Xi2,…)            (10) 

 

Mj
1
 = M (X12, X22,..,Xj1…, Xi2,…)      (11) 

 

Mj
3
 = M (X12, X22,..,Xj3…, Xi2,…)      (12) 

 

 

M – response function (ultimate bending 

moment algorithm) 

MC – central value of the response  

Xi2 – central weighting point of i-th input 

variable 

Mj
1
- left response of j-th input variable 

Mj
3
- right response of j-th input variable 

Xj1 – left weighting point of j-th input 

variable 

Xj3 – right weighting point of j-th input 

variable 

 

The perturbations induced by input 

variables are calculated as follows: 
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dj
1
- left perturbation of j-th input 

variable; 

dj
3
- right perturbation of j-th input 

variable; 

dmkj – perturbation of k-th statistical 

moment of the response due to j-th input 

variable; 

dµkj – perturbation of k-th statistical 

centered moment of the response due to 

j-th input variable; 

Pj1 – probability to the left point of j-th 

variable; 

Pj3 – probability to the right point of j-th 

variable. 

 

The statistical moments of response 

distribution are obtained as follows: 
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The method presented here requires a 

low number of simulations and gives a 

quite good estimation of statistical 

moments of ultimate strength. No 
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particular constraint was imposed on 

input variables distributions or on 

structural model. 

 

ULTIMATE STRENGTH MODEL 

 

Independent perturbations method was 

coupled with progressive collapse 

analysis based on Smith method. The 

computer code HULLST, developed and 

presented by Yao and Nikolov in 1991 

[4] is the incremental “engine” of the 

methodology presented in this paper. 

The method chosen to simulate stiffened 

panel behavior in compression is based 

on the recommendation of Bureau 

Veritas rules [5] and Joint Bulker Project 

Rules (JBP). The axial compressed 

stiffened panel is supposed to collapse 

through the four following failure 

modes: 

- beam-column buckling (mode I) 

- tripping of stiffener (mode II) 

- web local buckling of flanged 

stiffener (mode III) 

- web buckling of flat-bar stiffener 

(mode IV) 

In tension, only the elasto-plastic 

collapse is considered. The critical 

(ultimate) stress is computed for each 

failure mode and the smallest one gives 

the equation to be used for the load-end 

shortening curve. These equations are 

given below: 
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where: 

As – net area of stiffener 

σc1- critical stress for beam-column 

buckling 

σc2- critical stress for tripping 

σc4- critical stress for web buckling of 

flat-bar 

σCP- buckling stress of the attached 

plating 

σy – material yield stress 

E – material Young modulus 

ε – relative strain of beam-column 

Φ –Φ(ε)  edge function 
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The initial imperfections (initial 

distortion, residual stress) are not 

explicitly taken into account by this 

model.  

 

PRO-HULLST CODE  

 

A computer code, PRO-HULLST was 

developed on the base of methodologies 

presented above. The flow-chart of the 

software is presented on Figure 4. The 

code allows the choice of input variables 

considered independents. 

 

 

bF×tF 

hw×tw 

s×tP 

Fig. 3 : Beam-column scantlings 
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SENSITIVITY ANALYSIS ON 

VLCC “Energy Concentration” 

 

The method proposed in this paper was 

tested on the VLCC “Energy 

Concentration”. This ship was 

investigated in many research activities 

and parameter sensitivity analysis was 

published by ISSC’2000 VI.2 Special 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task Committee [1]. The midship 

section presents three types of stiffeners: 

T-bar, angle-bar and flat-bar, and two 

types of steel with the yield stress 235.2 

MPa and 313.6 MPa . This structure was 

modeled using HULLST code and some  

 

INPUT VARIABLES : plate thickness, stiffener scantlings, 

yield stress, Young modulus 

(four statistical moments of the distribution) 

Newton Method : solution of non-

linear system of equations 

System (8) 

HULLST 

• Central ultimate moment MC 

• Left and right ultimate moments for 

each variable (Mj
1
, Mj

3
) 

 

• Ultimate moment perturbations 

induced by input variables (dmjk, dµjk) 

 

Statistical moments of ultimate strength distribution 

 

All input variables 

All input variables 

Figure 4 : PRO-HULLST flow-chart 

BV, JBP 
Load-end shortening 
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details are given below : 

 

• 103 beam-column elements 

• 7 hard corner elements 

• 2 plate elements. 

 

In order to compare PRO-HULLST 

method with the linear sensitivity 

analysis performed by the ISSC 

Committee, only the thickness of plates 

and stiffeners and the yield stress were 

selected as input variables. The total 

number of random variables to consider 

for VLCC structure was 430.  

Input variables distributions were 

defined for two different cases (Table 1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
COV – coefficient of variation of ultimate 

longitudinal strength (σ / mean) 

 

 

 

 

 

• Case A: all variables present a 

Gauss distribution with mean and 

standard deviation given in the ISSC 

VI.2 Committee Report [1]. 

• Case B: all thicknesses present a 

uniform distribution, while the yield 

stress remains normal distributed. 

The average and standard deviation 

is the same as in Case A. 

 

The results and a comparative analysis 

are presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables

mean σ % β1 β2 mean σ % β1 β2 mean σ % β1 β2

Plates thickness Nominal 0.60 -- -- Nominal 0.60 0.00 3.00 Nominal 0.60 0.00 1.80

Stiff. Thickness Nominal 0.60 -- -- Nominal 0.60 0.00 3.00 Nominal 0.60 0.00 1.80

Yield stress (mild steel) 29.00 9.00 -- -- 29.00 9.00 0.00 3.00 29.00 9.00 0.00 1.80

Yield stress (HT32) 37.00 7.00 -- -- 37.00 7.00 0.00 3.00 37.00 7.00 0.00 1.80

Yield stress in Kgf/mm²

Table 1 : statistical moments of input variables distributions

ISSC Committee Case A Case B

TEST

Mean σ σ σ σ β1 β2 COV %

MNm MNm -- --

ISSC Committe Hogging 23000.16 1477.99 0.0000 3.0000 6.426

Sagging 20384.40 1100.35 0.0000 3.0000 5.398

Case A Hogging 20089.13 1095.1 -0.3202 3.1873 5.451

Sagging 18491.93 1216.2 -0.6041 2.4211 6.577

Case B Hogging 21308.60 2534.4 0.0479 2.8722 11.894

Sagging 18002.33 1966.2 -0.3007 2.2146 10.922

Table 2 : Comparative analysis on ultimate strength distributions

Ultimate bending moment distribution
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The differences of mean value between 

ISSC Committee method and the one 

proposed in this paper are mainly due to 

the load-shortening model. We must 

mention that the model adopted for 

PRO-HULLST does not consider 

explicitly initial imperfection and neither 

correction or model uncertainty 

parameter was used for this application.  

As expected, the coefficient of variation 

increases significantly for Case B, when 

a uniform distribution is used for plate 

thickness. In Case A, we remark a higher 

COV for sagging test.  

Skewness and kurtosis are very sensitive 

to input variables distribution. Following 

Pearson & Hartley System, the Case A-

hogging is close to a log-normal left 

dissymmetrical function, while in the 

Case A-sagging a four-parameters beta 

function should be used.  The same 

function is recommended for Case B-

Sagging. Only the Case B-Hogging is 

close to a symmetrical Gauss 

distribution. 

 

 

CONCLUSIONS 

 

The paper presents a methodology to 

take into account ultimate longitudinal 

strength parameter uncertainty using a 

progressive collapse structural model. 

The method has been tested on VLCC 

“Energy Concentration” case study. It 

was shown that skewness and kurtosis 

give important information concerning 

ultimate strength distribution shape 

which is a crucial aspect of reliability 

analysis of ship structure. 

Some improvements of the proposed 

method are ongoing at University of 

Liege. The main direction of the research 

is to take into account the model 

uncertainty. First results are already 

published in [6]. 
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