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a b s t r a c t 

The purpose of this paper is to determine, via a homogenization technique and in the framework of small 

strains, the macroscopic poroelastic properties of a saturated, deformable, cracked porous medium. The 

poroelastic matrix is assumed to be homogeneous and the cracks to be connected discontinuities, infilled 

with a poroelastic material. They are periodically distributed, with the size of the period being small 

compared to the size of the sample. The considered up-scaling method (based on asymptotic expansions) 

will provide two uncoupled mechanical and hydraulic problems describing the overall behavior of the 

material. The degradation of the mechanical properties due to damage is then introduced. Damage de- 

pends on cracks’ opening, thus making the problem non-linear. A numerical solution of the problem is 

provided using finite elements. Any stress-strain loading path can be reproduced. The numerical solution 

of an oedometric test and a biaxial test allows the exploration of the non-linear anisotropic behavior 

along with the bifurcation phenomenon. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

During the past decades, big effort s have been made to better

comprehend heterogeneous materials ( Auriault, 1991; Biot, 1941;

Chambon et al., 2004; Kanouté et al., 2009; Sánchez-Palencia,

1980 ). Numerical modeling can be successfully applied to contin-

uum problems but difficulties arise when trying to model a hetero-

geneous microstructure ( Kouznetsova et al., 2001 ). The difference

between the scale of the micro- and macro-structures makes it

difficult to determine an appropriate mesh size, leading to a com-

putationally expensive problem if one focuses on the micro-scale,

or to an approximate description of the microstructural behavior if

one focuses on the macroscale problem ( Kouznetsova et al., 2001 ).

Furthermore, macro-scale constitutive laws, calibrated with ex-

perimental results, are often adopted. This approach is however

less effective when dealing with complex behaviors ( Caillerie,

2009 ). An alternative is provided by homogenization techniques

that allow the inclusion of the micro-scale description within the

macroscopic problem. In this latter framework, analytic, e.g. mix-

ture theory ( Gray and Hassanizadeh, 1979 ) or semi-analytic, e.g.

Eshelby (1957) procedures have been developed. However, these

theories cannot describe the micro–macro-behavior for non-linear

constitutive laws or non-regular micro-structure configurations in
∗ Corresponding author. Tel.: +33 476827082. 
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n accurate manner (see, e.g. Kanouté et al., 2009 ). Numerical ho-

ogenization approaches such as direct micro–macro-techniques

 Miehe et al., 1999; Nguyen, 2013; Nitka et al., 2011; Smit et al.,

998 ) overcome these limitations. These techniques use numerical

alculations at the (usually periodic) micro-scale level to provide a

onstitutive law at the macroscale. Although this approach allows

ore general multi-scale problems to be taken into account, it is

ighly computationally expensive. 

The asymptotic homogenization theory documented in Arbogast

t al. (1990) , Bensoussan et al. (2011) , Papanicolau et al. (1978) ,

ánchez-Palencia (1980) permits equivalent properties to be ob-

ained and allows an analytic and a numerical approach to be com-

ined. Based on asymptotic expansions (applied to a parameter e

hat relates the characteristic lengths of the two, well-separated,

cales), the homogenized problem can be solved on a generic

icro-structural cell (solved using, e.g. finite elements Auriault,

011 ) so that the homogenized macroscopic properties are finally

btained. 

The proposed approach is developed herein with the purpose

f determining the overall poroelastic properties of a saturated

racked deformable porous medium in the framework of small

trains. We consider the deformation and the porous flow of the

edium to be governed by Biot’s equations of poroelasticity. The

racks are thin enough to be considered as curved lines (sur-

aces in 3D) and interconnected, forming a periodic-network. From

 mechanical viewpoint, a crack is here considered (differently

rom other approaches, e.g. Pensée et al., 2002 ) as an infilled

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.03.017&domain=pdf
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iscontinuity containing a soft poroelastic material that can un-

ergo damage. This corresponds to a weakened elastic zone allow-

ng its two lips to slip and to move apart. The relative motion of

he lips induces a change of the porosity of the crack and conse-

uently a change in the fluid flow. Crack propagation is not treated

nd the opening of cracks is considered to damage the material,

hus affecting the transport properties of the medium. This latter

oint is consistent with the proposed upscaling procedure (based

n asymptotic homogenization) that naturally leads to two uncou-

led hydraulic and mechanical problems. It is worth noting that

he methodology is not adapted to situations where crack propa-

ation matters. In the case of a hydro-mechanical problem, crack

ropagation induces a sudden change of the stress/strain field that

lso affects the pressure field (see Pizzocolo et al., 2013; Schrefler

t al., 2015 ). The proposed model is therefore aimed to treat sta-

ionary hydraulic cases rather than transitory states. 

In other terms, the upscaling method is aimed at obtaining a

aterial constitutive law for an REV of a porous medium charac-

erized by infilled discontinuities. The numerical behavior law can

e finally embedded in any multiscale approach (e.g. Kouznetsova

t al., 2001 ) so that real-scale geomechanics or engineering prob-

ems can be treated. 

The first part of the paper presents the equations governing

he coupled hydro-mechanical problem in the porous matrix and

he cracks. The asymptotic homogenization is detailed and the fi-

al equations describing the macro-scale problem are presented. In

he second part of the paper, the homogenized problem is numeri-

ally solved first for the linear case. As a further step, damage is in-

roduced, which makes the problem non-linear. The proposed nu-

erical implementation allows to reproduce any stress/strain load-

ng history: two cases are considered, the first using a strain con-

rolled path (i.e. oedometric test) and the second using a mixed

tress/strain condition (i.e. biaxial test). A constitutive non-linear

aterial law can then be obtained for any loading history. 

otations. 

• The ”usual” vectors: positions, normal, tangent, forces, flows, . . .

are denoted: � x , � y , � n , � τ , � u , � v , � T , � q , ... { � e 1 , � e 2 , � e 3 } is an orthonor-

mal basis. 

• The dot symbol · denotes the simple contraction between two

tensors of any order: � T � � v , � T = σ � � n , ... 

• The colon symbol : denotes the double contraction of two sec-

ond order tensors: σ : ∇ 

�
 v , c : ε( � u ) , ... 

• The tensor product � a � �
 b denotes the linear application defined

by: ∀ 

�
 c , 

(
�
 a � �

 b 
)
� � c = 

(
�
 b � � c 

)
�
 a . 

• 
−−→ 

grad f denotes the gradient of the scalar function f , ∇ 

�
 u is the

gradient of the vector field 

�
 u and ε( � u ) denotes the strain tensor

associated to the displacement field 

�
 u , i.e. the symmetrical part

∇ 

�
 u S of ∇ 

�
 u . The gradients of a field of two space variables � x and

�
 y are distinguished by an exponent: 

−−→ 

grad 

x f, ∇ 

y �
 v . 

• Whenever the index notation of tensors is used, the Einstein

notation for the contraction of tensors is adopted. 

. Description of a saturated cracked deformable porous 

edium 

.1. Description of the medium and strong form of the equations 

Let us consider a cracked deformable and saturated porous

edium occupying, in the small strain framework, a domain �.

or the sake of simplicity the study is carried out in two dimen-

ions; an extension to 3D is straightforward but is not presented

n the following for sake of clarity of the notations. However, some

ints about the 3D modeling are given. 
The porous parts of the medium are separated by cracks which

re curves that joint at points (see Fig. 1 ); � denotes the set of

ll cracks of the medium. To make the writing of the equations of

he poroelasticity of the cracks precise, the cracks are (arbitrarily)

riented, let s denote the curvilinear abscissa along a crack and 

�
 τ

ts unit vector, assuming the crack is smooth. The unit normal � n to

 crack is the vector obtained by the rotation of angle + 

π
2 of the

angent vector � τ . 

The considered porous medium is assumed to be finely pe-

iodic. That means, on one hand, that the space distribution of

racks is periodic (see Fig. 1 ) and, on the other hand, that the size

f the period is small with respect to that of the medium. In the

symptotic expansion method of homogenization used in this pa-

er, the ratio of the size of the period to that of the medium is

 small parameter intended to go to 0. That means that the peri-

dic cells of the medium are increasingly smaller. The usual way

o handle this is to define the cells of the medium as the image of

 given cell Y by a homothety of ratio e, e being the small param-

ter of the asymptotic procedure (see Bensoussan et al., 2011 and

ánchez-Palencia, 1980 ). 

A function defined on Y is said to be Y -periodic if it takes equal

alues on opposite sides of the cell Y . 

iot’s equations of the porous parts. In the porous parts of the

edium �, the deformation of the medium and the flow of fluid

re governed by Biot’s equations that read, see (see Biot, 1941;

955; Auriault, 2005 or Coussy, 2004 ): 

iv σ = 0 (1a) 

= c : ε( � u ) − pα (1b) 

= α : ε( � u ) + βp (1c) 

iv � q + ˙ κ = 0 (1d) 

  = −k 
−−→ 

grad p (1e) 

where η denotes the porosity of the porous matrix. � u is the dis-

lacement field and 

˙ �
 u its time derivative, σ is the total Cauchy

tress tensor and p is the pore pressure. � q = η
(
�
 v − ˙ �

 u 
)

is the rel-

tive fluid flow, � v being the velocity of the fluid. c is the fourth

rder tensor of elastic stiffness, α is the second order tensor of

iot coefficients, β is the Biot modulus and k is the permeability

f the medium. κ denotes the variation - due to the displacement

�
  - of the porosity, see Coussy (2004) , which reads in terms of the

orosity of the porous matrix η and of its variation δη due to the

eformation of the medium: 

= δη + η div � u 

quations on the cracks. The cracks separating the porous parts of

he medium are very soft and highly permeable. That means that

he lips of the cracks can slide and open and, in order to main-

ain coherence, that the stress vector � T = σ � � n is continuous on

he cracks. The displacement field 

�
 u is then discontinuous on the

racks and its jump 

�
 u + − �

 u − through a crack where � u + is the value

f � u on the side toward which 

�
 n points and 

�
 u − is the value of � u on

he opposite side, is denoted by [ [ � u ] ] . The assumption of high per-

eability means that fluid pressure p is continuous on the cracks

ut the fluid flow is discontinuous, the jump of the normal flow is

 [ � q ] ] � � n where [ [ � q ] ] denotes the jump of � q across the cracks. 

According to these assumptions (see Appendix A ), the poroelas-

ic behavior of the cracks is modeled by the following equations: 

�
 

 = C � [ [ � u ] ] − p � A (2a) 

c = 

�
 A � [ [ � u ] ] + Bp (2b) 
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Fig. 1. Periodic cracked porous medium. 
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dQ 

dl 
+ [ [ � q ] ] � � n + ˙ κ c = 0 (2c)

Q = −K 

dp 

dl 
(2d)

where l is the curvilinear abscissa along the cracks and 

�
 T = σ. � n

is the stress vector on the crack and Q denotes the fluid flow of

water along the crack. 

The set of Eq. (2) presents a structure similar to that of Eq. (1) .

Eq. (2a ) is the elastic constitutive equation analogous to (1b) , C and
�
 A being the elastic stiffness of the crack and its vector of Biot’s co-

efficients. In (2b) κc is the variation of the porosity of the crack

due to its sliding/opening and B is its Biot’s modulus. K is the per-

meability of the crack. More details are given in Appendix A . It

can be noted that in the presented formulation the relative motion

of the crack lips is not restricted to sliding, the cracks can open

or close. In order to be able to exhibit and compute macroscopic

equivalent coefficients, it has been chosen to remain in a linear

framework and, consequently, to disregard the complete closing of

the crack and the change of permeability that follows. It is possible

to take those features into account by considering a stiffness C and

a permeability K depending on the relative displacement [ [ � u ] ] . It

follows that in such a case, the problems of Section 3.4 that yield

to the macroscopic constitutive equation become non-linear and

have to be solved for each value of the macroscopic strain. In a

3D modeling, the cracks are surfaces (non-plane in general). Eqs.

(2a) and (2b) remain unchanged while Eqs. (2c) and (2d) are: 

div S � Q + [ [ � q ] ] � � n + ˙ κ c = 0 

�
 Q = −K 

−−→ 

grad S p 

where the fluid flow on the cracks � Q is a vector and div S and 

−−→ 

grad S 

denote the surface divergence and gradient. 

The possible adsorption of fluid on the solid of the porous

medium is not taken into account in this study, the fluid is free

and consequently the fluid pressure p is continuous through the

cracks. It is then assumed to be differentiable everywhere so the

derivative dp 
dl 

can be written as dp 
dl 

= 

−−→ 

grad p � � τ and Eq. (2d) reads:

Q = −K 

−−→ 

grad p � � τ (3)

The sets (1) and (2) of equations need to be completed by

boundary conditions and fluid mass balance equations at the crack

junction points. As the purpose of this paper is the bulk homog-

enization of the cracked poroelastic medium, the boundary condi-

tions on ∂� are not relevant and are therefore not defined. Con-

cerning the fluid mass balance equation, it is assumed that there is

no point fluid source or well at the junction points of cracks, there-

fore the balance of fluid mass at junction points merely comes
own to the (algebraic) sum of the flows coming from the cracks

o the junction points, thus tending to zero. 

.2. Weak formulations 

As stressed in the previous section, the topic of this paper is

he bulk homogenization of the cracked poroelastic medium and it

s not necessary to precisely define the boundary conditions on ∂�

the boundary of �). So, the test fields considered in this section

re taken as identically zero on ∂�. 

.2.1. Mechanics 

The weak formulation (virtual power formulation) of the me-

hanical equilibrium is obtained in the usual way: first by the

calar multiplication of the balance Eq. (1a) by a test field 

�
 w (a

irtual velocity field), second by integrating the product over an

ntact part of the porous medium � bounded either by a part of

he boundary ∂� or cracks and third by modifying the integral
 

div σ. � w ds by an integration-by-parts and finally by summing all

he obtained equations to get: 

 

�
 w , � w = 0 on ∂� , −

∫ 
�

σ : ε( � w ) d s −
∫ 
�

�
 T � [ [ � w ] ] d l = 0 (4)

The test field 

�
 w is chosen equal to 0 on the boundary ∂� in

rder to disregard the boundary conditions that, as noted at the

nd of Section 2.1 , are not relevant for the purpose of the study.

t has to be stressed out that, contrary to what is usually done

ut consistently with the discontinuity of the displacement field 

�
 u

hrough the cracks, the integral 
∫ 
�
�
 T � [ [ � w ] ] d l over the cracks � is

ot eliminated by assuming that the velocity field 

�
 w is continuous

hrough those cracks. 

.2.2. Balance of fluid volume 

The fluid volume balance is the same as the fluid mass bal-

nce since the fluid is considered as incompressible and it regards

he balance of the fluid volume in the porous part (1d) and in the

racks (2c) . The weak formulation of the balance of fluid volume in

he porous part is obtained in the same way as the virtual power

ormulation of the equilibrium (4) , i.e.: 

 r, r = 0 on ∂� , −
∫ 
�

�
 q �

−−→ 

grad r d s + 

∫ 
�

˙ κr d s −
∫ 
�

[ [ � q ] ] � � n r d l = 0 

(5)

here r represents the pressure test field. Unlike in (4) where
�
 

 = σ � � n is continuous and 

�
 w discontinuous through the cracks, in

5) � q is discontinuous and r is continuous. 
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The same procedure along with the balance of flows at the

unction points of the cracks yields to: 

 r, r = 0 on ∂� , −
∫ 
�

Q 

dr 

dl 
d l + 

∫ 
�

[ [ � q ] ] . � n r d l + 

∫ 
�

˙ κ c r d l = 0 (6)

y adding the two previous weak formulations, we obtain: 

 r, r = 0 on ∂� , −
∫ 
�

�
 q �

−−→ 

grad r d s −
∫ 
�

Q 

dr 

dl 
d l + 

∫ 
�

˙ κr ds 

+ 

∫ 
�

˙ κ c r d l + 

∫ 
∂�

Q 

b r d l + 

∑ 

i 

Q 

i r 
(
�
 x i 
)

= 0 (7) 

hich, writing dr 
dl 

= 

−−→ 

grad r � � τ reads: 

 r, r = 0 on ∂� , −
∫ 
�

�
 q �

−−→ 

grad r d s −
∫ 
�

Q 

�
 τ �

−−→ 

grad r d l + 

∫ 
�

˙ κr d s 

+ 

∫ 
�

˙ κ c r d l + 

∫ 
∂�

Q 

b r d l + 

∑ 

i 

Q 

i r 
(
�
 x i 
)

= 0 (8) 

. Homogenization 

As presented in Section 2 , the considered method of up-scaling

s based on asymptotic expansions, the small parameter e of those

xpansions being the ratio of the homothety mapping the cell Y

nto the periods of the medium. This means that it is not only one

edium that is considered but a sequence of media parametrized

y e . Consequently, all the involved fields σ , � u , κ , � q , p, T, Q and κc 

epend on e . To underline this dependence, they are denoted by
( e ) , � u (e ) , κ ( e ) , � q (e ) , p ( e ) , T ( e ) , Q 

( e ) and κc ( e ) . 

The behavior of all the mechanical and porous characteristics of

he porous matrix with respect to the small parameter e have to

e detailed before implementing the asymptotic process since the

omogenized modeling depends on this behavior. The mechanical

nd porous characteristics of the porous matrix, that is to say c,

, β and k are assumed to be locally periodic, i.e. their depen-

ence of the space variable � x takes the form f 
(
�
 x , � x 

e 

)
where the

unction 

�
 y ∈ Y −→ f ( � x , � y ) is Y -periodic. On top of the local peri-

dicity of the coefficients of the cracks and according to a similar

tudy presented in Caillerie (1983) for heat conduction, it is con-

istent to assume for them certain behaviors with respect to the

mall parameter e . As stressed out at the beginning of this section,

he use of expansions implies that a sequence of media with thin-

er and thinner periods is considered. Consequently, these media

resent more and more cracks and if those cracks are not assumed

o be stiffer and stiffer then the whole strain of the media will lo-

alize on the cracks. Conversely, if the permeability of the cracks

s not assumed to go to zero with e then the whole flow will go

hrough the cracks. In a similar way of thinking, Biot’s modulus of

he cracks goes to zero like e in order that the macrocopic varia-

ion of the porosity should not be concentrated on the cracks. In

he asymptotic process, it is then assumed that the modeling (2) of

he cracks takes the form: 

�
 

 

(e ) = 

C 

e 
�
[[
�
 u 

(e ) 
]]

− p (e ) �
 A (9a) 

c(e ) = 

�
 A �
[[
�
 u 

(e ) 
]]

+ eBp (e ) (9b) 

dQ 

(e ) 

dl 
+ 

[[
�
 q (e ) 

]]
. � n + ˙ κ c(e ) = 0 (9c) 

 

(e ) = −eK 

−−→ 

grad p (e ) � � τ (9d) 

.1. Asymptotic expansions 

Let �Y denote the set of all cracks of the cell Y . 
We look for the solution 

�
 u (e ) , p (e ) of the consolidation problem

f the form of double scale asymptotic expansions: 

�
  

(e ) = 

�
 u 

(0) ( � x ) + e � u 

(1) 
(
�
 x , 
�
 x 

e 

)
+ e 2 � u 

(2) 
(
�
 x , 
�
 x 

e 

)
+ · · · (10a) 

p (e ) = p (0) ( � x ) + ep (1) 
(
�
 x , 
�
 x 

e 

)
+ e 2 p (2) 

(
�
 x , 
�
 x 

e 

)
+ · · · (10b) 

where � u ( k ) ( � x , � y ) and p ( k ) ( � x , � y ) k = 1 , . . . are functions of the

arge scale variable � x ∈ � and of the small scale variable � y ∈ Y and

re Y -periodic with respect to � y . It can be noted that the first terms

�
  

( 0 ) and p (0) of those expansions are assumed not to depend on

he variable � y . This is consistent with the general idea of the ho-

ogenization process which is to smooth out the fine-scale het-

rogeneities. 

According to the expansions (10) , those of the gradient of � u (e ) 

f the strain ε
(
�
 u (e ) 

)
, of the gradient of the fluid pressure p ( e ) and

f the jump 

[[
�
 u (e ) 

]]
of � u (e ) on cracks read: 

 

�
 u 

(e ) = ∇ 

x �
 u 

(0) + ∇ 

y �
 u 

(1) + e 
(∇ 

x �
 u 

(1) + ∇ 

y �
 u 

(2) 
)

+ · · · (11a) 

(
�
 u 

(e ) 
)

= εx 
(
�
 u 

(0) 
)

+ εy 
(
�
 u 

(1) 
)

+ e 
(
εx 

(
�
 u 

(1) 
)

+ εy 
(
�
 u 

(2) 
))

+ · · · (11b) 

−→ 

rad p (e ) = 

−−→ 

grad 

x p (0) + 

−−→ 

grad 

y p (1) + e 

(−−→ 

grad 

x p (1) + 

−−→ 

grad 

y p (2) 
)

+ · · ·
(11c) 

[
�
 u 

(e ) 
]]

= e 
[[
�
 u 

(1) 
]](

�
 x , 
�
 x 

e 

)
+ e 2 

[[
�
 u 

(2) 
]](

�
 x , 
�
 x 

e 

)
+ · · · (11d) 

where Eqs. (11a) , (11b) and (11c) hold true for � x in the porous

arts of � and Eq. (11d) for � x on the cracks �. 

As already remarked, � u (0) of the expansion (10a) is assumed

o be a smooth macroscopic displacement field. At this scale

he cracks are smoothed out, consequently the expansion of the

ump 

[[
�
 u (e ) 

]]
begins at order 1 and, moreover, in the jumps[

�
 u (k ) 

]]
, k = 1 , . . . only the small scale variable � y is concerned. 

The constitutive Eq. (1b) , the equation governing the variation

f porosity (1c) , Darcy’s law (1e) and Eq. (9) along the cracks en-

ail that the expansions of the stress σ ( e ) , the variation of porosity

η( e ) and the fluid flow 

�
 q (e ) have to be of the following forms: 

(e ) ( � x ) = σ (0) 
(
�
 x , 
�
 x 

e 

)
+ eσ (1) 

(
�
 x , 
�
 x 

e 

)
+ e 2 σ (2) 

(
�
 x , 
�
 x 

e 

)
+ · · · (12a) 

(e ) ( � x ) = κ(0) 
(
�
 x , 
�
 x 

e 

)
+ eκ(1) 

(
�
 x , 
�
 x 

e 

)
+ e 2 κ(2) 

(
�
 x , 
�
 x 

e 

)
+ · · · (12b) 

  

(e ) ( � x ) = 

�
 q (0) 

(
�
 x , 
�
 x 

e 

)
+ e � q (1) 

(
�
 x , 
�
 x 

e 

)
+ e 2 � q (2) 

(
�
 x , 
�
 x 

e 

)
+ · · · (12c) 

�
 

 

(e ) ( � x ) = 

�
 T (0) 

(
�
 x , 
�
 x 

e 

)
+ e � T (1) 

(
�
 x , 
�
 x 

e 

)
+ · · · (12d) 

c(e ) ( � x ) = eκ c(1) 
(
�
 x , 
�
 x 

e 

)
+ e 2 κ c(2) 

(
�
 x , 
�
 x 

e 

)
+ · · · (12e) 

 

(e ) ( � x ) = eQ 

(1) 
(
�
 x , 
�
 x 

e 

)
+ e 2 Q 

(2) 
(
�
 x , 
�
 x 

e 

)
+ · · · (12f) 

Eqs. (12a) , (12b) and (12c) hold true for � x in the porous parts

f � and Eqs. (12d) , (12e) and (12f) for � x on the cracks �. 
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As a consequence of (12c) , the jump of the fluid flow through

the cracks expands into: [[
�
 q (e ) 

]]
( � x ) = 

[[
�
 q (0) 

]](
�
 x , 
�
 x c 

e 

)
+ e 

[[
�
 q (1) 

]](
�
 x , 
�
 x 

e 

)
+ e 2 

[[
�
 q (2) 

]](
�
 x , 
�
 x 

e 

)
+ · · · (13)

The choices of the order of magnitude of the characteristics of

the cracks with respect to e in (9) are such that in the expansions

(12) , the leading term of the stress vector � T (e ) is of the order of e 0 

and not of e and that those of κc ( e ) and Q 

( e ) are of the order of e

and not of e 0 . 

3.2. Balance equations 

3.2.1. Preliminary results 

To obtain the macroscopic balance equations (of momentum

and of fluid flow) we use a lemma established by Sánchez-Palencia

(1980 , (pp. 77–78)) that reads: 

For a function F ( � x , � y ) of � x and 

�
 y , Y −periodic in 

�
 y , we have: 

lim 

e → 0 

∫ 
�

F 

(
�
 x , 
�
 x 

e 

)
d s x = 

∫ 
�

〈 F 〉 ( � x ) d s x 

where: 

〈 F 〉 ( � x ) = 

1 

| Y | 
∫ 

Y 

F ( � x , � y ) d s y 

This result is used in the following but it has to be established

for integrals of the form 

∫ 
� F 

(
�
 x , � x 

e 

)
d l x defined on �. 

The whole medium is assumed to be periodic and the idea pre-

sented in Sánchez-Palencia (1980) consists in splitting the integra-

tion domain, here the cracks �, into the union over the periods of

the part e �Y of the cracks in each of the periods. e �Y is the ho-

mothetic of �Y in the ratio e where �Y is the set of cracks of the

reference cell Y (see Fig. 1 ). So the integral 
∫ 
� F 

(
�
 x , � x 

e 

)
dl x reads: ∫ 

�
F 

(
�
 x , 
�
 x 

e 

)
dl x = 

∑ 

periods 

∫ 
e �Y 

F 

(
�
 x , 
�
 x 

e 

)
dl x 

The change of variables � x ↔ e � y in the integral 
∫ 

e �Y 
F 
(
�
 x , � x 

e 

)
dl x yields

(note that d l x = ed l y ): ∫ 
�

F 

(
�
 x , 
�
 x 

e 

)
d l x = 

∑ 

periods 

e 

∫ 
�Y 

F ( � x , � y ) d l y 

so: 

e 

∫ 
�

F 

(
�
 x , 
�
 x 

e 

)
dl x = 

∑ 

periods 

e 2 | Y | 〈 F 〉 ( � x ) 

where: 

〈 F 〉 ( � x ) = 

1 

| Y | 
∫ 
�Y 

F ( � x , � y ) d l y 

now the sum over the periods can be seen as Riemann’s sum of

the integral 
∫ 
� 〈 F 〉 ( � x ) ds x hence when e ↘ 0 we can see that the

Sanchez’ lemma is valid also for integrals over �: 

For a function F ( � x , � y ) of � x and 

�
 y , Y −periodic in 

�
 y , we have: 

lim 

e → 0 

∫ 
�

F 

(
�
 x , 
�
 x 

e 

)
d l x = 

∫ 
�

〈 F 〉 ( � x ) d s x 

3.2.2. Mechanics 

The purpose of this section is to determine the balance equa-

tion of the homogenized medium satisfied by the average stress

tensor: 

〈 σ 〉 = 

1 

| Y | 
∫ 

Y 

σ (0) d s y (14)
or that, w consider in the formulation (4) a macroscopic virtual

elocity field 

�
 w which vanishes on ∂�.Macroscopic means that this

irtual field is smooth (differentiable) all over �. Particularly, the

eld 

�
 w is continuous in � and the jumps [ [ � w ] ] through the cracks

re zero. So, using the lemmas of Section 3.2.1 , the limit e ↘ 0,

ields: 

 

�
 w , � w = 0 on ∂� , −

∫ 
�

〈 σ 〉 : ε( � w ) d s x = 0 (15)

hich proves that: 

iv 〈 σ 〉 = 0 in � (16)

.2.3. Fluid flow 

Taking r in (8) as a smooth macroscopic function which van-

shes on ∂� and making e ↘ 0 with the use of lemmas 3.2.1, we

et: 

 r, r = 0 on ∂� , −
∫ 
�

1 

| Y | 
(∫ 

Y 

�
 q (0) d s y + 

∫ 
�Y 

Q 

(1) �
 τ d l y 

)
�
−−→ 

grad x r d s x 

+ 

∫ 
�

1 

| Y | 
(∫ 

Y 

˙ κ(0) d s y + 

∫ 
�Y 

(
˙ κ c(1) 

)
d l y 

)
r d s x = 0 

efining the average flow vector 〈 � q 〉 and the variation of 〈 κ〉 as: 

 

�
 q 〉 = 

1 

| Y | 
(∫ 

Y 

�
 q (0) d s y + 

∫ 
�Y 

Q 

(1) �
 τ d l y 

)
(17)

 

κ〉 = 

1 

| Y | 
(∫ 

Y 

κ(0) d s y + 

∫ 
�Y 

κ c(1) d l y 

)
(18)

e get: 

 r, r = 0 on ∂� , −
∫ 
�

1 

| Y | 〈 � q 〉 � −−→ 

grad x r d s x + 

∫ 
�

〈 κ〉 r d s x = 0 (19)

hich entails that: 

iv 
x 〈 � q 〉 + 

˙ 〈 κ〉 = 0 (20)

.3. Expansions of the constitutive equations 

The expansions of Eqs. (1b) , (1c), (1e), (9a), (9b) and (9d) yield

t the lowest order: 

( 0 ) = c : 
(
εx 

(
�
 u 

( 0 ) 
)

+ εy 
(
�
 u 

( 1 ) 
))

− p ( 0 ) α (21a)

( 0 ) = α : 
(
εx 

(
�
 u 

( 0 ) 
)

+ εy 
(
�
 u 

( 1 ) 
))

+ βp ( 0 ) (21b)

�
  

( 0 ) = −k 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)

(21c)

�
 

 

(0) = C �
[[
�
 u 

(1) 
]]

− p (0) �
 A (21d)

c(1) = 

�
 A �
[[
�
 u 

(1) 
]]

+ Bp (0) (21e)

 

(1) = −K 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)
� � τ (21f)

The previous equations represent the expansions of the consti-

utive equations but they are not the constitutive equations of the

omogenized medium. Indeed, they do not involve only the macro-

copic strain εx 
(
�
 u (0) 

)
and pressure p (0) but also the fields � u (1) and

 

(1) . Those two fields have to be determined in terms of εx 
(
�
 u (0) 

)
nd p (0) by solving the so called self-balanced problems , presented

n the following section. 



A. Argilaga et al. / International Journal of Solids and Structures 94–95 (2016) 222–237 227 

3

 

(  

n  

c  

e  

T  

t

a  

k

m  

p  

d  

l  

m  

t  

I  

e  

s  

b  

t  

a  

S  

t

3

 

t  

w

ε

T  

m

∀

a

∀
w  

t  

y  

p

G

∀

 

d

σ

σ

T

u

 

s  

t  

Q

3

 

t  

w

−
g

T

∀

a

∀
w  

c  

t  

r

G

∀

 

 

fi

a

 

a

3

 

S  

u

C  

(  

d  

c  

m

〈

〈

.4. Self-balanced problems on the cell Y 

The macroscopic balance Eqs. (16) and (20) or alternatively

15) and (19) are not sufficient to define the macroscopic homoge-

ized modeling of the cracked porous medium, as the macroscopic

onstitutive equations are needed. Those macroscopic constitutive

quations come from the averaging over Y and/or �Y of Eq. (21) .

hose first terms of the expansions of the constitutive equations of

he porous medium involve not only the macroscopic fields � u (0) 

nd p (0) but also � u (1) and p (1) which depend on 

�
 y and are un-

nown. Therefore, previous to the averaging of (21) , � u (1) and p (1) 

ust be determined in terms of the macroscopic fields � u (0) and

 

(0) (see Sánchez-Palencia, 1980 or Bensoussan et al., 2011 for more

etails). The starting point to get the so-called self-balanced prob-

ems, i.e. the problems allowing to determine � u (1) and p (1) , is, once

ore, given by the weak formulations (4) and (8) in which the vir-

ual fields can be chosen as needed, accordingly to the aim in view.

n Section 3.2 , the aim is to determine the homogenized balanced

quation, hence the chosen smooth macroscopic virtual fields that

mear out the heterogeneities. On the contrary, to obtain the self-

alanced problems set on the cell Y , it is necessary to emphasize

he dependence on the variable � y . That is done by taking the suit-

ble test fields of the form 

�
 w = θ ( � x ) � v 

(
�
 x 

e 

)
and r = θ ( � x ) t 

(
�
 x 

e 

)
. See e.g.

ánchez-Palencia (1980 , page 79) for a more complete presenta-

ion. 

.4.1. Mechanics 

Let � w be the field 

�
 w = θ ( � x ) � v 

(
�
 x 

e 

)
where � v ( y ) is a periodic func-

ion defined on Y and θ ( � x ) is a smooth macroscopic function

hich vanishes on ∂�, we have: 

( � w ) = 

(
�
 v �

−−→ 

grad 

x θ
)S 

+ 

1 

e 
θ εy ( � v ) 

aking � w = θ ( � x ) � v 
(
�
 x 

e 

)
in (4) and making e ↘ 0 with the use of lem-

as 3.2.1 and 3.2.1, yield: 

 θ, � v , θ = 0 on ∂� , −
∫ 
�

1 

| Y | 
(∫ 

Y 

σ (0) : εy ( � v ) d s y 

+ 

∫ 
�Y 

�
 T (0) � [ [ � v ] ] d l y 

)
θ d s x = 0 

s θ is any smooth macroscopic field, that entails: 

 

�
 v , Y -periodic , 

∫ 
Y 

σ (0) : εy ( � v ) d s y + 

∫ 
�Y 

�
 T (0) � [ [ � v ] ] d l y = 0 

hich is the weak formulation of the mechanical self-balanced of

he cell Y . Taking into account the constitutive Eqs. (21a) and (21d) ,

ields to the weak formulation of the mechanical self-balanced

roblem, i.e.: 

iven εx 
(
�
 u 

(0) 
)

and p (0) , find 

�
 u 

(1) ( � x , � y ) , Y -periodic, such that: 

 

�
 v , Y -periodic , 

∫ 
Y 

(
c : 

(
εx 

(
�
 u 

( 0 ) 
)

+ εy 
(
�
 u 

( 1 ) 
))

− p ( 0 ) α
)

: εy ( � v ) d s y 

+ 

∫ 
�Y 

(
C �

[[
�
 u 

(1) 
]]

− p (0) �
 A 

)
� [ [ � v ] ] d l y = 0 (22)

The strong form of the problem reads: 

iv 
y σ (0) = 0 , in Y (23a) 

(0) � � n = 

�
 T (0) , on �Y (23b) 

( 0 ) = c : 
(
εx 

(
�
 u 

( 0 ) 
)

+ εy 
(
�
 u 

( 1 ) 
))

− p ( 0 ) α (23c) 

�
 

 

(0) = C �
[[
�
 u 

(1) 
]]

− p (0) �
 A , on �Y (23d) 

�
  

(1) , σ (0) Y -periodic (23e) 
It is worth noting that this problem is purely mechanical in the

ense that the only unknowns are the displacement field 

�
 u (1) and

he stress field σ (0) , the pressure field p (1) and the flows � q (0) and

 

(1) being not involved. 

.4.2. Fluid flow 

Let r be the field r = θ ( � x ) w 

(
�
 x 

e 

)
where w ( � y ) is a periodic func-

ion defined on Y and θ ( � x ) is a smooth macroscopic function

hich vanishes on ∂�. We then have: 

−→ 

rad r = w 

−−→ 

grad 

x θ + 

1 

e 
θ

−−→ 

grad 

y w 

aking r = θ ( � x ) w 

(
�
 x 

e 

)
in (8) and making e ↘ 0, yield: 

 θ, w , −
∫ 
�

1 

| Y | 
(∫ 

Y 

�
 q (0) �

−−→ 

grad 

y w d s y 

+ 

∫ 
�Y 

Q 

(1) 
−−→ 

grad 

y w � � τ d l y 

)
θ d s x = 0 

s θ is any smooth macroscopic field, that entails: 

 w Y -periodic , 

∫ 
Y 

�
 q (0) �

−−→ 

grad 

y w d s y + 

∫ 
�Y 

Q 

(1) 
−−→ 

grad 

y w � � τ d l y = 0 

hich is the weak form of the fluid volume self-balanced of the

ell Y . Taking into account relations (21c) and (21f) , yields to

he weak formulation of the self-balanced filtration problem that

eads: 

iven 

−−→ 

grad 

x p (0) , find p (1) ( � x , � y ) , Y -periodic, such that: 

 w Y -periodic , 

∫ 
Y 

k 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)
�
−−→ 

grad 

y w d s y 

+ 

∫ 
�Y 

(
K 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)
� � τ

)(−−→ 

grad 

y w � � τ
)

d l y = 0 

(24)

The strong form of the problem reads: 

div 
y �

 q (0) = 0 , in Y 

dQ 

(1) 

dl 
+ 

[[
�
 q (0) 

]]
� � n = 0 , on �Y 

�
 q ( 0 ) = −k 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)

Q 

(1) = −K 

(−−→ 

grad 

x p ( 0 ) + 

−−→ 

grad 

y p ( 1 ) 
)
� � τ∑ 

Q 

(1) = 0 at junction points of cracks 

p (1) , � q (0) , Q 

(1) Y -periodic 

In a similar way to Section 3.4.1 , the problem (24) is a pure

ltration one, the displacement field 

�
 u (1) and the stress field σ (0) 

re not involved. 

So, at the microscopic scale, i.e. the cell Y -scale, the elasticity

nd the fluid flow problems are completely uncoupled. 

.5. Macroscopic constitutive equations 

As problems (22) and (24) are linear, it is standard (see

ánchez-Palencia, 1980 or Bensoussan et al., 2011 ) to prove that

�
  

(1) linearly depends on e x 
(
�
 u (0) 

)
and p (0) , and p (1) on

−−→ 

grad 

x p (0) . 

onsequently, by the constitutive Eq. (21b) and the expression

21b) , σ (0) and κ (0) depend linearly on e x 
(
�
 u (0) 

)
and p (0) and so

oes 〈 σ 〉 and 〈 κ〉 defined by (14) and (18) . In a similar way, it

an be seen that 〈 � q 〉 depends linearly on 

−−→ 

grad 

x p (0) . Therefore, the

acroscopic constitutive equations read: 

 

σ 〉 = c H : εx 
(
�
 u 

( 0 ) 
)

− p ( 0 ) αH (25a) 

 

κ〉 = ˜ αH : εx 
(
�
 u 

( 0 ) 
)

+ βH p ( 0 ) (25b) 
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〈 � q 〉 = −k H 
−−→ 

grad 

x p ( 0 ) (25c)

From those equations and (14) , it is obvious that c H 
i jkh 

is the av-

erage of σ (0) 
i j 

for p (0) = 0 and εx 
(
�
 u (0) 

)
= ( � e k � �

 e h ) 
S and that αH 

i jk 

is the average of −σ (0) 
i j 

for p (0) = 1 and εx 
(
�
 u (0) 

)
= 0 . In the same

way, k H 
i j 

is equal to 〈 � q 〉 i (see (17) ) for 
−−→ 

grad 

x p ( 0 ) = 

�
 e j . 

On the standard energy-based assumptions of symmetries for

the elastic tensors c and C namely: 

c i jkl = c kli j and C i j = C ji 

it is classical (see Sánchez-Palencia, 1980 or Bensoussan et al.,

2011 ) to prove that c H , k H , αH and ˜ αH satisfy the following rela-

tions: 

c H i jkl = c H kli j 

k H i j = k H ji 

˜ αH = αH 

4. Damage 

In this section, cracks are considered damageable, the purpose

being to build the corresponding macroscopic modeling of the

cracked porous medium. 

4.1. Damage parameter and evolution law 

Similarly to the approach proposed in Bilbie et al. (2008) , the

constitutive equations of those cracks (9a) and (9d) are changed

to: 

�
 T (e ) = 

(
1 − d (e ) 

)C 

e 
�
[[
�
 u 

(e ) 
]]

− p (e ) �
 A (26)

Q 

(e ) = −eK 

(
d (e ) 

)−−→ 

grad p (e ) � � τ (27)

d ( e ) being the damage parameter of the cracks. It can be stressed

that, in the considered damage modeling, the damage parameter

modifies only the stiffness C and not � A . This can be seen as purely

heuristical but this choice seems consistent with the double scale

asymptotic analysis of an elastic saturated porous matrix leading

to Biot’s modeling, see Auriault and Sanchez-Palencia (1977) and

Auriault (2005) . On the other hand, the dependence of the perme-

ability K with respect to d ( e ) is completely phenomenological (e.g.

Rastiello et al., 2013 ). 

The damage of the cracks is due to the opening and the shear-

ing of the cracks. For the sake of simplicity ( Bilbie et al., 2008 ), any

difference between the opening and the closing of the cracks are

disregarded and the evolution of the damage parameter d is given

by: 

d (e ) ( t ) = sup 

0 ≤τ≤t 

f 

( ∥∥[[
�
 u 

(e ) 
]]

( τ ) 
∥∥

D 

(e ) 

) 

(28)

where f is the function: 

z 
f → f ( z ) = 

{
z ( 2 − z ) 0 ≤ z < 1 

1 1 ≤ z 
(29)

and D 

( e ) is a length-like feature of the material of the cracks. At

initial time t = 0 , the porous medium is assumed to be unloaded,

unstressed, unstrained and undamaged which means that the ini-

tial value of the damage parameter is 0. 

d ( e ) ( t ) is a function of the history { [[ � u (e ) ]] ( τ ) ; τ ≤ t} of [[ � u (e ) ]]

up to time t . Its evolution is governed only by the opening or

shearing of the cracks and not directly by the fluid pressure. 
.2. Homogenization of the damageable cracked porous medium 

The damage parameter is sought in the form of the double scale

symptotic expansion: 

 

(e ) ( � x , t ) = d (0) 
(
�
 x , 
�
 x 

e 
, t 

)
+ ed (1) 

(
�
 x , 
�
 x 

e 
, t 

)
+ e 2 d (2) 

(
�
 x , 
�
 x 

e 
, t 

)
+ · · ·

Almost all the analysis and equations of Section 3 remain valid.

q. (23d) is slightly modified to: 

�
 

 

(0) = 

(
1 − d (0) 

)
C �

[[
�
 u 

(1) 
]]

− p (0) �
 A 

ut all the other equations of (23) remain unmodified. The main

hange lies in the nature of the mechanical self-balanced problem

23) on the cell Y which, in Section 3.4 is a purely time indepen-

ent elastic problem. In this section, due to damage, it becomes

 non-linear quasi-static evolution, involving an evolution law for

he damage parameter d (0) which comes from the expansion (28) . 

As, according to (11d) , the first term of the expansion of [[ � u (e ) ]]

s of the order of e , it is consistent to assume that D 

( e ) is propor-

ional to e : 

 

(e ) = eD 

With this assumption, it can be proved (see Appendix B ) that

he evolution law for d (0) reads: 

 

(0) ( t ) = sup 

0 ≤τ≤t 

f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

(30)

In the case of damageable cracks, the weak formulation of the

echanical self-balanced problem reads: 

iven the histories 
{
εx 

(
�
 u 

(0) 
)
( τ ) ; 0 ≤ τ ≤ t 

}
and 

{
p (0) ( τ ) ; 0 ≤ τ ≤ t 

}
, find 

�
 u 

(1) ( � x , � y , τ ) 

and d (0) ( � x , � y , τ ) , Y -periodic , τ ∈ [ 0 , t ] , such that: 

∀ τ ∈ [ 0 , t ] , ∀ 

�
 v , Y -periodic , 

∫ 
Y 

(
c : 

(
εx 

(
�
 u 

( 0 ) ( τ ) 
)

+ εy 
(
�
 u 

( 1 ) ( τ ) 
))

− p ( 0 ) ( τ ) α
)

: εy ( � v ) d s y 

+ 

∫ 
�Y 

((
1 − d (0) ( τ ) 

)
C �

[[
�
 u 

(1) ( τ ) 
]]

− p (0) ( τ ) � A 

)
� [ [ � v ] ] d l y = 0 

with d (0) ( τ ) = sup 

0 ≤ρ≤τ
f 

( ∥∥ [[
�
 u 

(1) ( ρ) 
]] ∥∥

D 

) 

(31)

The solution of this quasi-static evolution problem, allows the

tress σ (0) ( t ) and by (14) the macroscopic stress 〈 σ 〉 ( t ) to be deter-

ined. Thus, the macroscopic constitutive equation reads: {
εx 

(
�
 u 

(0) 
)
( τ ) ; 0 ≤ τ ≤ t 

}
, 
{

p (0) ( τ ) ; 0 ≤ τ ≤ t 
})

−→ 〈 σ 〉 ( t ) 
The strong form of problem (31) can be obtained in the same

ay as (23) is obtained from (22) . 

The solution of the evolution problem (31) yields to d (0) ( t ), as a

unctional of the histories 
{
εx 

(
�
 u (0) 

)
( τ ) ; 0 ≤ τ ≤ t 

}
and { p (0) ( τ ) ; 0

τ ≤ t }. The self-balanced filtration problem (24) remains the

ame with K ( d (0) ) instead of K . 

. Numerical implementation of the linear case 

The identification and the use of the macroscopic constitutive

quations of the cracked porous medium require the solution of

he (weak formulation) problems (22) for the mechanical part -

r (31) in the case of damageable cracks - and (24) for the flow

art. However, even for simple configurations of the elementary

ell, those problems cannot be solved analytically and a numerical

EM computation is needed. For the sake of simplicity, the numer-

cal computation is carried out in 2D. 
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Fig. 2. Elementary cell geometry, see Marinelli (2013) . 
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.1. Cell and material properties 

In order to carry out the numerical computation, an elemen-

ary cell (or REV) has to be defined. The considered cell is depicted

n Fig. 2 ; the same cell as Marinelli (2013) has been adopted,

he dimensions are the unity for both sides. The grey parts rep-

esent the poroelastic, homogeneous isotropic matrix (Lame con-

tants: λ = 1 , 442 · 10 9 Pa and μ = 0 , 961 · 10 9 Pa , i.e. Young’s mod-

lus E = 2 , 5 ·10 9 Pa and Poisson’s ratio ν = 0 , 3 ), corresponding to

 typical clay rock material. Biot’s tensor of the poroelastic matrix

s proportional to the identity: α = 0 , 4 I ; its transmissivity K is as-

umed to be 10 −7 m 

2 / Pa i.e. this is equivalent to assume a perme-

bility k h equal to 10 −10 m / Pa with a crack thickness 0,001 times

he cell (unit) length. 1 

Assuming that the material of the cracks is isotropic and that its

iot’s tensor is proportional to the identity (see (A.6) and (A.7) ),

he stiffness tensor of the crack and its Biot’s vector respectively

ead C = C T � τ � �
 τ + C N � n � �

 n and 

�
 A = A 

�
 n . In the following, a para-

etric study on the stiffnesses C T and C N , Biot’s coefficient A and

he permeability of the crack k h is proposed in order to study

he influence of the characteristics of the cracks on the equivalent

acroscopic poroelastic medium (note that C T = C N = C). 

emark 1. Due to the symmetries of the elementary cell with re-

pect to the two axes and the homogeneity and isotropy of the

oroelastic medium and cracks, some properties of the homoge-

ized medium are expected to be isotropic. So, following Léné and

uvaut (1981) or Caillerie (1984) or Appendix C for the quasi-static

on-linear case of damageable cracks, the homogenized medium

s orthotropic, the stiffnesses c H 
1112 

, c H 
2212 

(and all those ensued by

he usual symmetries of indices) are zero, and Biot’s matrix αH is

iagonal ( αH 
12 = αH 

21 = 0 ). It has to be noted that, in general, the

omogenized material is just orthotropic and not isotropic. In the

ame way, the homogenized permeability matrix is diagonal. 

In this following section, the self-equilibrium problem of the

ell (22) is numerically solved . The solutions of a 3+1 boundary

alue problem (three for the elasticity problem and one for the

ater pressure), are integrated and the homogenized coefficients
2 
re obtained in the macroscale . 

1 More details are given in Appendix A . Very thin layer of a deformable porous 

edium. 
2 The following Cauchy stress and Biot problem notation is considered: 
 

 

σ11 

σ22 

σ12 

⎞ 

⎠ = 

⎛ 

⎝ 

C 1111 C 1122 C 1112 

C 1122 C 2222 C 2212 

C 1112 C 2212 C 1212 

⎞ 

⎠ 

⎛ 

⎝ 

ε11 

ε22 

ε12 

⎞ 

⎠ and
−→ 

A H = 

⎛ 

⎝ 

A 1111 

A 2222 

A 1212 

⎞ 

⎠ 

s

(

.2. Numerical validation: mechanics 

.2.1. Macroscopic elastic stiffnesses 

According to Section 3.5 , the macroscopic stiffnesses are ob-

ained through the solution of problem (22) for p (0) = 0 and for
x ( u (0) ), i.e. pure elongations in the direction 1 and 2 and a simple

hear, thus imposing a strain matrix as follows : 

1 0 

0 0 

)
;

(
0 0 

0 1 

)
; 1 

2 

(
0 1 

1 0 

)
For those computations, the crack stiffnesses are C T = C N = C =

0 12 Pa / m . 

Results of the displacement and Von Mises stress field at the

icro-scale are given in Fig. 3 . As expected, despite the isotropic

lasticity at the micro-level, the homogenized solution is not

sotropic due to the cell geometry. 

This result is quantitatively consistent with Marinelli (2013) . 

A parametric study on the influence of the cracks stiffness C in

he range from 10 6 Pa/m to 10 15 Pa/m is here proposed. The elastic

haracteristics of the porous matrix remain unchanged. 

Results are presented in Fig. 4 . 

Consistently with the remark 1 about the orthotropy of the ho-

ogenized medium, the coefficients c H 
1112 

, c H 
1211 

, c H 
1222 

and c H 
2212 

3 

re found numerically null. For a small enough crack stiffness C ,

he dependence of the homogenized coefficients on C is almost

inear, i.e. the overall stiffness is essentially controlled by that of

he cracks and is independent from the porous material proper-

ies. It is obvious that the cracked porous medium is weaker than

he porous medium itself since when a stress is applied, the overall

train is larger than what it would be in the intact porous medium.

t is obvious too that the overall stiffness is close to that of the

orous medium if the cracks are very stiff; indeed, in that case,

he porous medium is almost continuous. That is numerically veri-

ed, for a crack stiffness G higher than 1 · 10 15 Pa , the homogenized

edium is isotropic, its Young’s modulus and Poisson’s ratio being

hose of the porous medium. 

c H = 

⎛ 

⎝ 

3 , 36 · 10 

9 1 , 44 · 10 

9 0 

1 , 44 · 10 

9 3 , 36 · 10 

9 0 

0 0 1 , 92 · 10 

9 

⎞ 

⎠ 

 a = 

⎛ 

⎝ 

λ + 2 μ λ 0 

λ λ + 2 μ 0 

0 0 2 μ

⎞ 

⎠ (33) 

.2.2. Macroscopic Biot’s tensor 

Similarly to the computation of the homogenized stiffnesses,

he macroscopic Biot’s tensor αH is obtained through the solution

f problem (22) , for p (0) = 1 and εx 
(
u (0) 

)
= 0 . As in the previ-

us case, a parametric analysis showing the influence of the crack

roperties on the global, homogenized answer is proposed. The

arametric analysis covers the range: 0 ≤ −→ 

A ≤ 1 , 
−→ 

A being dimen-

ionless. Fig. 5 (left) illustrates a quasi-linear relationship between

he homogenized Biot matrix αH and the Biot vector 
−→ 

A in the

hin elastic layer. The difference of slopes between αH 
11 and αH 

22 in

ig. 5 (left) shows, as expected, that a dependence exists between

he homogenized Biot matrix αH and the crack stiffness G ; this is

hown in Fig. 5 (right). 
3 Notation in the Cauchy relation: 

 〈 σ11 〉 
〈 σ22 〉 
〈 σ12 〉 

) 

= 

⎛ 

⎜ ⎝ 

c H 1111 c H 1122 c H 1112 

c H 2211 c H 2222 c H 2212 

c H 1211 c H 1222 c H 1212 

⎞ 

⎟ ⎠ 

. 

⎛ 

⎜ ⎝ 

εx 
11 

εx 
22 

εx 
12 

⎞ 

⎟ ⎠ 

(32) 



230 A. Argilaga et al. / International Journal of Solids and Structures 94–95 (2016) 222–237 

Fig. 3. Von Mises stress fields N/mm 

2 
in the cell for loadings in the 4 degrees of freedom: lm = 11 , 22 , 12 and p (0) . 

Fig. 4. Homogenized coefficients vs. crack stiffness evolution. 
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.3. Numerical validation: permeability 

Similarly to the computation of the macroscopic mechanical

haracteristics of the homogenized poroelastic medium and ac-

ording to Section 3.5 , the macroscopic permeability matrix is ob-

ained through the solution of problem (24) , for a macroscopic

ressure gradient 
−−→ 

grad 

x p (0) successively parallel to the directions

 and 2, i.e. respectively � e 1 and 

�
 e 2 . For those computations, the

ermeability of the cracks is assumed homogeneous and equal to

 = 1 · 10 −7 m/s with a crack thickness equal to 0.001 times the cell

ize. 

Due to the shape of the considered cell and the homogeneity of

he permeabilities of the porous matrix and of the cracks, it can be

een that the solution p (1) of the problem (24) for 
−−→ 

grad 

x p (0) = 

�
 e 1 is

onstant and, according to (25c) , gives: 

 

H 
11 = k + 

K 

Y 2 

onsistently with the remark 1 , k H 21 is found to be equal to 0.

he computation of k H 
22 

needs the solution of problem (24) for
−→ 

rad 

x p (0) = 

�
 e 2 . Finally the macroscopic permeability matrix reads: 

 

H = 

(
2 , 986 · 10 

−10 0 

−10 

)



A. Argilaga et al. / International Journal of Solids and Structures 94–95 (2016) 222–237 231 

Fig. 5. Left: relation between Biot coefficient in the cracks and homogenized Biot coefficient, crack stiffness (G ) = 10 12 Pa / m . Right: relation between Crack stiffness (G) and 

homogenized Biot coefficient for 
−→ 

A = 

−→ 

0 and 
−→ α = 0 . 4 · −→ 

I . 
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Fig. 6. Oedometric test: evolution of the damage law for all the Gauss points of the cracks. D = 0 . 008 . 
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. Numerical results: damage 

The purpose of this section is to – partially – study the macro-

copic behavior of the cracked porous medium when the cracks are

amageable. As in the previous section, the macroscopic behaviour

s obtained through the solution of a self-balanced problem set on

he elementary cell, namely problem (31) . The self-balanced filtra-

ion problem (24) remains essentially unchanged and is not con-

idered in this section. 

The main differences with the computations of Section 5 are

hat the problem is not linear and that the data of problem (31) are

he histories of the macroscopic strain and the pressure. Newton’s

ethod and a time stepping procedure is then required. 

The constitutive equation is numerically determined for two

ypical geomechanics examples, an oedometric and a biaxial tests

n drained condition. Atmospheric pressure is neglected, that

eans that p (0) = 0 , so the medium is in fact dry. 

The geometry of the cell as well Young’s modulus and Poisson’s

atio of the porous matrix and the elastic stiffness of the undam-

ged cracks are given in Section 5 . 
.1. Oedometric loading 

Damage model is first applied using a strain controlled path, i.e.

n oedometric test. An arbitrary uniaxial macrostrain εx 
(
u (0) 

)
=

0 , 01 � e 1 � �
 e 1 is applied in 20 steps and the damage parameter is

 = 0 . 008 times the size of the cell. All the elastic coefficients are

he same used in previous sections. 

The evolution of the damage law for all the Gauss points in the

rack network is depicted in Fig. 6 . 

The stress-strain curve is given in Fig. 7 as well as the number

f iterations needed for convergence in Newton’s method. 

.2. Biaxial test loading 

The second considered example corresponds to a mixed

tress/strain controlled path. A confining pressure and a gradu-

lly increasing longitudinal strain are applied, thus reproducing the

oading path of a biaxial test. The solution of the self-balance prob-

em (31) gives the stress in terms of the history of the strain: a
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Fig. 7. Oedometric test. Left: stress-strain 11 axis, right: number of iterations for convergence of Newton method. . 
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suitable procedure, presented in what follows, is needed to simu-

late the biaxial test. 

In the time stepping scheme, the finite element solution of

problem (31) gives the stress σ n at the end of the step n in terms

of the strain εn at step n : 

σ n = T n ( εn ) 

The stress σ n and strain εn are then decomposed in two supple-

mentary subspaces E 1 and E 2 of the space of second order ten-

sors: 

σ n = σ n 
1 + σ n 

2 

εn = εn 
1 + εn 

2 

where σ n 
1 

and εn 
2 

are given and σ n 
2 

and εn 
1 

are unknown. The prob-

lem to be solved reads: 

Given σ n 
1 ∈ E 1 and εn 

2 ∈ E 2 , find σ n 
2 ∈ E 2 and εn 

1 ∈ E 1 such that :

σ n 
1 + σ n 

2 − T n ( εn 
1 + εn 

2 ) = 0 (34)

T n is non-linear, so Newton’s method is used to determine the

solution of the problem. The linearized equation to be solved in

δεn ( k ) 
1 

and δσ n ( k ) 
2 

at iteration ( k ) of Newton’s method reads: 

δσ n ( k ) 
2 

− C n : δεn ( k ) 
1 

+ σ n 
1 + σ n ( k ) 

2 
− T n 

(
εn ( k ) 

1 
+ εn 

2 

)
= 0 

where C n = 

dT n 
δεn is computed at 

(
εn ( k ) 

1 
+ εn 

2 

)
. The approximated so-

lution at step k is then updated into: 

εn ( k +1 ) 
1 

= εn ( k ) 
1 

+ δεn ( k ) 
1 

σ n ( k +1 ) 
2 

= σ n ( k ) 
2 

+ δσ n ( k ) 
2 

The procedure is then applied to the case of a biaxial test us-

ing the same elastic coefficients as in the previous cases. As a

first loading sequence, a confining pressure p c = 1 · 10 7 Pa is grad-

ually applied (time steps from 1 to 16), then a strain ε22 = 0 . 04

(time steps from 17 to 40) is gradually imposed, the confining

pressure remaining constant. Similarly to the previous section, the

macroscale values p c = 1 · 10 7 Pa and ε22 = 0 . 04 are chosen in or-

der to create a significant amount of damage. 

In the first part of the loading, the total stress σ n is given ( σ n 
1 

=
σ n , σ n 

2 
≡ 0 ): 

σ n = 

n 

16 

(
p c 0 

0 p c 

)

here 1 ≤ n ≤ 16 and the whole strain εn is unknown ( εn 
1 

=
n , εn 

2 
≡ 0 ). 

In the second part of the loading, 17 ≤ n ≤ 40, the data are: 

n 

1 
= 

(
p c 0 

0 0 

)
, εn 

2 
= 

n − 16 

24 

(
0 0 

0 ε22 

)

nd the unknowns are: 

n 

2 
= 

(
0 0 

0 σ n 
22 

)
, εn 

1 
= 

(
εn 

11 εn 
12 

εn 
12 0 

)

Results are given in Fig. 8 . 

.3. Oedometric and biaxial tests: discussion of the results 

The above presented cases (oedometer and biaxial tests) show

hat the constitutive law for the given REV can be obtained for any

oading path. 

Microscale damage implies softening of the homogenized stress

ensor. In accordance with the combination of the applied macros-

rains on the time-history, cracks are affected in a different manner

nd, consequently, the stress tensor evolves depending on these

acrostrain paths. 

The homogenized stresses σ H 
1111 

, σ H 
1122 

and σ H 
1212 

are similarly af-

ected but σ H 
2222 has significantly less degradation due to the non-

ymmetric loading. Accordingly to the lemma of Appendix C the

tresses σ H 
1112 

and σ H 
2212 

and their symmetric σ H 
1211 

and σ H 
1222 

are

qual to zero. 

It should be noted that for a large strain, which also implies

igh damage, some homogenized stresses become zero. In other

erms, the REV can be considered as broken after a given iteration.

oreover, the damaged (but not completely broken) cracks close,

eading to a non-unique solution ( Chambon et al., 2004 ). An exam-

le of the deformed configuration and the Von Mises stress field is

epicted in Fig. 9 . 

It is worth noting that when the solution bifurcates, New-

on’s method require a larger number of iterations to converge.

n Fig. 7 , 38 iterations are required to fulfill the convergence cri-

erion when localization occurs (at step 16, the macrostrain is

bout ε 11 = 6 . 4 × 10 −3 ). The same phenomenon is observed in the

iaxial test in Fig. 8 . Some localization features are explored in the

ext section. 
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Fig. 8. Biaxial compression test. Left: stress-strain 22 axis, right: number of iterations for convergence of Newton method. 
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Fig. 9. Loss of solution uniqueness (deformed configuration and Von Mises stress 

field). 
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Fig. 10. Bifurcation study, value of σ H 
2222 at the end of an oedometric loading, para- 

metric study changing the number of time steps and convergence criteria. 
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.4. Bifurcation and loss of solution uniqueness 

Uniqueness cannot be assured in problems presenting soften-

ng (e.g. Chambon et al., 2004 ). It can be proved that when the

tress decreases the discharge branch can have any slope, and the

olution is not known a-priori. From the point of view of a PDE

ormulation, when some of the eigenvalues of the stiffness ten-

or become zero, the problem loses its ellipticity in those points,

o any strain applied in the direction of the vanishing eigenval-

es will fulfill the equilibrium condition, thus making the solution

on-unique. 

The loss of uniqueness, or bifurcation, in numerical modeling is

n interesting phenomenon that agrees with experimental obser-

ations; nevertheless, it represents a numerical challenge, i.e. de-

rease of efficiency of Newton’s method, and a practical issue as

ome of the solutions may not be found, representing a main con-

ern in e.g. reliability or failure analysis. 
In this section, some different possible solutions for a biaxial

ompression test are explored. This attempt should not be consid-

red as an exhaustive procedure to find all the possible solutions

ut rather a demonstration of the existence of bifurcation. 

The procedure consists in solving the same problems presented

n the previous sections using slightly different numerical param-

ters, i.e. the number of steps of the applied loading path and

he convergence criterion for Newton’s method. 3600 computa-

ions are performed and the results of the asymptotic post-peak

alue of the homogenized stress σ H 
2222 

for a strain ε11 = 0 . 85% is

hown in ( Fig. 10 ). The results put in evidence the existence of

wo solution attractors, one around σ H 
2222 = 2 . 1 × 10 8 Pa and an-

ther around σ H 
2222 

= 2 . 6 × 10 8 Pa . Two different localization modes

f the crack network exist, thus representing two possible solu-

ions of the same problem. Moreover, other solutions (0.6% of the

otal) between the two previous attractors exist (see also Fig. 11 ). 
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Fig. 11. Bifurcation study: evolution of σ H 
2222 vs ε11 . 
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7. Conclusions 

A theoretical and numerical approach for describing the macro-

scopic poroelastic properties of a saturated, deformable, cracked

porous medium has been presented in this paper. 

The first part of the paper is devoted to the formulation of the

equations describing the hydro-mechanical behavior of the cracked

fully-saturated porous medium. Under the classical assumption

of well-separated scales, the asymptotic homogenization method

has allowed to obtain the macroscopic description of the whole

porous medium, considered formed by a porous matrix and a pe-

riodic network of interconnected infilled discontinuities, containing

a poroelasto-damageable material. The homogenized coefficients

(elastic tensor, Biot’s coefficient and modulus, permeability tensor)

embody all the information about the microstructure by means

of the characteristic functions that describe the small oscillations

of the primary variables of the problem. The numerical solution

of the problem over the elementary cell has allowed to obtain

the homogenized coefficients in the linear case. The macroscale

reflects the anisotropy coming from the microscale configuration.

The damage associated to the cracks’ opening implies a degrada-

tion of the homogenized stresses and results in a non-linear prob-

lem requiring a Newton-like procedure. The methodology has been

applied to two different cases, a strain controlled path, i.e. an oe-

dometric test and a biaxial test This latter problem correspond to

a general case as it requires the development of a controllability

scheme so that the constitutive law for the given REV and any

loading path can be obtained. At some point of the time-history (as

expected for a mechanical damage problem), for high enough val-

ues of damage, bifurcation is observed, leading to a quick degrada-

tion of the homogenized stresses and to a loss of solution unique-

ness. This latter aspect has been discussed but future works should

explore other aspects such as the influence of the cell size. 

The proposed method allows to numerically obtain the material

constitutive behavior for an REV of a porous medium character-

ized by infilled discontinuities. The obtained law can be therefore

adopted in any multiscale approach (e.g. Kouznetsova et al., 2001 )

so that real-scale geomechanics or engineering problems can be
reated , e.g. Nguyen et al. (2014) , Guo and Zhao (2014) or Guo

nd Zhao (2015) . 

ppendix A. Very thin layer of a deformable porous medium 

The purpose of this appendix is to heuristically justify the

oroelastic modeling (see Eq. (2) ) of a very thin layer of poroelas-

ic medium of weak stiffness and large permeability. A more rigor-

us approach for a partly similar but simpler case can be found in

aillerie (1983) . 

Let’s consider a very thin 2D deformable porous medium of

hickness h in the x 2 direction governed by Biot’s equations. This

hin layer is embedded in another deformable porous medium the

oroelastic characteristics do not depend on the thickness of the

hin layer. 

The porosity of this medium is assumed to be close to 1 so

hat its elastic coefficients are very small and its permeability very

igh. To make that precise, we consider Eq. (1) where the elastic

tiffness tensor c h , Biot’s tensor and coefficient αh and βh and the

ermeability k h depend on h in the following manner: 

 

h = h ̃

 C ; αh = α (αh is constant) ; βh = 

β

h 

; k h = 

K 

h 

Taking into account the symmetries ˜ C i jkl = 

˜ C i jlk and αi j = α ji ,

iot’s equation can be rewritten, using the index notation: 

∂σi j 

∂x j 
= 0 (A.1a)

i j = h ̃

 C i jkl 

∂u k 

∂x l 
− pαi j (A.1b)

= αi j 

∂u i 

∂x j 
+ 

β

h 

p (A.1c)

∂q i 
∂x i 

+ ˙ κ = 0 (A.1d)

 i = −K 

h 

∂ p 

∂x i 
(A.1e)

Due to the continuity conditions on the two sides of the layer,

t is consistent to assume that the displacement and the pressure

n the layer are of order 1 with respect to h : 

�
  = O ( 1 ) (A.2a)

p = O ( 1 ) (A.2b)

Consistently with Eq. (A.1), the stress tensor σ and the relative

ow of fluid 

�
 q depend on h as : 

= O (1) (A.3a)

 1 = O (h 

−1 ) (A.3b)

 2 = O (1) (A.3c)

moreover, according to (A.1c) , the variation of porosity depends

n h as: 

= 0 

(
h 

−1 
)

(A.4)
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The integration of the balance equation (A.1a) in x 2 over [ − h 
2 , 

h 
2 ]

ields: 

 

h 
2 

− h 
2 

∂σi 1 

∂x 1 
d x 2 + [ [ σi 2 ] ] = 0 (A.5)

here the jump [[ f ]] of a function f is: 

 [ f ] ] = f 

(
h 

2 

)
− f 

(
− h 

2 

)
s σ = O ( 1 ) , for h → 0, Eq. (A.5) reads: 

 [ σi 2 ] ] = 0 

hich means that σ i 2 is continuous. 

The integration of (A.1c) yields: 

 

h 
2 

− h 
2 

κ d x 2 = αi 1 

∫ h 
2 

− h 
2 

∂u i 

∂x 1 
d x 2 + αi 2 [ [ u i ] ] + 

β

h 

∫ h 
2 

− h 
2 

p d x 2 

hich, taking into account the order of magnitude of p and κ with

espect to h (see (A .2a) and (A .4) ), yields in the limit h → 0: 

c = A i [ [ u i ] ] + βp 

here the components of the vector � A are A i = lim h → 0 
1 
h 

∫ h 
2 

− h 
2 

αi j d x 2 

nd: 

c = lim 

h → 0 

∫ h 
2 

− h 
2 

κ d x 2 

In the same way, the integration of (A.1d) yields: 

d 

dx 1 

∫ h 
2 

− h 
2 

q 1 d x 2 + [ [ q 2 ] ] + 

∫ h 
2 

− h 
2 

˙ κ d x 2 = 0 

ccording to the order of magnitude of q 1 , q 2 and κ (see (A.3) and

A.4) ), for h → 0 that reads: 

d 

dx 1 
Q + [ [ q 2 ] ] + ˙ κ c = 0 

here η is assumed independent of x 2 and where: 

 = lim 

h → 0 

∫ h 
2 

− h 
2 

q 1 d x 2 

The integration of the constitutive Eq. (A.1b) yields: 

 h 
2 

− h 
2 

σi j d x 2 = h ̃

 C i jk 1 

∫ h 
2 

− h 
2 

∂u k 

∂x 1 
d x 2 + h ̃

 C i jk 2 [ [ u k ] ] −
∫ h 

2 

− h 
2 

pαi j d x 2 

assing to the limit h → 0 after dividing by h , that yields: 

i 2 = C ik [ [ u k ] ] − pA i 

here the components of the matrix of the linear applica-

ion C and of the vector � A are respectively C i j = 

˜ C i 2 j2 and A i =
im h → 0 

1 
h 

∫ h 
2 

− h 
2 

αi 2 d x 2 . It can be seen that according to the usual

ymmetries of elastic stiffnesses the crack stiffness tensor C is sym-

etrical. 

emark 2. If the material of the crack is isotropic then 

˜ C 1222 = 0

nd C 12 = C 21 = 0 . In the same way, if Biot’s tensor α of the mate-

ial of the crack is proportional to the identity I then A 1 = 0 , that

s to say that � A is normal to the crack. 

The integration of Darcy’s law (A.1b) yields: 

 

h 
2 

− h 
2 

q 1 d x 2 = −K 

1 

h 

∫ h 
2 

− h 
2 

∂ p 

∂x 1 
d x 2 

hat yields, passing to the limit h → 0: 

 = −K 

∂ p 

∂x 1 
It can be noticed that, in the considered case, 
∑ 

i σi 2 � e i = σ � � n =
�
 

 and q 2 = 

�
 q � � n , where � n = 

�
 e 2 is the normal to the thin layer, and

oreover that x 1 is the curvilinear coordinate s along the crack so

he equations along the crack can be written: 

�
 T = C � [ [ � u ] ] − p � A 

κ c = 

�
 A . [ [ � u ] ] + βp 

dQ 

dl 
+ [ [ � q ] ] . � n + ˙ κ c = 0 

Q = −K 

dp 

dl 

hich are the interface conditions to be considered along any crack

ven not a straight one. Moreover, if the material of the crack is

sotropic and its Biot’s tensor α is proportional to the identity then

he stiffness tensor of the crack and its Biot’s vector read: 

 = C T � τ � �
 τ + C N � n � �

 n (A.6) 

�
 

 = A 

�
 n (A.7) 

ppendix B. Proof of the damage evolution law (30) at order 

ero 

According to (11d) , the expansion of 
∥∥ [[

�
 u (e ) 

]]∥∥ reads: [[
�
 u 

(e ) 
]]∥∥ = e 

∥∥[[
�
 u 

(1) 
]]∥∥ + e 2 ( · · · ) 

herefore, that of f 

(∥∥[[
�
 u (e ) 

]] ∥∥
D (e ) 

)
reads: 

f 

( ∥∥ [[
�
 u 

(e ) 
]]∥∥

D 

(e ) 

) 

= f 

( ∥∥[[
�
 u 

(1) 
]]∥∥

D 

) 

+ e 2 ( · · · ) 

sing that expansion, the evolution law (28) entails that: 

 e, t, τ, 0 ≤ τ ≤ t , d (0) ( t ) + ed (1) ( t ) + e 2 d (2) ( t ) + · · ·

≥ f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

+ e 2 ( · · · ) 

hen necessarily: 

 t, τ, 0 ≤ τ ≤ t , d (0) ( t ) ≥ f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

(B.1)

therwise for any small enough e, d ( e ) ( t ) would be less than

f 

(∥∥[[
�
 u (e ) 

]]
( τ ) 

∥∥
D 

)
for some τ comprised between 0 and t . Eq. (B.1) is

learly equivalent to: 

 t ≥ 0 , d (0) ( t ) ≥ sup 

0 ≤τ≤t 

f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

Moreover, if for some τ , 0 ≤ τ ≤ t, d (0) ( t ) is such that: 

 

(0) ( t ) > f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

hen for small enough e ′ s we have: 

 

(e ) ( t ) > f 

( ∥∥ [[
�
 u 

(e ) 
]]

( τ ) 
∥∥

D 

(e ) 

) 

(B.2) 

hat means that d (0) (t) > sup 0 ≤τ≤t f ( ‖ [[ � u (1) ]](τ ) ‖ 
D ) entails that, or

mall enough e ′ s : 

 

(e ) ( t ) > sup 

0 ≤τ≤t 

f 

( ∥∥ [[
�
 u 

(e ) 
]]

( τ ) 
∥∥

D 

(e ) 

) 
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which is not possible for d (e ) (t) = sup 0 ≤τ≤t f ( ‖ [[ � u (e ) ]](τ ) ‖ 
D (e ) ) , conse-

quently d (0) ( t ) is exactly the maximum of f ( ‖ [[ � u (1) ]](τ ) ‖ 
D ) : 

∀ t ≥ 0 , d (0) ( t ) = sup 

0 ≤τ≤t 

f 

( ∥∥[[
�
 u 

(1) 
]]

( τ ) 
∥∥

D 

) 

which is the evolution law (30) . 

Appendix C. Symmetries 

Let � u ( τ ) , defined and periodic on Y , and �( τ ) belonging to L 

S 

(space of the symmetric second order tensors), 0 ≤ τ ≤ t , be the

solution of the problem: 

Given the histories { E ( τ ) ; 0 ≤ τ ≤ t } and { P ( τ ) ; 0 ≤ τ ≤ t } , 
find 

�
 u ( � x , � y , τ ) , d ( � x , � y , τ ) , Y -periodic and �( τ ) , τ ∈ [ 0 , t ] , 

such that: 

∀ τ ∈ [ 0 , t ] ∀ 

�
 v , Y -periodic , ∀ E ∗ ∈ L 

S , 

∫ 
Y 
( c : ( E ( τ ) + εy ( � u ( τ ) ) )

− P ( τ ) α) : εy ( � v ) d s y + 

∫ 
�Y 

(
( 1 − d ( τ ) ) C � [ [ � u ( τ ) ] ] − P ( τ ) � A 

)
�[ [ � v ] ] d l y − | Y | �( τ ) : E ∗ = 0 

with d ( τ ) = sup 

0 ≤ρ≤τ
f 

(‖ [ [ � u ( ρ) ] ] ‖ 

D 

)
(C.1)

where ∀ τ , E ( τ ) ∈ L 

S and P ( τ ) ∈ R . 

Taking E ∗ = 0 , E ( τ ) = εx 
(
�
 u (0) ( τ ) 

)
and P ( τ ) = p (0) ( τ ) ,

the previous problem comes down to (31) . Posing σ = c :

εy ( E ( τ ) . � y + 

�
 u ( τ ) ) − P α and taking � v = 0 yield �( τ ) = 〈 σ ( τ ) 〉 =

1 
| Y | 

∫ 
Y σ ( τ ) d s y . 

Now, let’s assume that there exists an isometric-valued function

τ → R ( τ ) defined in [0, t ] ( R −1 ( τ ) = R T ( τ ) ) such that, for all τ ,

R ( τ ) leaves the cell Y and the cracks �Y unchanged and such that

the tensors c, α, C and the vector � A satisfy: 

∀ M, N ∈ L 

S , 
(
R ( τ ) ◦ M ◦ R 

T ( τ ) 
)

: 
(
c ( R ( τ ) . � y ) : 

(
R ( τ ) ◦ N ◦ R 

T ( τ ) 
))

= M : ( c ( � y ) : N ) (C.2a)

(
R 

T ( τ ) ◦ α( R ( τ ) . � y ) ◦ R ( τ ) 
)

= α( � y ) (C.2b)

(
R 

T ( τ ) ◦ C ( R ( τ ) . � y ) ◦ R 

)
= C ( � y ) (C.2c)

∀ 

�
 y ∈ Y , R 

T ( τ ) . � A ( R ( τ ) . � y ) = 

�
 A ( � y ) (C.2d)

Under those conditions, we have the following lemma: 

Lemma. Let � u ( τ ) and �( τ ) be the solution of (C.1) for the data E ( τ )

and P ( τ ), 0 ≤ τ ≤ t then R ( τ ) . � u ( τ ) and R T ( τ ) ◦�( τ ) ◦R ( τ ) are solu-

tion of (C.1) for the data R ( τ ) ◦E ◦R T ( τ ) and P ( τ ). 

Proof. All the following algebraic calculi being performed for any

time τ and the sake of simplicity, the variable τ is omitted. 

Taking into account the relations (C.2), (C.1) reads: 

∀ 

�
 v , Y -periodic , ∀ E ∗ ∈ L 

S , 

∫ 
Y 

[
c ( R. � y ) : 

(
R ◦ εy ( E. � y + 

�
 u ) ◦ R 

T 
)]

: (
R ◦ εy ( E ∗. � y + 

�
 v ) ◦ R 

T 
)

d s y 

−
∫ 

Y 

P 
(
R 

T ◦ α( R. � y ) ◦ R 

)
: ( εy ( E ∗. � y + 

�
 v ) ◦) d s y 

+ 

∫ 
�Y 

((
R 

T ◦ C ( R. � y ) ◦ R 

)
� [ [ � u ] ] − P R 

T . � A ( R. � y ) 
)

�[ [ � v ] ] d l y − | Y | � : E ∗ = 0 
hat is too: 

 

�
 v , Y -periodic , ∀ E ∗ ∈ L 

S , 

∫ 
Y 

[
c ( R. � y ) : 

(
εy ( R ◦ E. � y + R. � u ) ◦ R 

T 
)]

: (
εy ( R ◦ E ∗. � y + R. � v ) ◦ R 

T 
)

d s y 

−
∫ 

Y 

P α( R. � y ) : 
(
εy ( R ◦ E ∗. � y + R. � v ) ◦ R 

T 
)

d s y 

+ 

∫ 
�Y 

(
( C ( R. � y ) ) . ( R. [ [ � u ] ] ) − P � A ( R. � y ) 

)
�( R. [ [ � v ] ] ) d l y − | Y | � : E ∗ = 0 

In the change of variables � y ↔ 

�
 ˜ y = R. � y , the cell Y and the cracks

Y remained unchanged. Moreover, ∇ 

y �
 v = ∇ ̃

 y �
 v ◦ R and, as R is an

sometry, d s ˜ y = d s y and d l ˜ y = d l y on �Y . So, by this change of vari-

bles, the previous formulation reads: 

 

�
 v , Y -periodic , ∀ E ∗ ∈ L 

S , ∫ 
Y 

(
c 
(
�
 ˜ y 
)

: 
(
ε ˜ y 

(
R ◦ E ◦ R 

T . � ˜ y + R. � u 

))
− P α

(
�
 ˜ y 
))

: 

(
ε ˜ y 

(
R ◦ E ∗ ◦ R 

T . � ˜ y + R. � v 
))

d s ˜ y + 

∫ 
�Y 

((
C 
(
�
 ˜ y 
))

� ( R. [ [ � u ] ] ) − P � A 

(
�
 ˜ y 
))

�( R. [ [ � v ] ] ) d l ˜ y − | Y | � : E ∗ = 0 

hat is too, posing � ˜ v = R. � v and 

˜ E ∗ = R ◦ E ∗ ◦ R T : 

 

�
 ˜ v , Y -periodic , ∀ ̃

 E ∗ ∈ L 

S , 

∫ 
Y 

(
c 
(
�
 ˜ y 
)

: (
ε ˜ y 

(
R ◦ E ◦ R 

T . � ˜ y + R. � u 

))
− P α

(
�
 ˜ y 
))

: 
(
ε ˜ y 

(
˜ E ∗. � ˜ y + 

�
 ˜ v 
))

d s ˜ y 

+ 

∫ 
�Y 

((
C 
(
�
 ˜ y 
))

� ( R. [ [ � u ] ] ) − P � A 

(
�
 ˜ y 
))

�
([[

�
 ˜ v 
]])

d l ˜ y − | Y | (R 

T ◦ � ◦ R 

)
: ˜ E ∗ = 0 

The comparison of that formulation with (C.1) shows that

 ( τ ) . � u and R T ( τ ) ◦�◦R ( τ ) are the solution of the problem (C.1) for

he data R ( τ ) ◦E ◦R T ( τ ) and P . �
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