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ABSTRACT
Extended dark matter (DM) substructures may play the role of microlenses in the
Milky Way and in extragalactic gravitational lens systems (GLSs). We compare mi-
crolensing effects caused by point masses (Schwarzschild lenses) and extended clumps
of matter using a simple model for the lens mapping. A superposition of the point mass
and the extended clump is also considered. For special choices of the parameters, this
model may represent a cusped clump of cold DM, a cored clump of self-interacting
dark matter (SIDM) or an ultra compact minihalo of DM surrounding a massive point-
like object. We built the resulting micro-amplification curves for various parameters
of one clump moving with respect to the source in order to estimate differences be-
tween the light curves caused by clumps and by point lenses. The results show that
it may be difficult to distinguish between these models. However, some region of the
clump parameters can be restricted by considering the high amplification events at
the present level of photometric accuracy. Then we estimate the statistical properties
of the amplification curves in extragalactic GLSs. For this purpose, an ensemble of
amplification curves is generated yielding the autocorrelation functions (ACFs) of the
curves for different choices of the system parameters. We find that there can be a
significant difference between these ACFs if the clump size is comparable with typical
Einstein radii; as a rule, the contribution of clumps makes the ACFs less steep.

Key words: astrophysics, cosmology – Gravitational microlensing, dark matter.

1 INTRODUCTION

Since the beginning of the last century, when some as-
tronomers started to study the matter content of our neigh-
borhood (Öpik 1932; Kapteyn 1922; Jeans 1923; Oort 1932;
Zwicky 1933), many evidences have been collected leading
one to believe that the Universe in which we live is mainly
constituted by non-luminous matter, whose existence is in-
ferred through its gravitational effects on the remaining
constituents of the Universe. This “missing matter”, was
dubbed “dunkle materie” (dark matter), by Zwicky (1933).
Nowadays, we know, according to Plank’s data mission fit-
ted with the ΛCDM model, that the Universe is composed

⋆ ofedorova@ulg.ac.be
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of 26.8% non-baryonic dark matter (DM) and 68.3% dark
energy (represented by the Λ term), and just 4.9% ordinary
matter (Ade et al. 2013). In this context, the role of Gravi-
tational Lensing (GL) can hardly be overestimated. GL pro-
vides important evidences in favor of DM existence in galac-
tic clusters (Markevitch et al. 2003; Clowe et al. 2004, 2006;
Bradač et al. 2006). The other application of GL, following
the idea by Paczyński (1986b), deals with the searches for
compact objects in the Galactic halo and inside the Milky
Way (Alcock et al. 1993; Udalski et al. 1993; Aubourg et al.
1993). GL effects over a wide range of lens masses can give
us the possibility of analyzing the DM substructure charac-
teristics; especially it can give us a clue to solve the “miss-
ing satellite” problem (Klypin et al. 1999; Moore et al. 1999;
Del Popolo et al. 2014). Here we analyze the possibilities to
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study some properties of DM using mainly photometric in-
formation induced by gravitational microlensing effects.

Following the terminology adopted by the GL commu-
nity, at least three kinds of GL phenomena, characterized
by different lens masses and typical timescales, exist:

(i) macrolensing and the weak lensing by galaxies or
groups of galaxies;

(ii) mesolensing: lenses are globular clusters, dwarf galax-
ies or DM clusters with mass in the range 103 to 109 M⊙

(Baryshev & Bukhmastova 1997);
(iii) microlensing: lenses are stellar-mass objects.

As distinct from (i) and (ii) dealing with almost
static situations or very slow processes, the characteristic
timescales of microlensing events in the Milky Way are of
the order of weeks and in case of extragalactic microlens-
ing events, they are of the order of months or years. This
makes image brightness variation effects due to (iii) quite
observable.

Based on the lens mass range/timescales, this terminol-
ogy determines at the same time the possible observational
appearance of these effects, i.e. multiple correlated static
images with signal arrival time delays in the macrolensing
case, slowly-varying distorted images due to mesolensing,
and high amplification events on lightcurves when the source
crosses the caustic of a microlens. Dark matter can manifest
itself at the three mentioned levels, namely:

(i) large haloes of DM with mass greater than 109M⊙ can
play the role of macrolenses; the most prominent example is
the ”Bullet Cluster”(Markevitch et al. 2003);

(ii) DM subhaloes of intermediate masses can play the
role of mesolenses, causing the anomalous flux ratios, im-
age distortions (Chen et al. 2007) and additional time de-
lays (Keeton & Moustakas 2009) in extragalactic gravita-
tional lens systems. Several candidates to show anomalous
flux ratios are known today, e.g., B2045+265 (McKean et al.
2007), RX J1131–1231, B1608+656, WFI 2033 – 4723
(Congdon et al. 2010), B1938+666 (MacLeod et al. 2012),
and we would especially like to stress here the famous GLS
Q2237+0305 for its sharp high-amplification microlensing
events (Metcalf et al. 2003).

(iii) Clumps of DM with stellar masses can play the role
of microlenses, leading to both photometric (high amplifica-
tion events) and astrometric (jump-like shifts of brightness
centroid of the images of the microlensed source) appear-
ances. The main difference between DM microlensing and
the ”usual” one due to stars or black holes lies in the non-
negligible size of the DM clumps (non-DM microlenses are
always considered as point masses).

In this paper, we pay attention to the last item, i.e.
microlensing by extended clumps of stellar masses. We note
that continuous observations by EROS, OGLE and other
groups (Tisserand et al. 2007; Wyrzykowski et al. 2009) nei-
ther revealed any sign of these extended clumps in the Galac-
tic halo, nor provided any proof of such structures inside the
Galaxy. The overwhelming majority of the light curves ob-
served for Galactic microlensing events are well described by
the gravitational field of stars (and, sometimes, of planetary
mass objects). Therefore, it seems that there is no room for
the stellar mass extended clumps. However, in this paper we
show that the light curves due to extended clumps of stellar

mass objects can mimic the light curves caused by ordinary
compact objects. Therefore, more detailed investigation is
needed in order to rule out (or to confirm) the existence of
these DM clumps that may either not be very numerous (so
that we do not have these clumps within our Solar system)
or not so dense to be observable.

Photometric signatures of DM substructure via grav-
itational microlensing have been widely discussed; see
Mao et al. (2004); McKean et al. (2007); Oguri (2005) and
references therein. There are also some investigations of
variability of spectral line profiles (Metcalf et al. 2003).
Paczyński & Wambsganss (1989) derived amplification dis-
tributions for static gravitational macro-lensing with a non-
constant surface mass density, which includes the cases
of a stochastic system of Gaussian clumps and clumps
in the form of truncated singular isothermal spheres.
Zakharov & Sazhin (1999), and Zakharov (2010) have con-
sidered a model of microlensing due to a non-compact neu-
tralino star.

In this paper we use several other models of DM clumps
to analyze the observational appearance of DM microlensing
within different cosmological models. We focus our atten-
tion on item (iii) to compare the observational appearances
of microlensed sources due to point-like and finite-size DM
clump deflectors and determine how one can distinguish an
extended DM clump microlensing event from a “regular” one
in case of Galactic and extragalactic structures. The main
question we want to answer concerns the possibilities to de-
tect signals from these putative extended mass structures
and to estimate the accuracy needed to characterize such
effects mainly from observed light curves.

In Section 2, we briefly describe the existing DM mod-
els. In Section 3, we propose a ”toy model”, which describes,
for special choices of the parameters, microlensing by various
types of extended structures. The model is based on the de-
flection angle α ∼ r(r2 +r2s)−a/2, where rs characterizes the
effective size of a clump core1. For different choices of param-
eters, this model reproduces the effects either due to point
microlenses, or CDM minihaloes with a cusped density pro-
file, or SIDM clumps with a cored density profile. In Section
4 we discuss the superpositions of extended and point-mass
deflecting objects. In the case of isolated microlenses these
models can be used to describe microlensing events within
the Galaxy.

We perform a numerical comparison of these events con-
sidering different microlens models. Namely, we calculate the
”amplification curves”, that is the dependence of the total
amplification of a microlensing system versus time, as the
lens moves with respect to the line-of-sight to the source.
We also pay some attention to the trajectories of the bright-
ness centroid of the microlensed images, because the fast
progress in the positional accuracy measurements2 gives us
a hope to detect the astrometric signatures of gravitational
microlensing in the near future.

1 The corresponding surface mass density is ρ ∼ (1 − a/2)(r2 +
r2s)

−a/2 + (a/2)r2s (r
2 + r2s)

−(1+a/2)

2 e.g., projects of radio interferometry in space. Note that astro-
metric accuracy is typically several times larger than the resolu-
tion; i.e. one can achieve a microarcsecond level in positioning,
though different images of the microlensed source cannot be re-
solved at this level.
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In Section 5 we consider the observational behav-
ior of clumps in extragalactic GLSs. Namely, we study
the statistical effects of gravitational microlensing due to
a stochastic system composed of extended DM clumps
and point masses. There is a number of papers dealing
with statistical subjects of microlensing systems; see, e.g.,
Schneider et al. (1992); Seitz et al. (1994); Neindorf (2003);
Dobler et al. (2007); Schmidt & Wambsganss (2010). Our
technique is essentially the same as that used by
Paczyński & Wambsganss (1989) and Wambsganss et al.
(1990), followed by a number of authors; cf. especially
considerations by Metcalf & Madau (2001); Chiba (2002);
Dalal & Kochanek (2002); Schechter & Wambsganss (2002)
dealing with brightness variations in connection to the prob-
lem of anomalous brightness ratios. Unlike in the previous
works we deal with the autocorrelation functions (ACFs)
of the amplification curves for our concrete model of a mi-
crolensing system. We generate an ensemble of amplification
curves for a fixed input of randomly distributed clumps and
point mass microlenses in the total optical depth; this en-
ables us to derive ACFs for these amplification curves as a
function of different clump contribution, size and in pres-
ence of an external shear. Finally, in Section 6 we discuss
the results.

2 PROPERTIES OF VARIOUS DM MODELS

DM microstructure still remains the subject of de-
bates; there are many hypotheses about DM particles
(Schneider & Weiss 1987; Zackrisson & Riehm 2010). Cold
dark matter is supposed to contain heavy particles, weakly
interacting with each other and with baryonic matter
(axions or WIMPs), and warm dark matter (WDM)
consists of light, fast-moving particles (sterile neutrinos,
CHAMPs, neutralinos or gravitinos), which tend less to
form small-scale compact structures (Schneider et al. 2012;
Del Popolo 2014). Self-interacting dark matter can be con-
sidered as a particular kind of cold one with a nonzero
impact distance for the interaction between DM particles
(Kormendy & Freeman 2003; Rocha et al. 2012).

Recent cosmological N-body simulations within
CDM (Schneider et al. 2010; Diemand et al. 2004, 2005;
Springel et al. 2008; Stadel et al. 2009; Vogelsberger et al.
2012) and WDM models (Knebe et al. 2008; Schneider et al.
2012) have shown that dark matter is not distributed in
space homogeneously, instead it forms more or less compact
structures surrounded by less dense continuously distributed
DM. The most massive structures have been recognized for
quite a long time already: these are galactic and galaxy
cluster DM haloes. But numerical simulations demonstrate
that these massive structures are also inhomogeneous: they
contain smaller compact substructures over a wide range
of masses. Such massive haloes containing a hierarchical
substructure of dark matter are called host haloes. These
haloes also contain smaller substructures, etc. However, one
should note that only the existence of the more massive
members of this hierarchy of DM structures has been proven
from the results of observations. The lower estimated limit
on the substructure masses depends on the particular kind
of considered hypothetical DM particles, varying over a
very wide range from 10−12M⊙ for CDM up to 108M⊙ for

Table 1. Dark matter hierarchy within the CDM/SIDM cosmolo-
gies.

Term Objects/scales Mass range

Superhalo Galaxy clusters, 100
Mpc

1013-1016M⊙

Halo Galaxies, Mpc 109-1011M⊙

Subhalo Dwarf galaxies or
satellites, kpc

104-109M⊙

Minihalo or
clump

Stars 10−3-10M⊙

Microhalo Planets 10−8-
10−4M⊙

Nanohalo or
primordial
halo

10−18-
10−9M⊙

WDM (Berezinsky et al. 2008, 2013; Diemand et al. 2005;
Springel et al. 2008). To clear out the situation and the
terminology used to characterize masses and scales of DM
substructures, we have summarized here in Table 1 the
used nomenclature.

DM substructure depends very significantly on the cos-
mological model. Within CDM models, the substructure for-
mation process can be described as “bottom-up”: the small-
est DM clumps were formed first (therefore the nanohaloes
with masses < 10−11M⊙ are often referred as primordial)
and do not contain any finer substructure (Contini et al.
2011). Then, in the merging process more and more mas-
sive structures up to galactic and cluster scales (1010-1015

M⊙) were gradually formed. Due to various damping scales
the lower limits on substructure mass can vary over a wide
range: from 10−4-10−12 M⊙ for various kinds of WIMPs (in-
cluding neutralinos), down to 10−18-10−20 M⊙ for axions.
The mass density distribution in DM structures within the
CDM model is often assumed to follow the cusped NFW
profile of Navarro et al. (1996).

The best accepted alternative to the CDM cosmology is
the velocity-dependent SIDM (self-interacting-dark-matter).
This model predicts identical behavior of the DM substruc-
ture over various scales and identical mass fractions, thus,
the only difference lies in the density profile of a DM clump.
The SIDM clump has a core and its density follows a Burk-
ert profile (Rocha et al. 2012), or pseudo-isothermal sphere
(Kormendy & Freeman 2003), contrarily to the cuspy core-
less NFW profile typical for CDM clumps.

The set of warm dark matter models differs completely
from the two mentioned above when we keep in mind gravi-
tational microlensing processes. The substructure formation
in WDM models is a complex hybrid; its leading role is
played by the “top-down” formation process (Knebe et al.
2008), i.e. bigger haloes and filaments were formed first, and
smaller structures formed later, as a result of fragmenta-
tion processes in WDM filaments (Knebe et al. 2003). The
lower limit on the subhalo mass is significantly higher than in
CDM/SIDM ones: e.g., 106−108 M⊙ for gravitinos and even
1011M⊙ for axinos (Hisano et al. 2006). Thus in the WDM
cosmology, we may predict the non existence of DM gravita-
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tional microlensing. Even despite that it was recently shown
(Paduroiu et al. 2015) that the WDM structure formation
rather follows the hybrid scenario than the “top-down” one,
the effects of fragmentation and collapse play a significant
role only in massive haloes formation, and thus the situa-
tion with dark matter induced gravitational microlensing in
WDM cosmology is not significantly altered.

The DM subhalo mass function (SHMF) n(m,M0), such
that n(m,M0)dm represents the space number of substruc-
tures with a mass in the range {m,m + dm} in the host
DM halo with a mass M0 is strongly sensitive to the DM
context (i.e. warm, cold, collisionless, repulsive and so on).
The SHMF appears to provide the essential source of cru-
cial information both in cosmology and elementary par-
ticle physics. The numerical simulations like “Millenium”
(Springel et al. 2005) or “Via Lactea” (Contini et al. 2011)
allow us to determine it only at higher subhalo masses
(mainly > 106M⊙) than typical microlens masses (i.e. not
greater than 100M⊙). However for lower masses of the sub-
structure we can use here the extrapolated mass function
obtained by Lee et al. (2009):

f(m) = 0.1
log (Mmax/m)

log (Mmax/Mch)

where Mmax = 0.01M⊙ and Mch = 107M⊙. Thus, the total
mass in substructures within the CDM model (with a lower
limit of 10−6 M⊙) is 52%, following Lee et al. (2009). This
value is in good agreement with the 50% of dark matter
in the Galactic halo in substructures obtained from the hy-
drodynamical simulations by Diemand et al. (2004). Using
this formula, one can easily find that for the lower limit of
10−3M⊙ (which can be considered as a reasonable limit for
microlens mass) it is 43%, and for 10M⊙ (let us consider this
value as an upper limit on microlens mass) it is 30%. Thus
within the desirable range (10−3 − 10)M⊙ of the substruc-
tures we have 13% of the total DM mass (i.e. ∼ 1.3 ·1011M⊙

is in compact stellar-mass subhaloes). If we take into ac-
count the fact that the larger subhaloes (with mass greater
than 10M⊙) also contain finer substructures, this value can
be even larger.

However, estimating the probability of the DM subhalo
microlensing we should take into account that up to 90%
of the primordial subhaloes had to be fully or partially dis-
rupted by tidal forces of stars, thus the percentage of the
clumped matter in the areas containing stars cannot ex-
ceed 10% (Schneider et al 2011; Schaw et al. 2007). Thus
we can expect to trace the DM-induced high amplification
microlensing events in the Galactic DM halo (as well as in
extragalactic systems) rather than in its luminous parts. The
probability of the Galaxy stars being microlensed by a DM
microhalo is much lower then. That is why we can hardly
expect to find compact DM clumps in the vicinity of the
Solar system.

However, at the same time, in the luminous parts of a
galaxy we can face the situation when a star (or a star-mass
black hole) is surrounded by a dense cloud, formed by dark
matter of a former clump, disrupted by star/black hole tidal
force and trapped by its gravity. If such a clump is dense
enough and thus has an optical depth large enough (over-
critical convergence), we can observe the UCMH (Zhang
2011; Berezinsky et al. 2013), and one of the possible re-
sults of gravitational microlensing by such an object looks

like an eclipse of the source image. The role of optical
depth/convergence in microlensing processes was analyzed
by Paczyński (1986a). In the simplest case such an object
can be modeled up by a Schwarzschild or Chang-Refsdal lens
with overcritical convergence.

3 EXTENDED CLUMP MICROLENSING IN
THE GALAXY

3.1 The lens equation

Speaking about the Milky Way systems, we confine our-
selves to the simplest cases of circular symmetric mass dis-
tributions though investigations of double stars or planetary
systems are also important. One can get some insight into
the latter case from considerations of clump models with an
external shear (Sliusar et al. 2015). In this Section, we use
the lens equation in its normalized form; the distances will
be expressed in units of a typical length scale R∗, where
for the case of the point mass M or cored clump microlens
R2

∗ = 4GMDds/(c2DdDs) (in case of a point mass this is
the radius of the Einstein ring) and for the cusped clump
Ra

∗ = 8πGρ0Dds/[c2DdDs(2 − a)]; here Ds is the distance
between the source and the observer, Dd the distance be-
tween the deflector and the observer, and Dds the distance
between the source and the deflector. Furthermore y is the
normalized angular source position, r = {x1, x2} is the nor-
malized angular image position, r = |r|. We remind here
that (after normalization) both these vectors are defined in
the lens plane.

The normalized lens equation is:

y = (1 − σ) r− α(r), (1)

where the deflection angle

α(r) =
r

r2

∫ r

0

dr′ r′ρ(r′) (2)

is supposed to be normalized to a corresponding length scale,
σ = const stands for a convergence (optical depth) that can
be due to, e.g., a background DM; y = {y1, y2}.

Let us write α(r) = r/ra, where for the cusped clump
we assume a < 2 to provide the convergence in the integral
of Eq.(2), and for the point microlens a = 2. For the cored
clump we use a generalized expression α(r) = r/(r2 +r2s)a/2

that formally covers the previous cases if we put rs = 0.
Therefore, we consider the lens equation

y = r
(

1 − σ −R−a
)

, R =
√

r2 + r2s , a > 0. (3)

The determinant of the lens mapping (3) is D =
det{∂yi/∂xj}. It factorizes as follows:

D(r) = ϕ1(r)ϕ2(r), (4)

where

ϕ1(r) = 1 − σ − 1

Ra
, ϕ2(r) = 1 − σ +

a− 1

Ra
− ar2s

Ra+2
. (5)

The image parity is defined by the sign of D.
The relative amplification3 of the image at r is µ(r) =

(1 − σ)2/|D(r)|.

3 this is normalized to the amplification (1−σ)2 when the source
is far from the lens.
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Figure 1. Qualitative behavior of the r.h.s. of Eq. (6) for the
subcritical case (0 6 σ < 1: solid; a,b,c) and the overcritical case
(σ > 1: dashed; d,e,f). Here we show the subcritical cases (a)
a > 1, rs = 0, (b) 0 < rs < rs,cr, (c) rs > rs,cr; in case of
(b) and (c) there may be an inflection point that does not affect
the number of images. The overcritical cases: (d) 0 < a < 1; (e)
a > 1, rs < rs,cr1; (f) rs = 0, a > 1.

Taking the absolute value of both sides of Eq. (3) yields

y = |f(r)| , (6)

where f(r) ≡ r [1−σ−(r2+r2s)−a/2], y = |y|. Evidently, if
r is a solution of Eq.(6), then the solution of Eq.(3) is either
r = nyr or r = −nyr, where ny = y/y.

Our first goal will be to estimate the number of solu-
tions of Eq.(3), i.e. the number of microlensed images for
different source positions, and to find the caustics of the
lens mapping (3) where the lensed image of a point-source
gets infinitely amplified. The problem is reduced to inves-
tigate the monotonicity of the r.h.s. of Eq. (3) and the ze-
ros of the determinant D(r) in Eq. (4). Note that any root
of ϕ2(r), if it exists, is smaller than the root of ϕ1(r) (for
a > 0) because of the monotonicity of ϕ1(r) and due to
ϕ2(r) = ϕ1(r) + ar2/Ra+2.

Simple calculations yield

df(r)

dr
= ϕ2(r),

dϕ2(r)

dr
= − ar

Ra+4

[

(a− 1)r2 − 3r2s
]

, (7)

whence for a > 1, rs > 0 we infer the existence of the only
inflection point rinfl = rs

√

3/(a − 1) of the curve y = f(r)
and there is no inflection for a < 1.

3.2 Cored clump, subcritical σ

Let us first consider the case rs 6= 0 and the subcritical
values of σ: 0 6 σ < 1. Further we denote rs,cr = (1−σ)−1/a.

For the case rs < rs,cr, the first factor ϕ1(r) of the r.h.s.
in Eq. (4) equals zero for r = rz ≡ [(1 − σ)−2/a − r2s ]1/2.
This corresponds to a circular critical curve with a radius rz
around the origin of the image plane, which is mapped onto
an isolated caustic point y = 0 in the source plane. Thus,
there is a solution for Eq. (3) with y = 0. For rs > rs,cr the
function ϕ1(r) is always positive.

For the second factor ϕ2(r) in Eq. (4) we also have the
condition4 1 − σ < r−a

s (i.e. rs < rs,cr) for the existence of
rc < rz such that ϕ2(rc) = 0. Indeed, under this condition,
ϕ2(0) = 1−σ−r−a

s < 0 and ϕ2(rz) > 0 have different signs.
This is a necessary and sufficient condition for a unique value
of rc to exist on (0, rz). The proof of the uniqueness is some-
what different for 0 < a < 1 and a > 1. For 0 < a < 1 the
function ϕ2(r) is monotonically increasing. For a > 1 one
should use Eq. (7) and take into account the existence of
the unique inflection point for f : we observe that ϕ2(r) is
monotonically increasing for r < rinfl (therefore there can
be only one zero in this region provided that rs < rs,cr);
after passing through a maximum at r = rinfl it decreases
and it is positive: ϕ2(r) > ϕ2(∞) = 1 − σ > 0.

It is easy to see that rc < rz, when it exists, is the radius
of a circular critical curve that is mapped onto a circular
caustic with radius yc = |f(rc)|. There exist two additional
images of a point source for the case y < yc. The problem
can be easily treated using the graph of |f(r)| (Fig. 1, b,c)
and taking into account the fact that d|f |/dr is either equal
to −ϕ2 or to ϕ2. For rs > rs,cr the function |f(r)| starting at
r = 0 is monotonically increasing, therefore, for any y there
is a unique solution r(y) of Eq. (6). The (unique) solution
of Eq. (3) is r = nyr(y) having positive parity.

For rs < rs,cr we have f(r) < 0, r ∈ (0, rz). The func-
tion |f(r)| has only one maximum yc = |f(rc)|. For r > rz
the r.h.s. of (Eq. 6) is a monotonically increasing function.
Therefore, for 0 < y < yc there are three solutions for
Eq. (6): two solutions r = ri ∈ (0, rz), i = 1, 2; r1 < r2,
which yield two solutions of the vectorial lens equation (3)
r = −nyri (r1 with positive parity, r2 with negative parity);
and one solution r3 > rz yielding the solution r = nyr3 with
positive parity for Eq. (3).

To sum up, for 0 6 σ < 1 we have a unique image for
the case rs > rs,cr; in addition, for y = 0 there is an image5

at r = 0. All images have a finite brightness. In the opposite
case, for 0 < rs < rs,cr there is a circular caustic with radius
y = yc and there are three images, if the source is inside this
caustic 0 < y < yc, and one image, if y > yc. Two images
acquire an infinite amplification when y → yc − 0 and then
disappear after crossing yc. In addition, there is a caustic
point y = 0 corresponding to a ring image like the Einstein
ring emerging in case of a point mass lens.

The caustics with source tracks and corresponding am-
plification curves are shown in Fig.2.

3.3 Cored clump, overcritical σ

For σ > 1 (rs 6= 0), let us first consider the case 0 < a < 1.
In this case in equation (6) |f(r)| ≡ r[σ− 1 + (r2 + r2s)−a/2]
is a monotonically increasing function (see Fig. 1, d, dashed
curve). Its derivative is d|f(r)|/dr = −ϕ2(r) > σ − 1 > 0.
The lens mapping has no caustics and critical curves; for
any y there is always a unique solution r for Eq.(6) and a
unique solution r = −nyr (positive parity) for the vectorial
lens equation (3).

4 This condition is formally the same as the one for the existence
of a root of ϕ1(r)
5 for completeness, we note that the trivial solution r = 0 for
y = 0 exists, if rs 6= 0, ∀a > 0, and if rs = 0, a < 1.

c© 2014 RAS, MNRAS 000, 1–14
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Figure 2. Qualitative behavior of the amplification curves, the
subcritical case, 0 < rs < rcr. The upper curve (dashed): the
point source moves along the straight line with the impact pa-
rameter y < yc yielding two caustic crossings. The lower curve
(solid): larger y > yc, no caustic crossings. In the right upper
corner: the trajectories with respect to the circular caustic of the
lens.

For σ > 1, a > 1 there is an inflection point of the
function |f(r)| ≡ −f(r) according to Eq. (7). Taking into
account the sign of this inflection, we see that there exists a
minimum for d|f(r)|/dr at r = rinfl, which is equal to

f ′

min = σ − 1 − 2

ras

(

a− 1

a + 2

)a/2+1

.

Then new roots of d|f(r)|/dr appear when

rs < rs, cr1 =
(

2

σ − 1

)1/a (a− 1

a + 2

)(a+2)/(2a)

.

If rs > rs, cr1, the function |f(r)| is monotonically increasing
(not shown in Fig. 1). Let these new roots be rc,1 and rc, 2
with rc,1 < rc, 2, rc,1 being a point of a local maximum
of |f(r)| and rc, 2 being a point of a local minimum (see
Fig. 1, e, dashed). The roots correspond to the radii of the
critical curves, and |f(rc,1)|, |f(rc, 2)| are the radii of the
circular caustics. For |f(rc,1)| < y < |f(rc,2)|) Eq.(6) has
three solutions r1 < r2 < r3 correspondingly with a positive,
negative and positive parity yielding three lensed images of a
point source, and there is only one image with positive parity
otherwise. The solution r1(y) is extended for y < |f(rc,1)|
and the corresponding image has an infinite amplification
when y → |f(rc, 1)| − 0; in this case r1(y) and r2(y) tend to
rc, 1 and then disappear after y crosses the value |f(rc, 1)|.
The solution r3(y) is extended to all values of y > |f(rc, 2)|;
it has analogous properties near the other caustic for y →
|f(rc, 2)| + 0. In this case r2(y) and r3(y) tend to rc, 2 and
then disappear as y decreases. We have for the solutions of
Eq.(3), r = −nyr i, i = 1, 2, 3.

3.4 Cusped clump: rs = 0

Here we have f(r) = r(1 − σ − r−a). For 0 < σ < 1, the
function f(r) < 0 for r < rz1 = (1−σ)−1/a; rz1 is the radius
of a critical curve corresponding to the caustic point y = 0.

For 0 < σ < 1 and 0 < a < 1, the modulus |f(r)|

increases for r < rmax = [(1 − a)/(1 − σ)]1/a and then de-
creases to zero for r → rz1. The value yc = |f(rmax)| =

a [(1 − a)/(1 − σ)]1/a−1 is the radius of a circular caustic.
The behavior of the graph of this function is roughly the
same as that illustrated by the solid curve in Fig. 1, b. There
are three solutions for Eq. (6) with 0 < y < yc: namely, two
solutions ri, i = 1, 2, r1 < r2 for Eq. (6), ri < rz1 corre-
sponding to images at r = −nyri (with positive (r1) and
negative (r2) parity, and one solution r3 > rz1 correspond-
ing to image at r = nyr3 with positive parity. The latter
solution remains valid for y > yc.

For 0 < σ < 1, a > 1, the function f(r) is negative for
r ∈ (0, rz1), the modulus |f(r)| decreases along this interval
and it increases for r > rz1. The behavior of |f(r)| is rep-
resented by the curve (a) in Fig. 1. In this case there are
always two solutions of Eq. (6) for r1 < r2 corresponding to
images at points r = −nyr1, r = nyr2.

For σ > 1 and 0 < a < 1 the function |f(r)| increases
for all values of r > 0 starting from zero (like the dashed
curve (d) in Fig. 1). There is only one solution and one image
for all y values.

For σ > 1 and a > 1 the function |f(r)| shows a
minimum at rmin = [(a − 1)/(σ − 1)]1/a; the minimum is
yc = |f(rmin)| = a[(σ − 1)(a− 1)]1−1/a (the radius of a cir-
cular caustic). There are two solutions for Eq. (6) if y > yc
and no solutions if y < yc. This case is represented by the
dashed curve (f) in Fig. 1.

3.5 Analytical solutions

In this subsection, we list several situations whenever a sim-
ple analytical treatment is possible.

The point mass lens model (Schwarzschild lens) is well
known, it corresponds to a = 2, rs = 0, σ = 0. The solutions
for the image positions are r = y(y ±

√

y2 + 4)/2y and the
total amplification of the two lensed images is µ = (y2 +

2)/(y
√

y2 + 4).
For a single SIDM cored clump, let us assume a = 2,

σ = 0: critical curves for such a system exist only when
rs < 1. Under this condition, two circular critical curves
exist. The first one has a radius rz =

√
1 − r2s correspond-

ing to the caustic point y = 0 (the same as for the point-
mass lens), and the second one has a radius rc such that
r2c = 1

2

(√
1 + 8r2s − 1

)

− r2s < r2z (this expression is posi-
tive for rs < 1), corresponding to a caustic with a radius
yc = rc

(

1 − r2c − r2s
)

/
(

r2c + r2s
)

). In case of a cored clump

microlens, the lens equation yields: r3∓yr2+r(r2s−1)∓yr2s =
0. The roots can be found using the Cardano method. For
the lower plus, two roots must be taken in the interval
0 < r < rz for y < yc, and for the upper minus, one must
take the root for r > rz. If rs > 1 (low-density clump), no
caustic exists and only one lensed image can be seen.

For the UCMH model, it is interesting to consider an an-
alytic solution for the overcritical case σ > 1 (rs = 0, a = 2).
In this case there exists a critical curve rc = 1/

√
σ − 1

and the radius of the corresponding caustic is described
by yc = 2

√
σ − 1. Two images for y > yc are produced

at the positions: r = −y[y ±
√

y2 − 4(σ − 1)]/[2y(σ − 1)].
The total amplification of these two lensed images is µ =
[y2 − 2(σ − 1)]/[y

√

y2 − 4(σ − 1)]. For y < yc there are no
images and we have an ”occultation”. The lightcurves cor-
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responding to this effect, both for point-like and continuous
sources, were shown in our previous work (Fedorova et al.
2014).

For the case of the cusped lens model, the solutions
can be written analytically for a = 3/2. The lens equation
y = r

(

1 − r−3/2
)

has two solutions. The first solution must

be written separately for ξ = 3
√

3/(2y3/2) < 1 and ξ > 1:

r =
y

3

[

(

ξ +
√

ξ2 − 1
)2/3

+ 1

]2

(

ξ +
√

ξ2 − 1
)2/3

, ξ > 1;

and

r =
4

3
y cos2

[

1

3
arccos ξ

]

, ξ < 1.

The second solution is

r = −y

3

[

(

ξ +
√

ξ2 + 1
)2/3

− 1

]2

(

ξ +
√

ξ2 + 1
)2/3

for any value of y. The magnification curves for these
images can be found using the formula (4): µ =
∣

∣

(

1 − 1/r3/2
) (

1 + 1/(2r3/2)
)∣

∣

−1
.

4 COMPARISON BETWEEN THE CLUMP
MODELS AND THE POINT MASS LENS

4.1 Observational mimicry of the extended mass
microlenses and the source image tracks

How can one distinguish between the different lens mod-
els discussed above on the basis of observations? Of course,
the most correct comparison must come after the fitting of
concrete observational data. However, let us first note the
qualitative differences mainly arising from the topological
properties of the corresponding lens mappings, i.e. the ex-
istence of the critical curves, caustics and number of im-
ages of a point source. From the above discussion it is easy
to see that, for different parameters of the source/lens mo-
tion, the caustic intersections can occur leading to appear-
ances/disappearances of the lensed images. These events
could lead to such observable effects as high amplifications
of the lensed image flux, ”occultations” and sudden jumps
of the average image positions (image centroids).

There exist many observational data compiled by
EROS, OGLE and other groups (Tisserand et al. 2007;
Wyrzykowski et al. 2009) hunting for microlensing events
caused by Galactic objects.

Some of these events show a complicated behavior like
those characteristic of caustic crossings. This is typically re-
lated to the existence of double star systems or planetary
systems (Kains et al. 2013; Shin et al. 2007). However, most
typical HAEs (Tisserand et al. 2007; Wyrzykowski et al.
2009) can be interpreted using the isolated point mass lens
model. It is important to note that there exist some high
amplification events with no detector identified.

On the other hand, for most of the events the deflector-
star has been identified; however this case does not rule out

the situation (discussed below) when an extended clump sur-
rounds the star. Correspondingly, at this stage we concen-
trate on the most simple models of extended microlenses;
and we choose the parameters of their motion without caus-
tic crossings. Namely, we consider the clump models with
two lensed images that will be compared with the ”fiducial”
model of the usual point mass microlens (the Schwarzschild
lens). For Galactic systems we assume the background con-
tinuous matter density to be σ = 0. The critical curves of
the two-image clump models appear to be very similar in
case of the Schwarzschild microlens and the cusped clump
with 0 < σ < 1 and a > 1. In these cases there is one circu-
lar critical curve of unit radius; and also, one caustic point
at y = 0 exists. The case of a cusped clump with a < 1 is
topologically different, however it will be also difficult to dis-
tinguish its light curve from that due to the Schwarzschild
lens.

Below we show amplification curves generated with dif-
ferent models corresponding to a straight line motion of
the microlensing system with respect to the line-of-sight to-
wards the remote point source. It turns out that the shape
of the amplification curves induced by two-image clumps are
qualitatively similar to the ones induced by a Schwarzschild
microlens, and thus they can hardly be distinguished from
one another. Indeed, by an appropriate choice of the im-
pact parameter and the velocity with respect to the line-of-
sight, the Schwarzschild lens light curve can be well fitted
by microlensing due to a cusped clump (see Fig. 3). For a
wide range of parameters that may be considered as typi-
cal for this problem, the difference between the amplification
curves on a plot is sometimes not visible to the eye. One can
extract an additional information from the image centroid
(IC)6 tracks in the reference frame of the source (see Fig.
3, lower panel). This, however, requires an accuracy for the
positioning measurements at the microarcsecond level; this
is typical for microlensing by Galactic objects and is not
accessible at present. E.g., the modern accuracy achieved
with HST (WFPC3 camera) is around 20-40 microarcsec-
onds (Riess et al. 2014).

4.2 Numerical estimates

Thus, we proceed in more detail with the differences between
the amplification curves corresponding to different microlens
models. Note that we performed a fitting of the amplification
curves in Figs. 3, 4, 5 so as to provide the best overlapping
near the maximum of the curves (where they can be well
approximated by a parabola, and where one can expect a
good measurement accuracy). Careful inspection of these
figures shows that there is a slight deviation between the
curves in the wings of the separate HAEs. In this connection,
to compare the different microlens models, we proceed as
follows.

For a moving extended microlens characterized by an
impact parameter p with respect to the line-of-sight, and
a transverse velocity (assumed to be V = 1), we generate

6 The image centroid here is a weighted average of positions of
all the images (with the exception of the lenses that we assume to
be not visible); the weights are proportional to the amplifications
of the corresponding lensed images.
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Figure 3. Amplification curves (upper panel) and image centroid
trajectories (lower panel) for the cases of a cored clump (solid) and
a point mass microlens (marked by the small circles). The clump
parameters shown in the figure correspond to Eq. (9) (q = 1
corresponds to a pure clump, p = 1 is the impact parameter of
the clump center with respect to the line-of-sight, its transverse
velocity V = 1). The impact parameter and transverse velocity of
the point mass microlens are derived from fitting the amplification
curve for the clump model. The image centroid trajectory (in
the rest frame of the source) in case of the Schwarzshild lens is
rescaled in order to clearly indicate the difference between the
models.

its amplification curve µ(t). Then we look for the best fit
near the maximum of this curve using the Schwarzschild
lens model light curve (µSchw(t)); see Appendix A for de-
tails. Note that as distinct from dealing with the real ob-
servational data we have a simpler problem. In the real
case, the fitting parameters, besides the transverse velocity
and the impact parameter of the Schwarzschild lens (which
are different from the assumed parameters p, V = 1 of the
clump+point mass complex), are: the time of maximum am-
plification and the maximum intensity of the image (or the
flux when the lens is far from the line-of-sight). In our case of
the artificial amplification curve, the latter two parameters
are fixed. Thus the difference between the two amplification
curves is:

δ = max
t

{

[µ(t)]−1|µ(t) − µSchw(t)|
}

. (8)

This is used to compare the amplification curves due to a
somewhat more complicated model which corresponds to
a combination of a point mass microlens and an extended
clump.
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Figure 4. Examples of amplification curves (solid) for microlens-
ing systems that consist of point masses surrounded by cusped
clumps with q = 0.5, a = 1.0, 1.3, 1.6, 1.9 (upper panel) a = 1,
and q = 0.2, 0.4, 0.6, 0.8 (lower panel). The impact parameter
of the microlens with respect to the line-of-sight is p = 1. The
curves are fitted by means of point mass microlens models (small
circles).

4.3 Microlensing by a point mass and a clump

It is natural to consider a situation where the cusped or
cored DM clump is formed in the same region as where the
point mass is situated (and vise versa). The case of a pure
clump microlens and the Schwarzschild lens represent two
extreme cases of this situation. In this connection we con-
sider a microlens model that is represented by the following
lens equation:

y = r
(

1 − q

Ra
− 1 − q

r2

)

, R =
√

r2 + r2s , (9)

where the coefficient q describes the relative contribution of
the clump, 1− q represents that of the point mass lens, and
we omitted the contribution due to the background optical
depth σ; 0 6 q < 1, rs > 0. The amplification is µ(r) =
1/D(r), where the determinant D(r) is also given by the
product D(r) = ϕ1(r)ϕ2(r) with

ϕ1(r) = 1 − q

Ra
− 1 − q

r2
, (10)

ϕ2(r) = 1 +
q(a− 1)

Ra
− aqr2s

Ra+2
+

1 − q

r2
. (11)

Furthermore, we assume such numerical values for the
parameters of the microlens as to provide the qualita-
tive behavior of the lens mapping (9) to be like that of
the Schwarzschild lens with two lensed images, and so
as to provide a considerable amplification (up to 10 and
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Figure 5. The same as in the lower panel of Fig. 4 for cored clump
models with a = 1.5, rs = 1 and rs = 5. The impact parameter
of the microlens with respect to the line-of-sight is p = 1.

higher), which can be the best to see the signals of the ex-
tended microlens structure. We shall then estimate the ac-
curacy of measurements needed to differentiate between the
lightcurves of these models. The dependence of this differ-
ence upon the contribution q of the clump in the lensing
complex ”cored clump + point mass” is shown in Fig. 6 for
some values of a and rs.

In case of the configuration of a point mass and a cusped
clump we assume q ∈ (0, 1), rs = 0. The relative differences
between the amplification curve of this complex and that of
the fitted Schwarzschild lens are shown in Fig. 7.

5 STATISTICAL EFFECTS OF DM CLUMPS
MICROLENSING IN EXTRAGALACTIC GLS

In a typical extragalactic GLS we have several macro-images
of one quasar. Comparison of the amplification curves of
these images makes it possible to separate the proper bright-
ness variations of the quasar and to derive variations due
to the microlensing processes. Contrary to the case of the
Galaxy, because of the considerable microlensing optical
depth in extragalactic systems, instead of an isolated point
mass or putative DM clump, we must deal with an ag-
gregate of masses in the lensing galaxy. In this case we
have a complicated caustic network generated by unknown
masses with unknown positions. Therefore, the problem
takes a statistical shade (Paczyński & Wambsganss 1989;
Wambsganss et al. 1990; Schechter & Wambsganss 2002).
Observationally, the main source of information in a con-
crete GLS is at present an effective microlensed light curve
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Figure 6. Relative differences δ of the amplification curves for a
different cored clump contributions q in the microlensing complex
”point mass + clump”. Upper panel: a = 1.0, 1.5, 2.0, impact
parameter p = 0.1 (solid curves), p = 1.0 (dashed curves), the
clump size rs = 1; the amplification is within the limits ∼ 10÷16.
For p = 0.03 we have almost the same curves as for p = 0.1, but
the amplification in this case varies from ∼ 30 to 50. Lower panel:
the same values of a, p = 0.1, rs = 5 (solid), rs = 10 (dashed).
The curve with a = 2, rs = 5 is superimposed on the curve with
a = 1.5, rs = 10 and it is omitted. Amplification is within 3÷ 10.

of every image (i.e., separated from proper brightness varia-
tions that are intrinsic to the source), which arises because
of the source motion7. As before, for a theoretical treatment
we deal with the amplification curves, that is the dependence
of the amplification coefficients upon the time.

Our aim is to estimate the statistical effect of the ex-
tended masses (clumps) on the autocorrelation functions
of the amplification curves. To compare the amplification
curves in microlensing systems with a different content of
these clumps, we consider a simple model of stochastic point
and extended masses. We confine ourselves to a special case
of the cored clumps according to Eq. (3) with a = 2 (cf.
Zhdanov et al. (2012)). An external shear owing to the av-
erage field of the lensing galaxy will also be taken into ac-
count. Thus, we use the lens equation for N masses in one
lens plane

7 which is again assumed to be a uniform straight line motion.
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Figure 7. Relative differences δ of the amplification curves for
different cusped clump contributions q in the microlensing com-
plex ”point mass + clump”. Here a = 1.0, 1.5, 1.8. For the impact
parameter p = 0.1 (solid) the amplification is within ∼ 10÷20; for
p = 1 (dashed) the amplification is ∼ 1.3÷2. For p = 0.03 we have
practically the same curves as for p = 0.1, but the amplification
varies from ∼ 30 to 60.

y = Âr−
N
∑

i=1

R2
E,i(r− ri)

|r− ri|2 + r2s,i
(12)

where Â = diag{1 − γ , 1 + γ} is the two-dimensional ex-
ternal shear matrix (the optical depth of the background
continuous matter is taken to be zero), rs,i is a character-
istic size of the i-th cored clump with mass Mi, ri is the
position of its center on the lens plane, and RE,i its Ein-
stein ring radius: R2

E,i = 4GMiDds/(c 2DdDs). Obviously,
for rs,i = 0 we have ordinary point microlenses with mass
Mi.

In our simulations, the microlens masses and posi-
tions were chosen in a random way. The positions ri were
distributed homogeneously inside a circle, which was big
enough to minimize the boundary effects; also, to check the
result convergency we considered different sizes of the circle.
The mass distribution followed the Salpeter’s law (Salpeter
1955) with a power-law index −2.35 within the mass range
Mi ∈ [0.4; 10]M⊙. In every set of numerical experiments,
the input parameters (that were controlled to be the same
in all the realizations of the set) were as follows: the to-
tal optical depth of the microlensing field σtot, the opti-
cal depths σp , σcl of the point masses and the extended
clumps (σcl +σp = σtot), and the relative size of the clumps
κ = rs,i/RE,i. To introduce the clumps into the microlens-
ing field, we replaced some randomly chosen part of point
masses by extended clumps without changing their positions
ri, masses Mi; the size parameter was rs,i = κRE,i. Then, for
each realization of the microlensing field we obtain an am-
plification map by means of the ray shooting method com-
bined with our GPU-enabled microlensing C++ code based
on the hierarchical tree algorythm (Schneider et al. 1992;
Wambsganss et al. 1992). Convolution of the amplification
map with the normalized brightness distribution over the
initial source I(y) yields the amplification coefficient µ. The
mathematical representation of this procedure can be writ-
ten as (Alexandrov & Zhdanov 2011; Zhdanov et al. 2012)

Figure 8. Amplification map for σcl = 0, γ = 0, σtot = 0.3.

µ(y) =

∫ ∫

I [Y(x) − y]dx1dx2,

where y is the position of the source center in the source
plane projected in the lens plane and y = Y(r) represents
the lens mapping r → y. We used a Gaussian model for
I(y); the source half-brightness radius was R1/2 = 0.2, its
motion has been assumed to be uniform. Due to the motion
of the source we have an amplification curve µ(t).

Having a large number of realizations of the microlens-
ing field and the corresponding amplification curves µ(t), we
have calculated the ACFs

A(τ ) = (∆µ)−2 < [µ(t) − µ0][µ(t + τ ) − µ0] >, (13)

where

µ0 =< µ(t) >, ∆µ =
√

< [µ(t) − µ0]2 >, (14)

the brackets < ... > denote the averaging over all the real-
izations of the amplification curves for the fixed value of the
optical depth of continuous masses σcl and point masses σp.

To consider the possible observational manifestations
of the extended microlenses, their size Rc has been cho-
sen to be comparable with a typical Einstein ring radius
RE of the microlenses; otherwise in the limiting situations
we approach to either the well-known case of a continuous
background matter for Rc >> RE , or we have a standard
microlensing of point masses. Here we present the results
for σtot = 0.3, and κ = 5. The parameter σcl has been
varied from zero to 0.3. The length unit corresponds to
RE,⊙ = [4GM⊙Dds/(c 2DdDs)]1/2 = 1. Furthermore, t and
τ are in units of RE,⊙ (i.e. assuming a velocity V = 1); the
normalization to M⊙ is just conventional.

The examples of the amplification maps in the source
plane are shown in Figs. 8 - 10. The amplification dis-
tributions for various fractions of clumps (and the same
σtot = 0.3, γ = 0) noticeably differ one from another. As
can be expected, the presence of the clumps makes this dis-
tribution smoother. The presence of non-zero γ (Fig. 10)
stretches the maps in the direction of the shear. For every
set of parameters σtot, σcl, γ we generated typically several
hundred maps and the corresponding amplification curves.

Using the ensemble of these curves, the averaging pro-
cedure yields ACF A(τ ). These functions are shown in Figs.
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Gravitational microlensing as a probe for dark matter clumps 11

Figure 9. The amplification map for σcl = 0.2, γ = 0, here and
below σtot = 0.3, and the size parameter is κ = 5.

Figure 10. The amplification map for σcl = 0.2, γ = 0.5.
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Figure 11. ACFs of the amplification curves for the case σtot =
0.3, κ = 5, γ = 0 and for σcl = 0, 0.1, 0.2, 0.3.
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Figure 12. ACFs of the amplification curves for the case σtot =
0.3, κ = 5, γ = 0.5 and for σcl = 0, 0.1, 0.2, 0.3.

11, 12 for different fractions of point masses and clumps. We
note that the behavior of A(τ ) and ∆µ as functions of σcl

appears to be rather complicated. E.g., for γ = 0 we see a
non-monotonic variation of the curves as σcl changes (Fig.
11). This effect is not observed for non-zero values of the
shear (see the case γ = 0.5 in Fig. 12).

6 DISCUSSION

We have analyzed the observational signatures of gravita-
tional microlensing in presence of extended masses (clumps),
which can represent, for example, hypothetical structures
arising in cold DM models as a result of clustering. To pro-
duce significant effects due to the presence of the clumps,
the masses of the clumps were chosen of the same order as
those of the point masses, and the sizes of the clumps were of
the order of several typical Einstein radii. We compared the
artificial amplification curves (essentially, the light curves)
arising due to a relative motion of the microlens with respect
to a remote source.

We have proposed simple models that describe circular
symmetric cusped or cored clumps and their combinations
with point masses. We do not consider these idealized mod-
els as the only possible ones, rather, our aim was to look
at some ”toy problems” in order to see the main qualita-
tive features accompanying the microlensing process in our
Galaxy and beyond in presence of small-scale DM clustering,
and to estimate the order of the effects involved. We believe
that our main findings on this matter will be preserved at
a qualitative level for more complicated models of the DM
clumps, though an exact final answer will be the subject of
a separate investigation.

In case of Galactic microlensing, the case of isolated
circular symmetric microlenses of Section 3 has led to a
detailed analytical treatment; here the regions of parame-
ters of the lens mapping yielding the occurrence of one, two
or three images were determined. We note that any struc-
tures yielding changes in the number of images (cf. caustic
crossings, occultations) are possible only in case of a con-
siderable local dark matter density, either near the clump
centers or around the point masses. The most vivid exam-
ple is an eclipse-like effect with the total disappearance of
the lensed images. Though, we do not believe this case to be
realistic for the Galaxy conditions, we cannot exclude it at
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all. It may be difficult to distinguish such complicated events
from those related to double stars or planetary systems; here
a detailed investigation of the light curves of concrete high
amplification events (HAEs) is required.

We considered relatively simple models and events. We
found that the light curve of a HAE in presence of the ex-
tended microlens (the isolated clump or its superposition
with the point mass) can be well mimicked by a light curve of
the Schwarzschild lens with appropriately chosen mass and
parameters associated with its motion. Nevertheless, in case
of such a fitting, there remain some residuals in the wings of
the HAE light curve that can be used to distinguish between
the microlens models. These residuals have been estimated
through the fitting of the light curves of our clump model by
those of the point mass lens (Sections 4.2, 4.3); these results
determine the required level of photometric accuracy needed
to detect the signals from the extended clumps. This level
can be estimated from Figs. 6, 7. In particular, for cored
clump + point mass system with rs = p = 1 (that is, the
core size and impact parameter are equal to the Einstein ring
radius) and average values q = 0.5, a = 1.5 the light curve
deviation from that of the ordinary point mass lens can be
detected if the photometric accuracy is at the ∼ 0.02 mag
level. So is also the case of the cusped clump, and the re-
quirements to the accuracy in case of a pure cusped or cored
clump (q = 1) are even lower.

We also note that the degeneracy in the choice of the
model can be reduced by simultaneous astrometric obser-
vations of the source image centroid motion (see Fig. 3). If
this information is available, this may help to restrict the
parameters of the microlensing system. Though this does
not mean that all of them can be determined uniquely, not
to mention the question of uniqueness of the microlensing
model itself.

In any case, there is a region of the clump parame-
ters that induces a considerable difference between the light
curves, which is within the reach of modern photometric
measurements. Therefore, we see that at least some extended
microlens models can be, in principle, either confirmed or re-
jected from the use of high-quality observations. However,
in real observations of microlensing by Galactic objects, the
situation will be aggravated by the possible presence of un-
observable planets and star companions. Then in this case
a more detailed treatment of concrete high amplification
events is also necessary to compare the models that in-
volve binaries and planets with those dealing with extended
clumps.

In extragalactic GLSs the situation is much more com-
plicated. The view of amplification maps and the caustic net-
work generated by simple point mass microlenses (i1) seems
to be rather different from those in presence of a considerable
contribution of extended clumps (i2). Nevertheless, individ-
ual light curves in case (i1) can also include high amplifi-
cation and de-amplification effects which have an analogous
look as in case (i2). The other complication in extragalactic
GLSs is that owing to the non-negligible source size since
both the light curves and the centroid brightness trajectory
will be smoothed out significantly. To have an idea about
microlensing in cases (i1) and (i2), we considered statisti-
cal models of many-body microlensing systems that involve
both point and extended microlenses. The latter have been
represented by a special case of the cored clumps.

Considerations of Section 5 have much in common with
considerations by Metcalf & Madau (2001); Chiba (2002);
Dalal & Kochanek (2002); Schechter & Wambsganss (2002)
that, among other questions, deal with the issue
of microlensing by extended structures. In particular,
Schechter & Wambsganss (2002) pay attention to microlens-
ing brightness variations in presence of a variable smooth
matter depending on the parity of the close macrolens im-
ages. These papers, however, are mainly aimed at investi-
gating the problem of anomalous flux ratios and therefore
they deal with other mass and spatial scales. Our simula-
tions deal with extended microlenses (e.g., DM clumps) of
stellar mass, with sizes comparable to that of corresponding
Einstein rings – in order to have a noticeable effect in the
light curves. A technical difference of our simulations owes
to the simplified model of the lens mapping in presence of
the clumps, which enables us to speed up the numerical cal-
culations of ACFs with a rather modest computer hardware.
For every choice of parameters that characterize the content
of the clumps, their sizes and masses, we generated an en-
semble of amplification curves assuming a uniform spatial
distribution of microlenses in the lens plane. Using these
curves we built ACFs of the amplification curves for a set of
optical depths of extended clumps and point masses. Joint
use of microlensed flux variations and ACFs may provide
a means for determining the clump fraction and the other
parameters of the lensing system.

Indeed, there is a notable difference between the ACFs
for different values of the clump contribution. In this view,
we note the remark by Schechter & Wambsganss (2002) that
the microlensing variations appear to be ”less dramatic for
extended subhalos than for point microlenses”. This also has
been mostly observed in our simulations, though with some
exceptions. One could expect that by and large the extended
structures make ACFs less steep and therefore, this effect
shall increase the corresponding correlation length, and this
typically is the case for σcl 6 0.3 and γ ∈ [0, 0.5] (σtot =
0.3) ), but also with some exceptions showing a complicated
dependence of ACFs upon σcl (Figs. 11, 12).

However, detection of these effects requires sufficiently
long observations of the light curves in real GLSs. The rel-
evance of our results to extragalactic systems is connected
also with the occurrence of a significant optical depth σcl.
This depends on the surface mass density along the line-
of-sight which is not well known. For very rough estima-
tions one can use the masses and sizes of the galactic haloes
as compared to those of the stellar population 8. The den-
sity of DM in the Universe is five times higher than the
baryonic one and the percentage of the luminous matter
in galaxies is even lower by one order. Then, it may be
quite possible to have the surface mass density of the ex-
tended clumps of some GLS of the same order as that
of the point masses (stars). Moreover, despite the mass-
luminosity ratio for typical galaxies is known to be at the
level of M/L ∼ 2 − 4, for some spherical dwarf galaxies it is
M/L ∼ 100 (Swaters et al. 2011).

8 see, e.g., the examples from Shull (2014)
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7 CONCLUSIONS

To sum up, we studied microlensing of a remote source by
point and extended masses, the latter representing hypo-
thetical results of cold DM clustering. In case when the
masses of the extended clumps are comparable to those of
the point objects (stars) and their characteristic sizes are
of the same order as the Einstein radius of the stars, our
findings are as follows:

• We proposed a simple circular symmetric model of mi-
crolensing by isolated dark matter clumps that allowed us a
detailed investigation of the corresponding lens mapping.

• In case of a single point source motion, we built amplifi-
cation curves of the lensed images; this is done in case of mi-
crolensing by the isolated clumps and/or concentric clumps
and point masses. For a wide range of model parameters,
we estimated the residuals after fitting these amplification
curves with those due to the single point mass microlensing.

• The results allow one to estimate the photometric ac-
curacy needed to differentiate the model with the extended
clumps and without them. We note that a number of model
parameters can be ruled out under the level of photometric
accuracy ∆m = 0.01 −−0.02.

• In case of extragalactic gravitational lens systems, we
built autocorrelation functions of the amplification curves
for different clump contributions. We found a noticeable dif-
ference between ACFs in case of a considerable value for the
clump contribution and without the clumps.
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APPENDIX A: FITTING THE
AMPLIFICATION CURVE IN CASE OF A
SCHWARZSCHILD LENS

In case of a point mass (Schwarzschild) lens we have the
mapping

y = r

(

1 − R2
E

r2

)

(A1)

The amplification is well known:

µ(y) =
y2 + 2R2

E

y
√

y2 + 4R2
E

. (A2)

In case of a relative straight-line motion of the lens and the
source we have y2/R2

E = p2S + V 2
S t

2, VS is the velocity, pS is
the impact parameter. Therefore, the problem of fitting any
given dependence µ(t) (e.g., that has been obtained for a
clumped or cusped lens model) by means of (A2) is reduced
to finding the coefficients a, b of an approximate linear map-
ping t2 → y:

a + bt2 = 2

(

µ(t)
√

µ2(t) − 1
− 1

)

, (A3)

where a = p2S, b = V 2
S . Obviously, pS and VS will differ from

that of the initial clump model. In our case, to estimate the
difference between models, the approximation is performed
near the maximum of the amplification curve, where it has a
parabolic form (typically for |t| < 0.05. Here residuals of the
approximation are of the order of 10−5 ÷ 10−8). Using the
point mass model with the parameters obtained as the result
of this approximation, we estimated δ for a larger interval.

Note that to determine pS and VS we deal with the rel-
ative values y/RE irrespective of RE, which is not essential
for fitting the amplification. However, this is essential when
considering the image centroid. E.g., in case of two images,
the image centroid is

rc =
µ1r1 + µ2r1

µ1 + µ2
,

where r1 is the i-th image position and µi is its amplification
(i = 1, 2). Here we have an additional parameter RE that
can be used to rescale the trajectory rc(t); this is done in
the lower panel of Fig. 3.
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