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Context: machine learning and (deep) 
reinforcement learning in brief



Machine learning is about extracting {patterns, knowledge, 
information} from data

Machine Learning



Machine learning algorithms have recently shown impressive 
results, in particular when input data are images: this has led to the 
identification of a subfield of Machine Learning called Deep 
Learning. 

Deep Learning



Reinforcement learning, an area of 
machine learning originally inspired 
by behaviorist psychology, concerned 
with how software agents ought to 
take actions in an environment so as 
to maximize some notion of 
cumulative reward.

Deep reinforcement learning 
combines deep learning with 
reinforcement learning (and, 
consequently, in DP / MPC schemes).

(Deep) Reinforcement Learning



Human-level control through deep reinforcement learning. 
Nature, 2015. 
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. 
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig 
Petersen Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, 
Daan Wierstra, Shane Legg & Demis Hassabis

Mastering the game of Go with deep neural networks and tree 
search. Nature, 2016.
David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den 
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, 
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy 
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis

Recent (Deep) Reinforcement Learning 
Successes



Batch Mode Reinforcement Learning



Reinforcement Learning

● Reinforcement Learning (RL) aims at finding a policy maximizing received 
rewards by interacting with the environment

Agent Environment

Actions

Observations, Rewards

Examples of rewards:



Batch Mode Reinforcement Learning

● All the available information is contained in a batch collection 
of data

● Batch mode RL aims at computing a (near-)optimal policy from 
this collection of data

Batch mode RL

Finite collection of trajectories of the agent Near-optimal decision strategy

Agent Environment

Actions

Observations,
Rewards
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Batch Mode Reinforcement Learning

Batch collection of trajectories of patients



Objectives

● Main goal: Finding a "good" policy

● Many associated subgoals:

– Evaluating the performance of a given policy
– Computing performance guarantees
– Computing safe policies
– Choosing how to generate additional transitions
– ...



Main Difficulties

Main difficulties of the batch mode setting:

● Dynamics and reward functions are unknown (and not 
accessible to simulation)

● The state-space and/or the action space are large or 
continuous

● The environment may be highly stochastic



Usual Approach

To combine dynamic programming with function 
approximators (neural networks, regression trees, SVM, linear 
regression over basis functions, etc)

Function approximators have two main roles:

● To offer a concise representation of state-action value 
function for deriving value / policy iteration algorithms

● To generalize information contained in the finite sample



Remaining Challenges

The black box nature of function approximators may have 
some unwanted effects:

● hazardous generalization
● difficulties to compute performance guarantees
● unefficient use of optimal trajectories

A proposition: synthesizing artificial trajectories



Synthesizing Artificial Trajectories



Formalization

System dynamics:

Reward function:

Performance of a policy

 where

Reinforcement learning



Formalization

The system dynamics, reward function and disturbance probability 
distribution are unknown

Instead, we have access to a sample of one-step system 
transitions:

Batch mode reinforcement learning



Artificial trajectories are (ordered) sequences of elementary 
pieces of trajectories:

Formalization
Artificial trajectories



Artificial Trajectories: What For?

Artificial trajectories can help for:

● Estimating the performances of policies
● Computing performance guarantees
● Computing safe policies
● Choosing how to generate additional transitions
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Artificial trajectories can help for:

● Estimating the performances of policies
● Computing performance guarantees
● Computing safe policies
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Estimating the Performances of Policies



Model-free Monte Carlo Estimation

If the system dynamics and the reward function were accessible to 
simulation, then Monte Carlo estimation would allow estimating 
the performance of h



MODEL OR SIMULATOR 
REQUIRED!

Model-free Monte Carlo Estimation



Model-free Monte Carlo Estimation

If the system dynamics and the reward function were accessible to 
simulation, then Monte Carlo (MC) estimation would allow 
estimating the performance of h

We propose an approach that mimics MC estimation by rebuilding 
p artificial trajectories from one-step system transitions
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sample that could be obtained by simulating the system with the 
policy h; each one step transition is used at most once



Model-free Monte Carlo Estimation

If the system dynamics and the reward function were accessible to 
simulation, then Monte Carlo (MC) estimation would allow 
estimating the performance of h

We propose an approach that mimics MC estimation by rebuilding 
p artificial trajectories from one-step system transitions

These artificial trajectories are built so as to minimize the 
discrepancy (using a distance metric ∆) with a classical MC 
sample that could be obtained by simulating the system with the 
policy h; each one step transition is used at most once

We average the cumulated returns over the p artificial trajectories 
to obtain the Model-free Monte Carlo estimator (MFMC) of the 
expected return of h:



Model-free Monte Carlo Estimation



Example with T = 3, p = 2, n = 8

The MFMC algorithm



The MFMC algorithm
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The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm
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The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



The MFMC algorithm



Lipschitz continuity assumptions:

Theoretical Analysis
Assumptions



Distance metric ∆

k-dispersion

                       denotes the distance of (x,u) to its k-th nearest 
neighbor (using the distance ∆) in the sample

Theoretical Analysis
Assumptions



Theoretical Analysis
Assumptions

The k-dispersion can be
seen as the smallest 
radius such that all
∆-balls in X×U contain
at least k elements from



Theoretical Analysis
Theoretical results

Expected value of the MFMC estimator

 



Theoretical Analysis
Theoretical results

Expected value of the MFMC estimator

Theorem

with 



Theoretical Analysis
Theoretical results

Variance of the MFMC estimator

 



Theoretical Analysis
Theoretical results

Variance of the MFMC estimator

Theorem

with 



Dynamics:

Reward function:

Policy to evaluate:

Other information:

pW(.) is uniform

Experimental Illustration
Benchmark



Monte Carlo estimatorModel-free Monte Carlo estimator

Simulations for p = 10, n = 100 … 10 000, uniform grid, T = 15, x
0
 = - 0.5

n = 100 … 10 000, p = 10

Experimental Illustration
Influence of n

p = 10



Simulations for p = 1 … 100, n = 10 000, uniform grid, T = 15, x
0
 = - 0.5

Monte Carlo estimatorModel-free Monte Carlo estimator

p = 1 … 100, n=10 000 p = 1 … 100

Experimental Illustration
Influence of p



Comparison with the FQI-PE algorithm using k-NN, n=100, T=5 .

Experimental Illustration
MFMC vs FQI-PE



Comparison with the FQI-PE algorithm using k-NN, n=100, T=5 .

Experimental Illustration
MFMC vs FQI-PE



Research map

Stochastic setting

 

Bias / variance analysis Illustration

MFMC: estimator of the expected return
Estimator

of the
VaR

Deterministic setting
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action space

Finite action space

CGRL Sampling
strategyBounds on

the return

Convergence

Convergence
+ additional properties

Illustration Illustration
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Estimating the Performances of Policies

Consider again the p artificial trajectories that were rebuilt by the 
MFMC estimator. The Value-at-Risk of the policy h 

can be straightforwardly estimated as follows: 

with

Risk-sensitive criterion



Deterministic Case: Computing Bounds
Bounds from a Single Trajectory

Given an artificial trajectory :



Deterministic Case: Computing Bounds
Bounds from a Single Trajectory

Proposition:

Let be an artificial trajectory. Then,

with



Deterministic Case: Computing Bounds
Maximal Bounds

Maximal lower and upper-bounds



Deterministic Case: Computing Bounds
Tightness of Maximal Bounds

Proposition:



Inferring Safe Policies
From Lower Bounds to Cautious Policies

Consider the set of open-loop policies:

For such policies, bounds can be computed in a similar way

We can then search for a specific policy for which the associated 
lower bound is maximized:

A O( T n ² ) algorithm for doing this: the CGRL algorithm (Cautious 
approach to Generalization in RL)



Inferring Safe Policies
Convergence

Theorem



Inferring Safe Policies
Experimental Results

● The puddle world benchmark



 CGRL     FQI (Fitted Q Iteration)

     

The state space is 

uniformly covered by

the  sample

Information about the

Puddle area is

removed

Inferring Safe Policies
Experimental Results



Inferring Safe Policies
Bonus

Theorem



Sampling Strategies

Given a sample of system transitions

How can we determine where to sample additional transitions ?

We define the set of candidate optimal policies:

A transition is compatible with if

and we denote by the set of all such compatible 
transitions.

An Artificial Trajectories Viewpoint



Sampling Strategies

Iterative scheme:

with

Conjecture:

An Artificial Trajectories Viewpoint



Sampling Strategies
Illustration

Action space:

Dynamics and reward function:

Horizon:

Initial sate:

Total number of policies:

Number of transitions
needed for discriminating:



Thank you
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