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Summary: 

Roots play a major role in plant development. Their study in field conditions is important to identify 

suitable soil management practices for sustainable crop productions. Soil coring, which is a common 

method in root production measurement, is limited in sampling frequency due to the hand-sorting step. 

This step, needed to sort roots from others elements extracted from soil cores like crop residues, is time 

consuming, tedious and vulnerable to operator ability and subjectivity. In order to get rid of the 

cumbersome hand-sorting step, avoid confusion between these elements and reduce the time needed to 

quantify roots, a new procedure, based on NIR hyperspectral imaging spectroscopy and chemometrics, 

has been proposed. It was tested to discriminate roots of winter wheat (Triticum aestivum L.) from crop 

residues and soil particles. Two algorithms (SVM and PLS-DA) have been compared for discrimination 

analysis. Models constructed with both algorithms allowed the discrimination of roots from other 

elements but the best results were reached with models based on SVM. The ways to validate models, with 

selected spectra or with hyperspectral images, provided different kinds of information but were 

complementary. This new procedure of root discrimination is a first step before root quantification in soil 

samples with NIR hyperspectral imaging. The results indicate that the methodology could be an 

interesting tool to improve the understanding of the effect of tillage or fertilization, for example, on root 

system development. 
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1. Introduction 

Roots play a major role in plant development. They are the link between belowground resources and 

aboveground growth
1
 and therefore have a great influence on plant biomass production

2
. Root 

morphology and physiology determine the capacity for nutrient uptake and water extraction by plants
3
. 

Their growth is determined by both the genetic traits of plants and the physical and chemical properties of 

soil, and shows high plasticity under different environmental conditions. The potential of plants to obtain 

water and mineral nutrients from the soil is primarily attributed to their capacity to develop extensive root 

systems
2
.  

Studies on root development are important for a better understanding of the interaction between crop 

root systems and the growing environment in order to identify suitable soil management practices for 

sustainable crop productions
4
. The time taken by roots to colonize the deep soil profile and the root 

system biomass production during the whole crop development cycle are therefore good indicators to 

interpret crop behaviour in various management modes and in a given soil-climate context. Nevertheless, 

roots are rarely directly evaluated in field experiments because soil limits accessibility for their 

observation
1, 5

. Therefore, they need to be extracted from soil before any measurement can be made. 
Soil coring is a commonly used method to sample roots in field experiments and measure their 

production
6
. This technique is not expensive and allows repeated measurements during crop growth at 

several soil depths. After soil coring, cores need to be washed to extract roots from soil. Others elements, 

mainly crop residues buried in crop soils, are also extracted during the washing step and need to be 

separated from roots, commonly by hand-sorting, before any analysis or quantification of roots
1, 4, 5, 7, 8, 9, 

10
. This sorting step is time-consuming, tedious and vulnerable to operator ability and subjectivity

1
. It is 

therefore the most significant limitation of the soil coring method because it limits the frequency of 

sampling during crop growth
11

. 
Near Infrared Spectroscopy (NIRS) is used to identify and quantify components in agricultural 

products and is characterized by the acquisition of a distinctive spectral chemical profile, which can be 

considered as a fingerprint of the material. This method allows the acquisition of chemical information 

from samples with numerous advantages like ease of use and the possibility to quickly and 

simultaneously analyse several components without any reagents and without sample destruction. It is 

used to classify or even identify any given material without dependency on human subjectivity. NIRS 

being an indirect method of measurement needs to be coupled with chemometrics, a chemical discipline 

using mathematics and statistics to extract the relevant chemical information out of measured data
12, 13, 14, 

15, 16, 17
. 

In the last decades, NIRS has been applied to study root systems and to detect differences in the 

chemical composition of roots. It was used to estimate root biomass proportions in different root 

mixtures
18, 19

, to predict the percentage of dead versus living grass roots
7
 and to determine the taxa of 

herbaceous and woody species
20

. NIRS was also used as a rapid method to predict pasture and maize root 

densities in soil cores, directly in the field, without separating soil and roots
21, 22

.  
Recently, new advances have permitted the coupling of NIR spectrometers with imaging 

technologies, thus creating new devices (Near Infrared Hyperspectral Imaging (NIR-HSI)) providing 

spectral and spatial information simultaneously
16, 23

. With this method, thousands of spectra can be 

obtained for each sample, giving a complete picture of the distribution of chemical compounds at pixel 

level
14, 24, 25

. 
The aim of this work was to develop a new procedure based on NIR-HSI coupled with 

chemometrics, allowing a faster discrimination of elements extracted from soil cores in order to decrease 

the time needed to analyse samples and thereby allowing an increase in the number of soil samples that 

can be taken in a same time and space. An increase of sampling throughout crop development will allow a 

better understanding of the root system's development. An increase of sampling in a same field will 

improve the knowledge of the spatial heterogeneity existing in field conditions and of the root system's 

development at several depths. Discrimination of roots and crop residues could lead to a better 

understanding of root system development in field conditions and its adaptation to its growth 

environment.  

2. Materials and Method 

Root and crop residue samples were collected by soil coring in a long-term trial on tillage and crop 

residue management. The experimental field was located on the experimental farm of Gembloux Agro-

Bio Tech (University of Liège, Gembloux, Belgium). A complete description of the site was given by 

Degrune et al.
26

. The trail was sown with winter wheat (Triticum aestivum L.) in 2010, 2011 and 2012. 

Soil samples were collected during the second and third year of this crop on several dates (November 

2011, April and May 2012), corresponding to different development stages of the crop (first leaf 

development, tillering and last leaf deployment), or after the harvest (September 2013). After appropriate 
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weeding of the field, all sampled roots and crop residues were considered as produced by the winter 

wheat crop. We considered as crop residues the above-ground parts of plants remaining in the field after 

harvest, mainly stubble, chopped straw and husks. These crop residues were mixed with the soil by 

ploughing (25 cm depth tillage) or reduced tillage (10 cm depth tillage). Soil samples were taken at a 

depth of 30 cm using a 30-mm diameter soil-coring tube driven into the soil by a tractor-mounted 

hydraulic push press. They were then divided into three soil horizons (0-10, 10-20 and 20-30 cm deep). 
As in the common hand-sorting method, soil samples were washed with tap water in order to extract 

roots and crop residues. These elements were collected on a sieve (Figure 1). Small stones and soil 

aggregates were also present. The sieve containing all the elements was dried at 60°C until a constant 

weight was reached. After drying, extracted elements were sorted by hand into three classes in order to 

calibrate and validate the discrimination models: roots, crop residues and soil (small stones and soil 

aggregates). After model development, this hand-sorting step is no longer necessary. Samples were then 

kept at ambient temperature and humidity until the acquisition of NIR hyperspectral images.  

 
Figure 1: Picture of the sieve with the different elements extracted from soil cores 

NIR hyperspectral images were acquired with a moving imager technique combining an NIR 

hyperspectral line scan, or push-broom imaging system, and a conveyor belt (BurgerMetrics SIA, Riga, 

Latvia) (Figure 2).  The camera was an SWIR XEVA CL 2.5 320 TE4 camera (SPECIM Ltd., Oulu, 

Finland) using an ImSpector N25E spectrograph that includes a cooled, temperature-stabilized mercury–

cadmium–telluride (MCT) detector (XENICS nv, Leuven, Belgium). Images were acquired in the 1118-

2424 nm range with a 6.3 nm spectral resolution (i.e. 209 wavelengths) with a width of 320 pixels. For 

each pixel, 32 scans were co-added and the mean absorbance spectrum was saved. Illumination was 

achieved with two halogen lamps of 120 W each. The camera position was set up to give images 10 cm in 

width. Pixels resolution was of 0.31 mm width. The conveyor belt speed was adapted in order to ensure 

the pixels were always square-shaped. Acquisitions were performed with HyperPro VB software 

(BurgerMetrics SIA, Riga, Latvia). The system was first calibrated with white ceramic (white reference) 

and by blocking the entrance of reflected light (dark reference). A dark reference was automatically 

performed before acquiring each image. A white reference was performed several times during 

acquisition day. Bad pixels were detected and removed at the same time.  

Samples were placed on the conveyor belt and care was taken so that the overlapping of constituents 

was reduced. For the calibration and the validation of our models, soil, crop residues and roots were 

sorted manually and images were acquired separately on each class of elements. Only perfectly washed 

samples of roots and crop residues were used so that soil was not present on these samples. During 

manual sorting, only perfectly identified elements were selected for model calibrations and validations. 

For crop residues, spectra from the inner and outer side of pieces of straw were acquired. Preliminary 

tests on spectra showed that spectral profiles of these two sides were different. It was therefore important 

to acquire both sides in order to take all the spectral variability into account for model calibrations. 

Images of the sieve were also acquired because, in the case of discrimination of the elements extracted 

together from soil cores, all elements stay on the sieve during the acquisition of NIR spectra in order to 

facilitate sample handling. NIR spectra of the sieve were therefore needed to calibrate discrimination 
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models. In order to build the sieve library, a piece of sieve has been placed alone on the conveyor belt, in 

the same way than the other elements used for model calibrations and validations. 

 

 

Figure 2: Near infrared (NIR) hyperspectral imaging system installed at the Walloon Agricultural 

Research Center, Belgium (BurgerMetrics SIA, Riga, Latvia) 

NIR spectra acquired on sample surface were extracted with HyperSee software (BurgerMetrics 

SIA, Riga, Latvia) from 24 NIR hyperspectral images of roots, 56 images of crop residues, 5 images of 

soil and 5 images of the sieve. One matrix of spectra was created for each image. These images were 

chosen in order to cover the highest possible spectral variability: images of roots and crop residues were 

acquired on samples collected at different times throughout crop growth and at different soil depths. 

Moreover, variability due to the system of acquisition was added in the calibration set by acquiring 

spectra from different samples at different dates and by collecting spectra from the same sample of crop 

residues used as a reference and acquired on 13 different dates. It was also important to take edge and 

shading effects into account: spectra were acquired on the whole sample surface and spectra from shadow 

areas created on the conveyor belt by roots and crop residues were extracted and saved separately. These 

shadow spectra did indeed have a specific spectral profile and were extracted from 14 NIR hyperspectral 

images. They were considered as background together with the sieve spectra. 
Spectra with spikes were removed from all images. These spikes are related to dead pixels that are 

due to a few elements in the detector responding with an unusually high or low value
27

. All spectra with 

absorbance higher than 1.5 at 1740 nm, corresponding to conveyor belt absorbance, were also removed. 

Due to noise at the beginning and the end of spectra, only the 150 wavelengths between 1432 and 2368 

nm were maintained. All this pre-processing was done on Matlab R2015a software (The MathWorks, 

Inc., Natick, MA, USA). 
After the removal of spikes and conveyor belt spectra, data extracted from each image still contained 

between several hundred to several thousand of spectra. Such a large amount of spectra was useful to take 

the large sample spectral variability into account for the calibration of models but it contained redundancy 

and it increased the time needed to calibrate models. In order to keep the spectral variability and reduce 

redundancy, the duplex algorithm described by Snee was used to select representative spectra for the 

calibration set
28

. Images were gathered in groups (according to sample nature and acquisition date) and 

around 1000 spectra from each were selected. The duplex algorithm was applied to each image separately 

to select homogeneously spectra in order to build a spectral library. This method starts by selecting the 

two points furthest from each other and puts them both in a first set (training). Then the next two points 

furthest from each other are put in a second set (test), and the procedure is continued by alternatively 

placing pairs of points in the first or second set
29

. As a result, data are divided into two groups which 

include the most diverse spectra, cover approximately the same spectral variability and have similar 

statistical properties. In total, around 9000 spectra were selected in a first test set which was used for the 

calibration of the discrimination models. A second selection was done with the duplex algorithm on the 

remaining spectra in order to create a second test set, the spectral validation set, which also contained 

around 9000 spectra. 
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In order to normalize spectra, an autoscale transformation was applied on selected spectra. 

Preliminary tests showed that this pre-process improved discrimination of our spectral classes and gave 

best results among classical data pre-treatments. Autoscale is a common pre-processing method which 

uses mean-centering followed by the division of each variable by its standard deviation
30

. As a result, all 

variables of the dataset have a mean of zero and a standard deviation of one.  
In this work, the two discrimination algorithms were the following supervised methods: Partial Least 

Square Discriminant Analysis (PLS-DA) and Support Vector Machines (SVM). PLS-DA is a 

dimensionality reduction technique that defines new latent variables such that they explain maximum 

variation of independent and dependent variables
31

. SVM is an algorithm designed to derive a function 

based on high-dimensional space that describes the hyperplane that optimally separates two classes of 

data. SVM tries to correctly classify the training data by maximizing the wide of the margin between the 

groups and by penalizing for errors in order to get a better generalization performance. This is done in a 

high dimensional space where the groups are linearly separable via a kernel function
15, 32, 33

. 
Pre-processing and model calibrations were done using the PLS Toolbox 7.8 software (Eigenvector 

Research, Inc., Wenatchee, WA, USA). Discrimination models were arranged in a dichotomous 

classification tree using Matlab R2015a software (The MathWorks, Inc., Natick, MA, USA). This 

classification method was chosen for its good performance in a previous study 
15

. 

3.  Results and discussion 

Spectra of background, soil, crop residues and roots were discriminated thanks to a dichotomous 

classification tree containing three nodes: each node was based on individual discrimination models by 

successively extracting background (sieve and shadows) and soil before discriminating crop residues 

from roots (Figure 3). The aim of each model was to separate spectra of interest (considered as positive 

class) from the rest (negative class).  

 

Figure 3: Dichotomous classification tree. Three successive discrimination models allow the separation 

of near infrared (NIR) spectra in four classes: background, soil, crop residues and roots 

Parameter optimization was performed separately for each model. For PLS-DA models, the number 

of latent variables was chosen in order to reduce the cross-validation classification error average. A 10-

group cross-validation was performed. For SVM models, the cost (penalizing parameter) and the gamma 

(radial basis function (RBF) kernel parameter) were optimized using the grid search procedure to 

minimize the misclassification fraction.  

Table I presents the results obtained with both algorithms during model calibration, cross-validation 

and validation. Calibration and cross-validation were obtained with spectra of the calibration set. For the 

validation, models were tested with spectra of the validation set. These results were expressed in terms of 

sensitivity and specificity. Sensitivity is the proportion of spectra that are actually positive and classified 

as positive for one class whereas specificity is the proportion of spectra that are actually negative and 

classified as negative for one class
15

. For instance, for the SVM model concerning the discrimination of 

background vs. the rest, a sensitivity of 97.1% and a specificity of 99.8% were obtained indicating that 
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97.1% of the spectra from background were correctly classified as background and 99.8% of the other 

spectra were correctly classified as spectra belonging to the rest (i.e. spectra of soil, crop residues and 

roots altogether).  

Table I: Results obtained during calibration, cross-validation and validation steps of the discrimination 

models constructed respectively with support vector machine (SVM) or partial least squares discriminant 

analysis (PLS-DA). Results are expressed in terms of model sensitivity and specificity 

 
 

Calibration Cross-Validation Validation 

  
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Background vs. Rest 

SVM 97.1% 99.8% 95.3% 99.3% 94.9% 95.7% 

PLS-DA 96.2% 95.9% 96.2% 95.8% 96.2% 91.4% 

Soil vs. Rest 

SVM 99.2% 99.7% 99.2% 99.5% 99.2% 99.7% 

PLS-DA 99.3% 98.2% 99.3% 98.2% 98.8% 96.6% 

Crop residues vs. Root 

SVM 97.1% 92.5% 94.0% 85.2% 94.1% 85.9% 

PLS-DA 88.0% 86.5% 87.7% 86.0% 88.5% 89.5% 

Results are expressed in terms of model sensitivity and specificity. Validation results were obtained on other spectra 

than those used for calibration and cross-validation. 

All models allowed discrimination of the spectral classes. The best results were obtained with the 

soil vs. rest model: in general, up to 99% of soil spectra were correctly classified. The background vs. rest 

model also provided good discrimination with up to 95% of correctly classified spectra in general. For 

both models, the specificity was higher with SVM than with PLS-DA. The discrimination between crop 

residues and roots was more difficult: 14% of root spectra used to validate models were classified as crop 

residues with SVM. For this third model, crop residues were always better predicted with SVM. 

The validation of the three discrimination models applied separately on the spectra of the validation 

set confirmed the results obtained during the calibration of models and the ability of models to 

discriminate spectra from the different spectral classes. It gave a raw idea of model performance when 

applied to new spectra and was therefore very useful during model construction. However, it was 

observed that this validation of the model sometimes gave an inaccurate picture of the model's quality. In 

some cases, excellent results were obtained during model construction and validation but bad predictions 

were obtained when these models were used to predict the spectral nature of pixels on hyperspectral 

images. Moreover, validation done on each discriminant model separately did not take into account the 

sequence of models applied with the classification tree. The discrimination models were therefore also 

validated in a second way. Table II gives results obtained when the whole dichotomist classification trees, 

constructed respectively with SVM and PLS-DA algorithms, were applied to 264 new NIR hyperspectral 

images in order to predict the spectral nature of each pixel constituting these images. These images were 

acquired on samples containing only elements corresponding to one spectral class (sieve, soil, crop 

residues or roots). This second table presents the number of images used for the four spectral classes, the 

number of pixels predicted for each class (in total and after removal of spectra predicted as background) 

as well as the percentage of pixels that were or were not correctly predicted in each group. These results 

do not take into account pixels having a high absorbance value which were removed during image pre-

treatment and corresponding to conveyor belt. The results show that background was correctly predicted 

on images containing only the sieve (no elements extracted from soil cores): less than 1% of pixels were 

detected as belonging to another spectral class with both algorithms and the SVM tree correctly predicting 

99.9% of background pixels. The sieve was not present on the other images and only shadow areas were 

thus considered as background. The amount of pixels predicted as shadow reached one to two thirds of 

pixels analysed by models. These pixels were present on the conveyor belt, along the edge of elements. 

The highest part of pixels predicted as shadow was reached on images of roots. These elements were thin 

and the ratio between shadow along the edge of roots and their surface was therefore higher.  

Images of soil were also well predicted. The SVM tree correctly predicted 99.3% of pixels and the 

PLS-DA tree correctly predicted 97.5% of pixels, with only slight confusion appearing with root spectra.  

The weakest results were obtained on images of roots and crop residues with both classification 

trees. With the SVM tree, 17.4% of pixels of crop residues were predicted as roots and 8.3% of root 

pixels were predicted as crop residues. With the PLS-DA tree, 16% of crop residue pixels were predicted 
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as roots and part of the root pixels were predicted as crop residues (7.3%) or as soil (5%). These 

percentages did not take into account the number of pixels predicted as background by the first model of 

discrimination in the classification tree. Considering the results in absolute values, the number of pixels 

correctly classified as background, soil, crop residues or roots on the images of these four classes was 

always higher with the SVM tree than with the PLS-DA tree. The SVM tree correctly classified a higher 

proportion of pixels as background on images of the sieve and classified a lower proportion of pixels in 

this class on images of soil, crop residues and roots. The PLS-DA tree classified a higher proportion of 

pixels as roots on soil images and a higher proportion as soil on root images. The highest difference 

between SVM and PLS-DA trees was observed with images of roots: the SVM tree predicted 19% more 

pixels as roots.  

Table II: Number and percentage of pixels predicted as background (sieve and shadow areas), soil, crop 

residues or roots on NIR hyperspectral images acquired on samples containing only one spectral class.  

Classification tree SVM PLS-DA 

Samples Sieve Soil Residues Roots Sieve Soil Residues Roots 

Number of images 4 12 131 117 4 12 131 117 

Total number of pixels 175.583 323.407 4.880.123 2.525.402 175.583 323.407 4.880.123 2.525.402 

Pixels classified as Background  99.9% 35.2% 49.6% 56.2% 99.1% 40.6% 51.9% 63.2% 

Remaining pixels after background removal 

Pixels classified as Soil, residues or roots 209.572 2.460.102 1.107.303   192.168 2.345.244 928.890 

 
Soil (%)  99.3% 1.8% 0.8% 

 
97.5% 2.2% 5.0% 

 
Crop residues (%)  0.2% 80.8% 8.3% 

 
0.0% 81.7% 7.3% 

 
Roots (%)  0.5% 17.4% 90.8% 

 
2.5% 16.0% 87.7% 

Number of pixels and percentages were calculated by cumulating, for each spectral class, the results obtained on all 

hyperspectral images analysed for this class. PLS-DA indicates partial least squares discriminant analysis; SVM, 

support vector machine. 

This method of validating models was much more time-consuming in terms of prediction and 

analysis than the first way of validation but it gave interesting results: it was possible to validate models 

on a very large number of spectra, therefore with a higher variability, and to quantify the proportion of 

spectra wrongly predicted in each spectral class separately. Furthermore, it was possible to identify 

regions of hyperspectral images where pixels were not well classified. Indeed, based on prediction results 

for each pixel, images were reconstructed by assigning one colour to each spectral class. The visual 

analysis of reconstructed images reveals how the different image regions were predicted and allows the 

identification of areas where spectra were wrongly classified. On images of crop residues, pixels located 

on the border of crop residues were often classified as roots (Figure 4 A). This mistake was lower when 

using SVM. In contrast, the SVM tree applied to images of the inner side of crop residues classified a 

higher number of pixels as roots in the central part of crop residues than PLS-DA (Figure 4 B). However, 

the analysis of pixel number predicted for each spectral class showed that, on 92.4% of crop residue 

images, the number of pixels correctly classified as crop residues was higher with the SVM tree. Dead 

pixels were sometimes present on images. These pixels were generally better classified with the SVM tree 

(Figure 4 C). On images of roots, pixels classified as crop residues were mostly located in the central area 

of large roots. On these images, a large part of root pixels were classified as background (Figure 5). 

Considering all images of roots predicted with both models, a higher pixel number was classified as roots 

with the SVM tree on 99.1% of root images. 
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Figure 4: Picture of crop residues and predictions of NIR hyperspectral images of crop residues with 

SVM and PLS-DA dichotomous classification trees. Pixels classified as crop residues are in ochre. Pixels 

classified as roots are in yellow. Differences between predictions with SVM and PLS-DA are illustrated 

in dashed circles and can be observed (A) on the border of crop residues, (B) on the inner face of straw 

and (C) in terms of prediction of dead pixels  

 

Figure 5: Picture of roots and predictions of NIR hyperspectral images of roots with SVM and PLS-DA 

dichotomous classification trees. The main differences between predictions with SVM and PLS-DA were 

a higher number of pixels classified as roots (in yellow) and a lower number of pixels classified as 

background (in royal blue) as illustrated in the dashed circle 

This confusion of roots and crop residues spectra was already observed during the calibration and the 

first validation of models. The analysis of predicted hyperspectral images allowed to highlight that this 

confusion appeared mainly on the border of crop residues. A large part of the spectra on the border of 

elements resulted from the chemical nature of several elements: the conveyor belt and elements extracted 

from soil cores or, in the case of samples with mixed elements, different elements extracted from soil 

cores that overlapped on the conveyor belt during image acquisition. Vermeulen et al. reported that 

spectra in a pixel are often a mixture of the pure constituent spectra
34

. Spectra acquired in the central part 

of crop residues were not affected by this phenomenon because crop residues are quite large elements and 

it was easy to acquire pure spectra on it. This confusion due to the low spatial resolution of the instrument 

and the mix of spectra was also well observed on predicted images of roots. The roots used in this study 

were sampled under a winter wheat crop and they were very thin: their diameter was mostly smaller than 

the pixel size. Much of the root spectra were therefore the result of mixed spectra of root and background 

resulting in confusion between these two spectral classes. Preliminary tests showed that model results 

were improved when these border areas were taken into account to construct models. Other elements of 

confusion, located in the central part of roots or crop residues, seem to be due to the shape of the elements 

and their interaction with light.  Such edge and shaping effects were also observed and discussed by 
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Manley et al.
35

. All spectral confusions were therefore most likely linked to the way spectra were 

acquired. Figure 6 shows how similar were the spectra of root and crop residues used to calibrate the 

discriminant models. Furthermore, it seems that these confusions were not due to the chemical 

composition of roots and crop residues because chemical analysis demonstrated that their C/N content 

was different. In addition, they were perfectly discriminated when samples were ground (results not 

shown). Soon & Arshad  also measured a higher C/N ratio in the straw of winter wheat than in their 

roots
36

 and Kamruzzaman et al. observed that minced samples were much better classified, probably due 

to the homogeneous surface
37

. 

 
Figure 6: Mean spectra of roots and crop residues of winter wheat after A, second derivative or B, 

Standard Normal Variate (SNV) transformation. These mean spectra were calculated on the spectra used 

to calibrate the models. They were very similar, and the discrimination of root and crop residues was 

therefore challenging 

 

 

Figure 7: SVM prediction on an NIR hyperspectral image acquired on a sample containing wheat roots 

(in yellow), crop residues (in ochre), small stones and clots (in turquoise) and the sieve (in royal blue). 

The conveyor belt is in dark blue.  

The comparison of models has indicated that models built with SVM better discriminated root and 

crop residue spectra both during model calibration and during prediction on hyperspectral images. These 

results confirmed the good performances of SVM previously observed and its superiority to solve 

complex problems
15, 16, 32

. Spectral classes were better separated and areas of confusion like crop residue 

borders, thin roots or bad pixels were better predicted. It was observed on predicted images and it could 

explain the difference observed in Table I between the selectivity and the sensitivity of the SVM model 

discriminating crop residues and roots. Applied to the sample presented in Figure 1, SVM gave a good 
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prediction of all the elements extracted from a soil core (Figure 7). The only limitation identified with 

SVM was the time needed to construct models, which was longer than with PLS-DA. Due to the large 

quantity of data, several hours were necessary to calibrate the SVM models whereas only a few seconds 

were needed for PLS-DA. However once the models are built the performance of SVM is larger in terms 

of sensitivity and robustness. 

4. Conclusion 

This work demonstrated the ability of NIR hyperspectral imaging spectroscopy and chemometrics to 

discriminate winter wheat roots, crop residues and soil particles extracted from soil cores.  To reach the 

best discrimination, it was important to identify all sources of spectral variability on hyperspectral 

images. This variability can be due to the nature of analysed elements, presence of shadow areas on 

images or variability induced by the acquisition system itself. In routine use, predictions would be 

improved if discrimination models were regularly updated with new spectra in order to take into account 

as much spectral variability as possible.  The interest of validating discrimination models on NIR 

hyperspectral images was demonstrated. It allows the validation of models when they are combined in a 

dichotomous classification tree and the identification of areas of spectral confusion. This method of 

validation proved to be very useful to estimate a model's ability to discriminate elements extracted from 

soil cores. 
The comparison of chemometric tools confirmed the good performances of SVM. Models built with 

this algorithm classified a higher proportion of spectra in the correct spectral class and were less sensitive 

in areas of spectral confusion than models built with PLS-DA. 
Although discrimination between the spectra of roots and crop residues was not perfect, this new 

procedure, which is rapid and does not depend on operator subjectivity, offers new possibilities in studies 

on root systems. NIR hyperspectral imaging and chemometrics could be used to quantify roots extracted 

from soil cores sampled in field conditions in order to replace the time-consuming and tedious manual 

step currently required with the soil coring method after washing soil samples. Furthermore, this new 

procedure could also be of use to quantify crop residues in soils and study their degradation dynamics, an 

important step in soil carbon fixation. This root or crop residue quantification could be based on the link 

between the weight of roots or crop residues in a sample analysed with the hyperspectral camera and the 

number of pixels predicted as belonging to these spectral classes by the discriminant models. Coupled 

with the soil coring method, this new procedure could be used to study tillage and nitrogen fertilization 

effects on winter wheat root system development in field conditions. 
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