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A monotonic Boolean function is regular if its variables are naturally ordered by decreasing 
'strength',  so that shifting to the right the non-zero entries of  any binary false point always yields 
another false point. Peled and Simeone recently published a polynomial algorithm to generate 
the maximal false points (MFP's) of  a regular function from a list of its minimal true points 

(MTP's) .  Another efficient algorithm for this problem is presented here, based on a charac- 
terization of the MFP's  of a regular function in terms of  its MTP's .  This result is also used to 
derive a new upper bound on the number of MFP's of a regular function. 

1. Introduction 

A monotonic Boolean function o f  n variables (or ,  for short, a function) is a 
mapping f :  { 0, 1 } n ~ { 0, 1 } such that: x_< y implies f(x) <f (y ) .  A function f is called 
regular if it satisfies the following condition at every point x: 

if i<j, xi = 1, xj=O and f (x)  =0,  then f (x+ej -e i )=O,  

where ek denotes as usual the k-th unit vector of appropriate dimension. 
Regularity and related concepts have been studied under various names in such 

areas of applied mathematics as threshold logic (Hu [4], Muroga [6]), game theory 
(Maschler and Peleg [5], Einy [2]) or graph and hypergraph theory (Chv~ital and 
Hammer [1], Reiterman et al. [8]). The interest in regular functions usually stems 
from their close relationship with threshold functions: for our purpose, a Boolean 
function f (x)  is called threshold if there exist n + 1 integers ci -> c2-> --- - cn -> 0 and 
b_> 0 such that: 

n 

f(x) = 0 if and only if cixi < b. 
i = 1  

Clearly, every threshold function is also regular, and thus the class of regular 
functions provides a (proper) generalization of the class of threshold functions. 

Now, define a true point (or winning coalition, or dependent set) of  a Boolean 
function f as a point x such that f(x) = 1. Similarly, x is a false point (or losing 
coalition, or independent set) of f if f (x)--0. Clearly, the list of minimal truepoints 
(MTP) or of  maximal false points (MFP) of a (monotonic) function f is sufficient 
to completely specifyf.  With this terminology, the threshold synthesis problem can 
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be stated as follows: given the list of MTP's  of a Boolean function f ,  decide whether 
f is threshold, and if yes, produce a linear inequality defining it (see e.g. [4], [6]). 
Equivalently, this amounts to deciding whether a simple game defined by its 
minimal winning coalitions is a weighted majority game, or to recognizing threshold 
hypergraphs (see [8]). 

This classical problem of threshold logic was open for a number of years, until 
the recent publication by Peled and Simeone of a polynomial-time algorithm for its 
solution [7]. In fact, the existence of such an algorithm is an easy corollary of the 
following theorem, which can therefore be seen as the main result of [7]: 

Theorem 1 [7]. There is an algorithm that accepts as input the list o f  MTP's  o f  a 

regular function f ,  and that outputs the list o f  MFP's o f f  in O(n3m) time, where 

m is the number o f  MTP's  o f f .  In particular, f has no more than n m + m + n  
MFP" s. 

An algorithm that produces the list of MPF's  of a Boolean function from its list 
of MTP's  will henceforth be called a dualization algorithm. The dualization 
algorithm of Peled and Simeone is an improved version of  a procedure originally 
suggested by Hammer,  Peled and Pollatschek [3]. Its time complexity is low, but 
its description and the proof of its validity are quite involved. The bound on the 
number of MFP's  follows directly from a careful analysis of  the algorithm. 

The main result of this paper is a simple, combinatorially insightful, charac- 
terization of the MFP's  of a regular function in terms of  its MTP's.  This result is 
proved in Section 2, where it is used to derive an O(nEm) dualization algorithm for 
regular functions, as well as an improved upper-bound on the number of MFP's  of 
such functions. In Section 3, we introduce the notion of 'shelters', and discuss some 
further refinements of the results presented in Section 2. 

2. MTP's, MFP's, and a dualization algorithm 

The key result of this paper states: 

Proposition 1. For a regular function f o f  n variables, x is an MFP o f f  such that 

xn=O i f  and only i f  x+en is an M T P  o f f .  

Proof. (Only if) If  x is an MFP of f and x n = 0, then x + en is a true point of f .  
Moreover, x being a false point o f f ,  x + e n - e i  is a false point too, by regularity, 
for all i such that xi = 1. Hence, x + en is an MTP of f .  

(If) I f  x +  e,, is an MTP o f f ,  then x~ = 0, and x is a false point o f f .  Assume that 
x is not an MFP, i.e., there exists i<n  such that x+ei  is a false point. Then, by 
regularity, x+e~ is also a false point: contradiction. [] 
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Proposit ion 1 provides a simple characterization of all the M F P ' s  of  f with last 
component  0. Given this result, the following recursive dualization procedure 
suggests itself: list all the MFP ' s  of  f with last component 0, then fix xn at 1 and 
iterate. In order to formalize these ideas and to establish the validity of  the 
approach,  we introduce now one more definition. 

If  f is a Boolean function of  n variables, then fn denotes the restriction of  f 
obtained by fixing the n-th variable at 1. Hence, fn is a function of  n - 1 variables. 
The following properties are easy to check, and we state them without proof.  

Proposition 2. For a monoton& function f o f  n variables, 
(i) x is an M F P  o f  fn i f  and only i f  (x, 1) is an MFP o f f .  

(ii) x is an M T P  o f  fn i f  and only i f  either (x,O) is an M T P  o f f ,  but for  no y < x  
is (y, 1) an M T P  o f f ,  or (x, 1) is an M T P  o f f .  

(iii) fn is regular i f  f is regular. 

The practical implications of  Proposition 2 are obvious: given the list of  MTP ' s  
of  a regular function f ,  and using Proposition 1, we can easily find the MFP ' s  of  
f with last component  0; by Proposition 2(i), we may then restrict our attention to 
the MFP ' s  Offn;  the MTP ' s  off , ,  are readily available f rom Proposit ion 2(ii), and 
fn is regular by Proposit ion 2(iii); thus, the whole problem may be solved iter- 
atively. A s t ra ightforward implementation of  this procedure yields an O(n2m 2) 
dualization algori thm for regular functions with m MTP ' s .  Our next result will 
allow us to reduce this time complexity by a factor of  m. 

For a non-zero binary point x, denote by l(x) the largest index k such that xk = 1. 
I f  f is regular, the statement of  Proposition 2(ii) can be sharpened as follows: 

Proposition 3. F o r  a regular function f o f  n variables, x is an M T P  o f  fn i f  and 
only i f  either (x,O) is an M T P  o f f ,  but (x-ettx), 1) is not, or (x, 1) is an M T P  o f f .  

Proof. (Only if) This is an immediate corollary of  Proposit ion 2(ii). 
(If) If  (x, 1) is an M T P  o f f ,  then x is an M T P  o f fn  by Proposition 2(ii). Now, 

assume that  (x, 0) is an MTP o f f ,  and that x is not an M T P  of f , , .  We will deduce 
f rom these assumptions that (z, 1)= (x-et~x), 1) must also be an MTP o f f .  Indeed, 
by Proposit ion 2(ii), there exists y < x  such that (y, 1) is an M T P  o f f .  Let j be any 
index in { 1, 2 , . . . ,  n - 1} such that yj = 0 and xj = 1. Then, by regularity, (y + ej, 0) is 
a true point o f f ,  and,  by minimality of  (x,0), it follows that  x = y + e j .  I f j= l ( x ) ,  
then (z, 1)= (y, 1) is an MTP o f f ,  and we are done. 

So, assumej<l(x);  ( x - e j ,  1) being a true point o f f ,  (z, 1) is a true point of  f too, 
by regularity. Moreover,  (z, 0) is a false point o f f ,  since (x; 0) is an MTP.  Hence, 
by regularity again,  ( z - e i ,  1) is a false point o f f ,  for all i such that  zi = 1. But this 
means that (z, 1) is an MTP o f f .  []  

We are now in a position to state formally our dualization algorithm. We assume 
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that  the input to the algori thm is an m x n matrix A, whose rows a i (i = 1,2, . . . ,  m) 

represent the MTP 's  of  f ,  sorted in increasing lexicographic order: 

if i < k  and s = m i n  {jlaijg:akj}, then ais=O. 

The condit ion "as<_ai" in the statement of  the procedure is to be understood 

componentwise. 

Dualization algorithm 
begin 

for j =  n down to 1 do 
s~O;  
f o r i = l  t o m  do 

if row i is labelled ' removed'  then next i; 

if aij= 1 
then begin 

s*-i; 
output ( a  i - e j  + ey+ 1 + "'" + en ) ;  

aij~O; 
end 

else if s#:O and a s < a  i then label row i 'removed'; 
end if 

next i; 
next j;  

end 

Before proving the validity of  this procedure, we first illustrate its use on an 

example. 

Example. This example is 

0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 0 

A =  
1 0 0 1 1 
1 0 1 0 0 
1 1 0 0 0 

borrowed from [3]. 

In the first ' for  j '  loop,  the algorithm outputs 01010, 01100 and 10010. The third 

row of  A is removed, and the updated matrix is: 

A = 

0 1 0 1 0 
0 1 1 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
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Then, the algorithm outputs 01001, 10001, removes  the second, fourth and fifth 
rows, and A is reduced to: 

0 1 0 0 0  
A =  

1 0 0 0 0  

Finally, the algorithm outputs  00111, removes the second row of  A and terminates. 

Theorem 2. The  a lgor i thm a b o v e  correct ly  o u t p u t s  the  M F P ' s  o f f ,  in o(nam) t ime.  

The  n u m b e r  o f  M F P ' s  o f f  is at  m o s t  the n u m b e r  o f  non-zero  entries  o f  the  i npu t  

m a t r i x  A .  

Proof. (i) First we show that ,  at the beginning of  each ' for  j '  loop, and for the cur- 

rent value of  j ,  the rows of  A not labelled ' removed'  are exactly the MTP's  of  

f j+ l  ..... n (completed by some O's which fill-up the last columns of  A:  we will dis- 
regard this detail from now on). Indeed, this is certainly true at the beginning of  
the first ' for  j '  loop. Now, assume it also holds for some j<_n.  Then, during the 

loop, the MTP ' s  o f f j ,  .... n are computed using Proposi t ion 3 as follows. 

If  aij = 1, then aij is simply set to 0. 
I f  aij = 0, then we only have to check whether or not z + ej is an MTP o f f j  +l ..... n, 

where z = a i - e l  and l=  l(ai). But it is easy to see that ,  if z + ej is such an MTP, then 
it is the last MTP with j - th  component  equal to 1 encountered before a i, i.e., a s + ej 

(this is because the rows are ordered lexicographically, and this order is preserved 

by setting the last components  to 0 or by removing rows). Thus, ai is removed if 

a i -- e t = a s, or equivalently if as < ai. 

Now, it is easily seen that ,  for each j e {1 ,2 , . . . ,n} ,  in decreasing order, the 
algori thm outputs the MFP ' s  x o f f  such that x j =  0 and xj+ 1 . . . . .  xn = 1. Indeed, 
by Proposit ions 1 and 2, these are exactly the binary points of  the form: 

a i - e j + e j + l  + ... +e~,  

where a i is an MTP o f f j +  1 ..... n such that aij= 1. 

This proves the correctness of  the algorithm. 
(ii) The main ' if  block '  of  the algorithm is iterated at most n m  times, and can be 

implemented to run in O(n) time. Hence, the total running time of  the procedure 
is O(n2m). 

(iii) The bound on the number  of  MFP's  is now trivial, since the algorithm out- 
puts at most one MFP per non-zero entry of A.  [] 

Remark.  Notice that,  if  the rows of  A are not originally in lexicographic order, then 
they can be so sorted in O ( n m  log m) time. Since m _  2 n, the total running time of  
the dualization algorithm is still O(n2m). 

From Theorem 2, it follows immediately that a regular function with m MTP's  
has at most n m  MFP's:  hence, our bound on the number of  MFP ' s  is strictly better 
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than that given by Theorem 1. In the next section, we will show that  some pre- 
processing procedure can be used to reduce the size of  the input matrix, thus yielding 
an improved upper bound on the number of M F P ' s  as well as a theoretically more 
efficient dualization algorithm. 

3. Shelters 

An MTP x of  a regular function f is called a shelter of  f if l<n  and x - - e l + e l +  l 

is not an M T P  of  f ,  or if l =  n, where 1= l(x) (see [3]). So, Proposit ion 1 can be 
rephrased as follows: 

Proposition 1 ' .  For a regular function f o f  n variables, x is an MFP o f f  such that 

Xn=O i f  and only i f  x+en is a shelter o f f .  

It is easy to see that a regular function is completely specified by the set of  its 
shelters, and Peled and Simeone heavily exploit that  property in [7]. Indeed, the first 
phase of their dualization algorithm consists in extracting the shelters o f f  f rom its 
list of  MTP ' s :  this can be done in O(nm) time if the M T P ' s  are ordered lexico- 
graphically. The shelters constitute the input to the second phase of  their algorithm, 
in which the dualization is effectively carried out. Denoting by q the number  of  
shelters o f f ,  Peled and Simeone show that this second phase runs in O(n3q) time, 
and that the number  of  M F P ' s  of  f does not exceed nq + q + n. 

Now, denote by A * the q x n matrix whose rows are the shelters o f  f sorted in 
lexicographic order,  and assume that  A * constitutes the input to the dualization 
algorithm described in Section 2. Then, by Proposit ion 1', the algori thm will 
correctly output  the MFP ' s  of  f with last component 0. I f  we can show that,  upon 
completion of  the first ' for  j '  loop, the updated matr ix  contains all the shelters of  
fn,  then it will follow by an easy induction argument  that  the algorithm eventually 
outputs all the M F P ' s  o f f .  

With this in mind, we prove now: 

Proposition 4. I f  x is a shelter o f  f~, then either (x,O) or (x, 1) is a shelter o f f .  

Proof .  (i) Let x be a shelter o f f n .  If  (x,0) is not an M T P  o f f ,  then it follows from 
Proposition 2(ii) that  (x, 1) is an MTP,  and hence a shelter, of f .  

So, we may assume from now on that (x, 0) is an M T P  o f f .  We will also assume 
that (x, 0) is not a shelter o f f ,  and show that this leads to a contradiction. Let 1 = l(x); 
our assumption means that x ' =  (x, 0 ) - e t + e t + l  is an M T P  o f f .  

(ii) Case 1: 1= n - 1. Hence, x ' =  (x, 1) - en- l is an MTP o f f .  But then, by Propo-  
sition 2(ii), x - e  n_l is an M T P  of  f~, and this contradicts the minimality of  x. 

(iii) Case 2: l < n - 1 .  So, x ' =  (z,0), where z = x - e t + e t + l .  Since x is a shelter of  
f~, z is not an M T P  of f~. But x ' =  (z, 0) is an M T P  of  f .  Hence, by Proposit ion 
2(ii), there exists an MTP (y, 1) o f f  such that y < z .  
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Because y < z, Yt = 0; and because y is an MTP of f n, YI+I = 1 (else, y < x). So, by 
regularity, ( y+e t - e t+ l ,  1) is a true point o f f .  But: 

y + e l - e l +  l < z  + e t - e l +  1 = x ,  

and this contradicts the assumption that x is an MTP of fn. [] 

We are now ready to prove: 

Theorem 3. When running on the q x n input matrix A *, the algorithm o f  Section 

2 correctly outputs the MFP's  o f f  in O(n2q) time. The number o f  MFP's  o f f  is 
at most the number o f  non-zero entries o f  A * 

Proof.  The proof  is similar to the proof  of Theorem 2. As discussed above, we only 
have to show that, at the beginning of  the second 'for j '  loop, the updated matrix 
A * contains all the shelters of fn (plus possibly some other MTP's  of fn). 

So, consider an arbitrary shelter x of fn. By Proposition 4, (x,0) or (x, 1) is a 
shelter of f .  

If  (x, 1) is a shelter of f ,  then x is a row of the updated matrix. 
If  (x,0) is a shelter of f ,  then (x, 0 ) - e t +  el+l is a false point of f .  Hence, by 

regularity, (x, 1 ) - e t  is a false point o f f ,  and x is a row of the updated matrix (see 
Proposition 3). [] 

Remark. If the list of MTP's  of f is not originally sorted in lexicographic order, then 
the overall time complexity of the dualization procedure is O(nm log m + n2q). 
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