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Abstract 

The k-dimensional assignment problem with decomposable costs is formulated as follows. 
Given is a complete k-partite graph G = (X0 u ... u X,_ I, E), with lXil = p for each i, and 
a nonnegative length function defined on the edges of G. A clique of G is a subset of vertices 
meeting each Xi in exactly one vertex. The cost of a clique is a function of the lengths of the 
edges induced by the clique. Four specific cost functions are considered in this paper; namely, 
the cost of a clique is either the sum of the lengths of the edges induced by the clique (sum costs), 
or the minimum length of a spanning star (star costs) or of a traveling salesman tour (tour costs) 
or of a spanning tree (tree costs) of the induced subgraph. The problem is to find a minimum- 
cost partition of the vertex set of G into cliques. We propose several simple heuristics for this 
problem, and we derive worst-case bounds on the ratio between the cost of the solutions 
produced by these heuristics and the cost of an optimal solution. The worst-case bounds are 
stated in terms of two parameters, viz. k and z, where the parameter z indicates how close the 
edge length function comes to satisfying the triangle inequality. 

Key words: Multi-dimensional assignment; Triangle inequality; Heuristics; Worst-case perfor- 
mance 

1. Introduction 

For k 3 2, the k-dimensional assignment problem is formulated as follows. Let 
Xc, . . . , Xk _ 1 be pairwise disjoint sets of equal cardinality, say p. Regarding V = UiXi 
as the vertex set of a complete k-partite graph with edge set E = Ui<j({u, II} IUEXi, 
VE Xj}, we say that a subset X of Vis a clique of the graph (V, E) if X meets every Xi in 
exactly one vertex (i = 0, . . . . k - 1). A (k-dimensional) assignment of (V, E) is a parti- 
tion of Vinto cliques, that is, a collection of p pairwise disjoint cliques of (V, E); we will 
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also call this an assignment between X0, Xi, . . . . and Xk_ r. Let now c be any 
real-valued cost function defined on the set of cliques of (V, E). The k-dimensional 
assignment problem on (V, E) with respect to c consists in finding an assignment M of 
minimum cost, where the cost of M is defined as c(M) = xxeMc(X). 

When k = 2, the k-dimensional assignment problem is nothing but the well-known 
bipartite weighted matching problem and can be solved in O(p3) arithmetic opera- 
tions by the Hungarian method (see e.g. Papadimitriou and Steiglitz [ll]). Through- 
out this paper, we refer to 2-dimensional assignments as to matchings. 

The 3-dimensional assignment problem has also been actively investigated in the 
literature; see e.g. the references contained in Balas and Sal&man [l], as well as 
Crama and Spieksma [3], Frieze [S], Hansen and Kaufman [S]; it is well known to be 
NP-hard [9]. The k-dimensional assignment problem has been less thoroughly 
studied for values of k > 4, and this, in spite of the fact that it constitutes a most 
natural generalization of the 2- and 3-dimensional cases. Early mention of the 
problem can be found in Haley [7] and in Pierskalla [12], where applications are 
described. 

In this paper, we concentrate on the restricted version of the k-dimensional 
assignment problem which arises when the cost of a clique is not completely arbitrary, 
but is rather a function of elementary costs attached to the edges of the complete 
k-partite graph (V, E). Specifically, let us assume from now on that d is a nonnegative 
length function defined on E, and not identically zero; for the sake of simplicity, we use 
the shorthand d(u,u) instead of d({u,u}), and we let d(v,u) = 0, by convkention. We 
say that the cost function c is decomposable if there exists a functionf: R(2) --f R such 
that, for every clique X = {x0, . . . , xk _ 1 ), 

C(x) =f(d(x,,x,),d(x,,x,), . . ..dh-2.&c-1)). 

Thus, c(X) is completely determined by the lengths of the edges induced by X. 
Different variants of the 3-dimensional assignment problem with decomposable 

costs arise in applications considered by Frieze and Yadegar [6] or Crama et al. [2], 
and are further investigated in Crama and Spieksma [3]. 

The main goal of this paper is to present some simple heuristics for the k- 
dimensional assignment problem with decomposable costs and, for various cost 
functions, to derive worst-case bounds on the ratio between the cost of the heuristic 
assignments and the cost of an optimal solution. 

In the next section, we describe the specific decomposable cost functions which will 
be considered in the remainder of the paper. In Section 3, we propose some heuristics 
for the k-dimensional assignment problem with decomposable costs, and we state our 
main results about the worst-case performance of these heuristics. Proofs of these 
results are to be found in Sections 4-8 (Sections 4-7 deal with a first type of heuristics 
and four different cost functions, while Section 8 focusses on a second type of 
heuristics). 

The worst-case bounds are stated in terms of two parameters, viz. k and z, where t is 
the smallest real number for which the following condition holds: for all {u, u}, (u, w}, 

{v,w}~E, 

d(u, u) < z(d(u, w) + d(v, w)). (1.1) 
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Observe that r is well defined, except when there exist three edges {u, u>, {u, w}, (a, w} 
such that d(u, u) > 0 and d(u, w) = d(u, w) = 0. In the latter case, we let r = co. 

Clearly, r B 3, and r = 3 exactly when d is constant on E. If z < 1, then the edge 
lengths satisfy the usual triangle inequality. More generally, we call (1.1) the z-relaxed 
triangle inequality, or z-inequality for short. The smallest possible parameter r for 
a given problem instance (with n = kp vertices) can be computed in 0(n3) time. When 
z < 1 results, the a priori bounds (depending on r) on the quality of the solutions 
delivered by the heuristics are usually tighter than the ones employing only the 
standard (i.e., r = 1) triangle inequality. 

Successive application of the f-inequality to a sequence of edges {Ui,ui+ l)~E 
(i = 0, . . . , m - 1) leads to the following iterated t-inequality in the case r > 1: 

d(uo,u,) Q +‘g”“. 1 d(ui,ui+l), (1.2) 
i=O,...,m-1 

where log denotes the logarithm to the base 2, and [A], the “ceiling” of a real number 
i, is the smallest integer greater than or equal to A. In order to verify this inequality by 
induction, one may assume that m = 2” (as r 3 1); then indeed (for s 3 2) 

< z.zs-1. 1 d(ui,ui+l). 
i=O, . . ..Zs- 1 

2. Some decomposable cost functions 

We now introduce some of the specific decomposable cost functions which will be 
treated in the remainder of the paper. Our initial motivation for considering these cost 
functions stems from the application described in Crama et al. [2]. In that application, 
the cost of a clique should somehow reflect the total distance travelled by the 
robot-arm of a machine in order to visit all vertices of the clique. The particular 
robot-arm under study in Crama et al. [2] could visit at most three locations in one 
so-called placement round. Hence, this industrial setting gives rise to a 3-dimensional 
assignment problem with decomposable costs. In general however, a robot-arm may 
have a larger capacity, allowing it to visit k locations in one round. Then, an instance 
of the k-dimensional assignment problem with decomposable costs arises. Since the 
order in which the vertices of the clique will eventually be visited is not known in 
advance, the distance travelled can only be roughly evaluated. This can be done in 
several ways. 

Sum costs. The sum cost function assigns to every clique X = {x0, . . . , xk _ 1} a cost 
equal to the sum of its edge lengths, i.e.: 

C(X) = C d(xi,xj). 
Obi<jSk-1 

(2.1) 

Observe that, since every clique contains the same number of vertices, the cost of 
a clique with respect to the cost function (2.1) is proportional to the average length of 
the edges induced by the clique. 
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Sum cost functions are commonly used in the context of graph partitioning 
problems, such as those mentioned e.g. in Lengauer [lo]. Actually, the k-dimensional 
assignment problem with sum costs can be seen as a special case of the k-dimensional 
matching problem studied by Feo and Khellaf [4]: given an (arbitrary) graph G with 
kp vertices, and a nonnegative weight for each edge {u, U} of G, find a partition of the 
vertex set of G into p sets Vi, . . . . V, such that the sum of the weights of the edges 
contained in ui Vi is maximized. Feo and Khellaf [4] present heuristics with guaran- 
teed worst-case performance for this k-dimensional problem. But their bounds have 
little meaning for our problem, due to the fact that we stated it as a minimization 
rather than a maximization problem. 

Star costs. The cost of a clique X = {x0, . . . . xk_ i } with respect to the star cost 
function is equal to the sum of the edge lengths of a minimum length spanning star of 
X, i.e.: 

c(X) = min 
i 

O<iFk_, d(xh,Xi)lO d h d k - 1 
i 

. (2.2) 
.\ 

In the framework of location theory, the vertex xh realizing the minimum in (2.2) is 
called the median vertex of the clique. 

Tour costs. The tour cost of the clique X = {x0,. . . , xk_ 1} is defined as the cost of 
a traveling salesman tour on the graph induced by X, in other words: 

c(X) = min 
i 

C d(Xn(i)2Xz(i+1))l n is a permutation of 
O<i<k-1 

where integers are read modulo k. 

(O,l,..., k- l} , (2.3) 

Tree costs. The cost of the clique X = {x0, . . . . x&r} with respect to the tree cost 
function is the cost of a minimum length spanning tree of the complete graph on X, i.e.: 

C(X) = min 
i 

C d(Xi,Xj)l(X,A) is a tree 
{i.j)&4 I 

. (2.4) 

Observe that, for k = 3, the sum and the tour cost functions are identical, as are the 
star and the tree cost functions. In Crama and Spieksma [3] it is proved that the 
3-dimensional assignment problem with sum or star costs is NP-hard, even when 
d satisfies the triangle inequality. 

3. Approximation algorithms and their performance 

Suppose from now on that we have to solve an instance of the k-dimensional 
assignment problem on (I’, E) with respect to a decomposable cost function c, depend- 
ing on a length function d. We denote by Mopt an optimal solution of this instance. 
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We propose in this section various heuristics for this problem, and we state our 
main results about the quality of the solutions which they produce. Namely, we state 
theorems of the form: “for all instances of the k-dimensional assignment problem with 
decomposable costs satisfying such and such assumptions, the heuristic under consi- 
deration produces an assignment M such that c(M) d a(k,z).c(M,,,)“, where cc(k, 2) is 
an (explicitly given) function of k and r. We sometime add to this that “the bound is 
tight”, meaning that there exist instances of the problem satisfying the required 
assumptions and yielding c(M) = a(k, 2). c(Mopt). Notice that, for the sake of clarity, 
the theorems are not always stated in the full generality with which they will be proved 
in subsequent sections. 

Our heuristics fall into two classes, namely “hub heuristics”, and “recursive heuris- 
tics”. As we will see, the main ingredient of these procedures consists in solving 
a sequence of bipartite matching problems on graphs with 2p vertices. As an estimate 
of the complexity of the heuristics, we will therefore use the number of matching 
problems which they require to solve. Observe that, in particular, we do not explicitly 
take into account the time required to compute the cost of a clique in some of the 
heuristics. This is reasonable for all but the tour cost function; and even the cost of 
a tour can be quickly computed when k is small. 

Hub heuristics. We begin with a description of the single-hub heuristic. There is 
actually one such heuristic for each h~(0, . . . . k - 1); h is then the “hub” of the 
heuristic. The single-hub heuristic with hub h produces an assignment which is 
composed of minimum length matchings between Xh and all other parts Xi. It 
proceeds as follows: 

Step 1. For each i # h, let Mhi be a minimum length matching between X, and Xi 
with respect to the length function d. 

Step 2. Return the k-dimensional assignment M,:= {{x0, . . ..xk- 1} (x~EX,, and 
{Xh,Xi}EMhi, i = 0, . . . . k - 1, i # h}. 

The single-hub heuristic is clearly polynomial: it only requires the solution of k - 1 
bipartite matching problems. Notice also that the heuristic is quite simple minded, as 
it only depends on d, and not on the specific cost function c built up from d. But in 
spite of this simplicity, the quality of the solution delivered by the single-hub heuristic 
cannot be arbitrarily bad, as is attested by the next statement: 

Theorem 3.1. If c is either the sum or the star or the tour or the tree cost function, then 
c(M,,) < (k - 1). c(Mop,) for every problem instance satisfying the triangle inequality. 
This bound is tight. (See (4.2), (5.3), (6.6), and (7.2) below.) 

More precisely, we will establish in Sections 4-7 that, for each of the four cost 
functions mentioned in Theorem 3.1, there exists a function a(k,z) such that 
c(MJ < cc(k, 7). c(M,,,) and cc(k, 2) d k - 1 when z < 1. The function a(k, z) grows (at 
most) linearly with z for the sum and the star cost functions. 

An easy way of improving the single-hub heuristic is to compute a solution Mh for 
each possible choice of the hub h, and to retain the best solution thus found. We then 
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obtain the following multiple-hub heuristic: 

Step 1. For each pair i,hE{O, . . . . k - l}, i # h, let Mhi be a minimum length 
matching between Xh and Xi with respect to the length function d. 

Step 2. For each h~(0, . .., k - l), let M, be the assignment delivered by the 
single-hub heuristic with hub h, that is, M,,:= {{x0, . . . . xk_ i} (x,,EX~ and 
{Xh,xi}EMhi, i = 0, . . . . k - 1, i # h}. 

Step 3. Return the assignment Mn:= Mi, where C(Mi) = min{c(M,)IO < h 
d k - l}. 

This heuristic requires the solution of k(k - 1)/2 bipartite matching problems. The 
upper bound provided by Theorem 3.1 is trivially valid for c(M,), but even stronger 
results can be proved. For instance, we will show: 

Theorem 3.2. If c is either the sum or the star cost function, then c(Mn) < 
(2/k) [(k - 2)s + 11. c(M&for every problem instance. This bound is tight when z = 1. 
(See (4.4) and (5.6) below.) 

Observe that, for z d 1, the ratio c(Mn)/c(M,& is bounded by 2. In the terminology 
of Papadimitriou and Steiglitz [ll], this means that the multiple-hub heuristic is 
a l-approximation algorithm for the k-dimensional assignment problem with either 
sum or star costs, when the edge lengths satisfy the triangle inequality (independently 
of the value of k). On the other hand, if z is not bounded from above (or z = co), then 
there exists no polynomial-time s-approximation algorithm for the k-dimensional 
assignment problem restricted to sum or star costs, for any fixed E > 0 and any k B 3 
(unless, of course, P = NP); see Crama and Spieksma [3]. As a matter of fact, our 
theorem only implies that c(Mn)/c(M,,,) d 22. 

Theorem 3.3. If c is either the tour or the tree cost function, then c(Mn) < + k. c(M,,,) if 
k is even and c(Mn) d i(k - l/k). c(M,,,) if k is odd, for every problem instance 
satisfying the triangle inequality. This bound is tight. (See (6.9) and (7.4) below.) 

A more precise, but much more intricate bound can again be obtained by dropping 
the assumption that the length function satisfies the triangle inequality, and by 
explicitly taking into account the parameter r. What may be more important here is to 
observe that the ratio c(Mn)/c(M,,,) grows linearly with k, just as for the single-hub 
heuristic. We do not know whether there exists a polynomial-time s-approximation 
algorithm, with E an absolute constant, for the k-dimensional assignment problem 
restricted to either tour or tree costs and to edge lengths satisfying the triangle 
inequality. 

Recursive heuristics. We propose a single-pass recursive heuristic with respect to 
a chosen permutation of (X0, . . . , & _ 1), say e.g. (X0(,,), . . . , Xock_ 1j). The idea behind 
this heuristic is again to produce an assignment of (V, E) by solving a sequence of 
k - 1 bipartite matching problems. The solution of the (i - 1)st subproblem produces 
an i-dimensional assignment between XacO), X0(i), . . . , and X,,i- i), say Ni - 1. The ith 
subproblem consists in extending this partial assignment by computing an optimal 
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bipartite matching between its cliques (regarded as indivisible) and the vertices of 
Xa(i), with respect to suitably defined edge lengths. The length function for the (i - 1)st 
subproblem (i 3 3) is defined as follows: for all XENi_I and UEX,(~), the length of 
{X, U} is the cost c(X u (u>) of the “partial” clique X u {u}; notice that this definition 
only makes sense if the cost function c can be meaningfully extended to subsets of 
cliques; this is certainly the case for the four cost functions introduced in Section 
2 since these are well defined for al k 2 3. 

We are now ready for a formal description of the single-pass recursive heuristic 
associated to the permutation (Xa(,,), . . . , Xock _ i)): 

Step 1. Let A’,:= Xa(,,) and i:= 1. 
Step 2. For all XENi- 1 and UEX,(i), let ~(X,U):= c(X u {u}). 

Step 3. Let N be a minimum length matching between Ni_ 1 and Xa(i) with respect 
to the length function 6. Let Ni:= {X u {u}lX~Ni_l, IAEX,(i) with {X,U}EN). 

Step 4. If i < k - 1, let i:= i + 1 and go to Step 2. Else, continue. 
Step 5. Return the assignment MC:= Nk_l. 

The complexity of the single-pass recursive heuristic is comparable to that of the 
single-hub heuristic since in both cases k - 1 bipartite matching problems need to be 
solved. (Notice however that, as mentioned at the beginning of Section 3, the time 
needed to update the cost of the partial cliques in Step 2 of the single-pass recursive 
heuristic is not taken into account by this complexity measure.) On the other hand, 
the recursive heuristic turns out to be much more difficult to analyze than the hub 
heuristic. In fact, the results to be presented in Section 8 will only have bearing on one 
of our “special” cost functions, namely the sum cost function. We will establish: 

Theorem 3.4. If c is the sum cost function, then c(M,) d $k. c(M,,,) for every problem 
instance satisfying the triangle inequality. (See (8.5) and (8.7) below.) 

Comparing this result with Theorem 3.1, we see that, in the case of sum costs, the 
worst-case performance of the single-pass recursive heuristic is better than that of the 
single-hub heuristic. For k = 3, the bound of Theorem 3.4 is known to be valid and 
tight, both in the case of sum and of star costs [3]; but it is no longer tight for k 2 4, by 
the next theorem. In particular, we do not even know whether the ratio c(M,)/c(M,,,) 
really grows linearly in k (although we suspect that it does). 

Theorem 3.5. If c is the sum cost function, then c(MO) < Yc(M,,,) for all instances of 
the 4-dimensional assignment problem satisfying the triangle inequality. This bound is 
tight. 

Just as we did for the single-hub heuristic, we can improve the performance of the 
single-pass recursive heuristic by applying it for each possible permutation of 

(X0, ..*, Xk_ 1), and retaining the best solution thus found. This results in the multiple- 
pass recursive heuristic: 

Step 1. For each permutation 0 of (0, . . . . k - l}, let M, be the assignment produ- 
ced by the single-pass recursive heuristic associated to the permutation 

(x,,IJ,> ..*,Xc(k-1)). 
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Step 2. Return the assignment MR := M,, where c(M,) = min{c(M,)(a is a permu- 
tation of {O,...,k - 1)). 

The complexity of the multiple-pass recursive heuristic is quite high, since 
k! (k - 1)/2 bipartite matching problems have to be solved in Step 1. As for its 
performance, we will prove: 

Theorem 3.6. Ifc is the sum cost function, then c(MR) d 2[(k + l)/(k - l)] . ln(k + 1) 
.c(M,,,) for every problem instance satisfying the triangle inequality. (See (8.14) and 
(8.17) below.) 

For k = 3, it is known that c(MR)/c(M,& f 4/3 and that the result is tight (for both 
sum and star costs; see Crama and Spieksma [3]). This is the same worst-case 
performance as for the multiple-hub heuristic (see Theorem 3.2). More generally, in 
view of the sophistication of the multiple-pass recursive heuristic, one would expect its 
worst-case ratio to be at least as good as that of the multiple-hub heuristic. Interest- 
ingly enough, however, we will show that the worst-case ratio of the multiple-pass 
recursive heuristic is not better than the worst-case ratio of the multiple-hub heuristic 
when r = 1. 

Still, one may hope that c(MR)/c(M& be bounded by a constant. The bound of 
Theorem 3.6 is disappointing in this regard (but maybe is not tight!). We will 
nevertheless be able to prove that c(MR)/c(M& d z/(1 - t) (i.e., a bound independent 
of k) for all problem instances such that r < 1 (see (8.15) below). 

In the following sections, we proceed with the proofs of our results. 

4. Sum costs 

We assume here that the cost of a clique X = (x0, . . . , xk_ 1} equals the sum of all 
edge lengths d(xi, xi), that is, 

C(X) = C d(Xi,Xj). 

O<i<jSk- 1 

We first establish an upper bound on the cost of the assignment Mh produced by the 
single-hub heuristic (h = 0, . . . , k - l), which is composed of minimum length match- 
ings Mhi between Xh and all other parts Xi. Applying the r-inequality 

d(xi>xj) d T(d(Xh, xi) + d(Xh, xj)), 

for all XEM~ and i,j # h, we obtain 

c(ML) = 1 C d(xt,Xj) 
XsMhi<j 

KY XEMhi=O c,_, C(k- 2)~ + ll.d(xh>Xi) 
, , 

= [(k - 2)~ + 11. C C d(Xh,Xi) 
i=O,...,k-1 XEM~ 

d [(k - 2)r + 11. C C d(ZhrZi) 
i=O,...,k-lZEMOpf 

(4.1) 
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as each Mhi is a minimum length matching. The sum of d(z,,, zi) for i = 0,. . . , k - 1 is 
a trivial lower bound of c(Z), whence 

c(M,J < [(k - 2)~ + 11.c(M,,,). (4.2) 

Example 4.1. To show that this bound is tight for all z > 1, consider Fig. 1. Let xij, 
j = O,..., k - 1 denote the jth vertex of Xi, or in other words: 

Xi={xijlj=O,.,.,k-l} fori=O ,..., k-l. 

Observe that in this example each Xi has cardinality k, that is p = k. Let us now define 
the length function d. The notation Xij = x,, in Fig. 1 (and in all subsequent figures) 
indicates that d(xij, x,,) = 0. The length between any two vertices linked by an edge in 
Fig. 1 is equal to 1. All other lengths are equal to 22, for some z 3 1. Note that the 
r-inequality is fulfilled by this distance function. The single-hub heuristic with hub 
0 may find the following assignment (where indices are read modulo k): 

MO = {{XOj,Xl,j+l,XZ,j+2,...,Xk-l,j+k-l}lj=O,...,k- l} 

= {{%0Jll ,...~~k-l,k-l)~ {XO1,X12,...,Xk-1,0), 

.*., I%k-l,.Q, . . ..Jh-l.k-21) 

resulting in 

c(M,) = k[(k - 1) + z(k - l)(k - 2)] 

= k(k - l)[(k - 2)~ + 11. 

It is not difficult to see that 

Mopt = { {xOj,xlj, *..,xk-l,j }lj = O,...,k - l> 

= {ix OO>~lO,~~.~xk-l,O). {xO1,xll,...,xk-l,l}, 

. ..? {XO,k-1,Xl,k-l,...,Xk-l,k-l)) 

with c(M,J = k(k - 1) proving that the bound in (4.2) is tight for z 3 1. 

x, = x,, = ... = x o* k_* 

X,0 = x, = . . . x,, = x 21 = ... X - xzt_* = -- 1. k-l 

= Xk.,.O = x k-l. I 
=x k-l. k-l 

Fig. 1. 
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The bound (4.2) is certainly not tight when z is smaller than 1 because d(Zi,zj) 
cannot be zero for i # j. Indeed, using the z-inequality, we have (given ZEM,~,) 

d(zi, zj) > t. d(Zh, zi) - d(Zh> zj) 

for i # j and i, j # h. Consequently, 

1 d(zi>zj) 3 7 ’ d(Zh,Zi) - C d(zh,Zj) for i # h, 
j=O,...,k-1 j=O,...,k-1 

j#h j#i 

and further 

C d(zi,zj) 2 7 ’ 1 d(Zh,Zi) - (k - 1). C d(zk,Zj) 

i,j #h i=O,...,k- 1 j==O,...,k-1 

+ i=. ;k_ld(zkJJ , 1 

d(Zh, Zi). 

Hence. 

From this inequality and (4.1) we infer 

2((k - 2)~ + 1) 
C(Mh) d (k _ 2)(1,2 _ 1) + 2’c(Mopt) if z < l. (4.3) 

Observe that this bound is tight in the cases z = f (trivially) and z = 1 (by Example 
4.1). It is also tight for all r d 1 when k = 3. 

Example 4.2. To see this consider Fig. 2. Here, Xj = {xjo, Xjl, xjz}, for j = 0, 1,2. The 
lengths between pairs of vertices are indicated along the corresponding edges of Fig. 2. 
Note that the z-inequality is satisfied if r < 1. Clearly, the optimal solution for this 

problem equals: Mopt = {{xoo,~lo,xzo}, (x01,x11,x21), {x02,x12,x22)), with cost 
c(M,~,) = 3(1 + 7). However, the single-hub heuristic with hub 0 may find the follow- 
ing assignment: 

MO = ~{~OOAl~~22~~ {~01,X12>~20)~ {XO2~X10~~21~~ 

with 

c(M,) = 6(r + r2). 

This results in c(M,) = 22. c(Mopl), proving that (4.3) is tight for all z d 1 when k = 3. 
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Fig. 2. 

Next we derive from (4.1) an upper bound on the cost of the solution returned by 
the multiple-hub heuristic, i.e., the cost of a best assignment among MO, . . . , Mk _ 1 : 

CWH) = min c(Mtz) 
h=O,...,k-1 

g k.h=O;k_lc(MhJ % , 
1 

<k. _ 1 [(k-2)2+1]. 2 C d(Zh,Zi) 
h-O,...,k-1 i=O,...,k-1 ZEM~,,~ 

=$[(k-2)~+ 11. C Cd(zi>zj) 
ZeMOpt i,j 

= ; [(k - 2)~ + l] .c(M,,,). 

This bound is best possible again when z = a. Observe that 

f[(k-Z)i+l]=2r[l-i(?-f)1<2T ifrzi. 

(4.4) 

Example 4.3. In order to prove that the bound (4.4) is also tight for r = 1, consider 
Fig. 3. The upper vertex in Fig. 3 is labeled by the points xoo, . . . , xk _ 1 ,. , while the 
other k vertices are labeled by the points XOj,Xl,j+l, . . . . Xk-l,k-l +j, expect 
xk_j,O (j = 0, . . . . k - 1). 
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xon =x10 
x .*. 

= x k-1.0 

x 11 = x 22 
= . . xCi+j X 0. k-1 = 

= X k-1, k-1 (i=O, . . . . k-l, i # k-j) = x k-l, 

Fig. 3. 

&1 . . . 

k-2 

The sets X0, . . . . Xk _ 1 and the length function are defined as for Example 4.1, with 
z = 1. Obviously, an optimal assignment is given by 

Mopt= ({Xi,i+jli=O ,..., k- l)lj=O ,..., k- l> 

with 

c(M& = k(k - 1). 

Since the example is symmetric on X0, . . . . Xk _ 1, we may assume that the solution 
returned by the multiple-hub heuristic corresponds to the choice of the hub h = 0. Now, 
for each i = 1, . . . . k - 1, an optimal bipartite matching between X0 and Xi is given by: 

MOi = ({xOO~xiO}~ {XO.k-i>Xii >} u { {xOj,xi,i+jjlj f 0, j f k - il. 

The cost of Moi is 2 for each i. The associated k-dimensional assignment MH = MO 
has cost c(MH) = 2(k - 1)‘. Thus, c(MH) = 2(1 - k).c(M,,,), proving that the bound 
(4.4) is tight for z = 1. 

5. Star costs 

Now we assume that the cost of a clique X = (x0, . . . . x&l} equals the sum of the 
edge lengths in a minimum length spanning star of X, that is, 

c(X) = min 2 d(xh,xi)lh = 0, s..yk - 1 . 
i=O,....k-1 

FOT every h we obtain 

e(Mh) d 2 C d(XhfXi) 

XeMhi=O,...,k-1 

= C C d(Xh,Xi) 

i=O,...,k-1 XtMh 

G c C d(Zk,Zi) 

i=O,...,k-lZsMopf 

(5.1) 
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because each Mhi is a minimum length matching. Assume that for a given ZEM~,,,, 

c(z) = 1 d(zO,zi). 

i=O,....k-1 

If h # 0, then by the z-inequality we derive 

1 d(Zh,Zi) d C(k - 2)~ + 11 'd(Zo,Zh) 
i=O,...,k-1 

+ 7’ 1 d(ZO>Zi). 

i=O,...,k-1 
i#h 

(5.2) 

So, (5.1) and (5.2) yield the estimation 

‘$M,) < [(k - 2)r + 11 .c(M,,,). (5.3) 

Example 5.1. To prove that this bound is tight for r = 1, consider the problem 
instance described in Example 4.1, with r = 1. 

It is easy to see that the optimal solution Mop, as well as the solution MO found by 
the single-hub heuristic are identical to the ones described there (remember that the 
single-hub heuristic does not explicitly take into account the cost function c). With 
respect to the star costs, we thus have 

c(M,) = k(k - 1) and c(M,,,) = k. 

This proves that the bound derived in (5.3) is tight for r = 1. 

For z < 1 we can again do better than (5.3). First observe that 

i.d( ~0, zh) d d(z,, zi) + d(zo, zi) for i # 0, h, 
z 

and therefore 

(1 + (k_2)t).d(Zo,Zh) d i_O~,k_ld(Zh,Zi) + i=l,Ck_,d(zo~zi). 

i#h 

Adding this inequality to (5.2) results in 

(k - 2)(1 - T) .d(ZO,Zh) < T’ C d(ZO,Zi). 

i=l,...,k-1 
i#h 

Now, for z ,< 1, multiply the latter inequality by 

(k - 3)~ + 1 

’ = (k - 3)(1 - z) + 1 

and add this to (5.2). Since 

(5.4) 

(k - 2)~ + 1 - Il(k - 2)(1 - 7) = z + 12 = (k _ ::,“:) + 1, 
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we conclude that 

(k - 1)~ 
C(Mh)G(k_3)(f _r)+ l’C(MOP,) ifr< 1. (5.5) 

As to an upper bound on the cost of the assignment produced by the multiple-hub 
heuristic, apply (5.1) and finally the z-inequality: 

C@‘fff) d t- _ 1 C(Mh) 

h-O,...,k-1 

1 
G-. c 

k _ c C d(Zh,Zi) 
h-0 ,..., k-l i=O ,_.., k-l ZEM~~~ 

= f’ C C d(zi,zj) 
ZEMopt i< j 

d ;.z,;o,t II& - 2)~ + 11 .c(Z) 

= ;[(k - 2)~ + l].c(M,,,). (5.6) 

Example 5.2. To show that (5.6) is tight for z = 1, consider again the instance 
described in Example 4.3. We assume that MH and Mopt remain the same as in 
Example 4.3 (because MH = MO by symmetry of the instance, and MO is independent 
of the cost function c). Here, c(MH) = 2(k - 1) and c(M,,,) = k, thus establishing the 
tightness of (5.6) when z = 1. 

6. Tour costs 

The cost of a clique X = {x0, . . . , xk _ 1} is now defined as the sum of the edge lengths 
in a minimum length Hamiltonian tour (i.e., spanning cycle) of X: 

k-l 

c(X) = min 2 d(x,(i),~,(~+ 1j) 1 n is a permutation of {0, . . . . k - 1) , 

i=O 1 

where integers i are read modulo k. Assume without loss of generality that for a given 
X (or later on, given ZEM,,,) the minimum cost is attained for the identity permuta- 
tion. Then from the k - 2 inequalities 

d(xi>xi+l) < T(d(xo,xi) + d(xo,xi+,)) for i z 0, k- 1 

we obtain 

c(X) < (1 + z)(d(x,,x,) + d(x,,,xk-1)) + 22. C d(xov xi)* 
i=Z,...,k-2 



H.-J. Bandelt et al. / Discrete Applied Mathematics 49 (1994) 25-50 39 

To simplify our computations, we assume from now on that r 2 1. Hence 

c(x) G 2r’i=1 ~k_ld(x03xi). 
, , 

The analogous inequality holds when 0 is replaced by h. Therefore 

c(“L) d 2r’i=o Ck_lxLhd(XhiXi) 
. , 

622. c 1 d(Zh,Zi) 
i=O,...,k-1 ZeM,,t 

(6.1) 

(6.2) 

since each Mhi is a minimum length matching. Applying the iterated z-inequality (1.2), 
we get for 2 < j < k/2 

d(z,,Zj) d &Ogji. C d(Zi,Zi+l). (6.3) 
i=O,..., j-l 

So, when 1 < j < k/2, we have 

i=F ,d(zo,zi) 
. . . . ..I d ( i~~..,j”logi’).i_o~,j_~d(~~~~~+~) 

and similarly, 

C d(zo,zk-i \ ) < ( C ,‘logi’). C d(zk-i_1,zk_i). 
i=l .,. j , 3 i=l,...,j i=O,...,j-1 

For k odd, adding up these two inequalities immediately yields 

i=l ;,_, d(zo,zJ G c psi1 
> 

i=. c,_, d(zifzi+l). 
, I 

i=l,...,(k-1)/2 , 1 
(6.4) 

For k even, one adds one half of the inequality (6.3) with j = k/2 to each of the above 
inequalities and then obtains 

C d(zo,zi) 
i=l,...,k-1 

< f p!3W)l + 
2 

1 rrl”gi’ . 1 d(zi,zi+l). 
i=l,...,(k-2)/2 > i=O,...,k-1 

To give a very rough estimate, observe that the sums of powers of z in (6.4) and (6.5) 
are bounded above by 

k-1 1 __. _. p.H- l)l. 
2 z 

Hence from (6.2) we infer 

C(~L) Q (k - l)zriog(k-l)l.c(M,,,) for z 2 1. 

This inequality is certainly not tight for z # 1. 

(6.6) 

Example 6.1. The instance described in Example 4.1 achieves the worst-case bound 
(6.6) when z = 1. Indeed, MO and M,,, are identical to the ones described there, now at 
cost c(M,) = k. 2(k - 1) and c(M,,,) = 2. k. 
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From (6.2) one can readily derive a first upper bound of c(MH), viz., 

1 d(Zh,Zi) 

i=O,...,k-1 ZtMopt 

In order to estimate the sum of all d(zi, zj) in terms of c(Z) we make use of (6.3) (with 
suitably shifted indices): 

c jTrh il . c(z), if k is odd, 
c ,,J(~,,~~) G j=l,....U-1)/2 

i<j 
$ Trlodw + 

c 
j+gjl 

> 
. c(Z), if k is even 

j=l,...,(k-2)/2 

forr3 1. (6.8) 

The powers of z occurring in (6.8) are all bounded above by (l/z). ~r“‘~(~- ‘)I. So, 
applying (6.7), we arrive at the following inequality: 

c(M,~,), if k is odd, 

if k is even 

for z 3 1. (6.9) 

This bound is certainly not tight when r > 1; but for r = 1 it is best possible, as is 
confirmed by the next example. 

Example 6.2. Let us assume that T = 1 and, for ease of notation, that k is even (the 
case k odd will be briefly discussed later on). 

The instance we consider involves k(k);) vertices, with Xj = {(j, S, s)l jES s 

(0, ..., k - I}, ISI = k/2, 6~{0,1)} (j = 0 ,..., k - 1). We think of these vertices as 
being spread over two levels, corresponding respectively to 6 = 0 or 6 = 1. Within 
each level, the vertices are clustered into (&) groups of cardinality k/2; each group 
contains all vertices (j, S, 6), for a fixed S, and for jeS. The distance between any two 
vertices in distinct levels is 1, between two vertices in a same group is 0, and between 
two vertices in a same level, but in different groups, is 2. More formally, 

d((j,S,O), (i, T, 1)) = 1 for all jeS, iET, 

d ((j, S, 6), (i,S, 6)) = 0 for all i,jES, 

d((j,S,6), (i, T,6)) = 2 for all S # T, jES, ieT, 

for all S, T E (0, . . . . k - 1}, ISI = (TI = k/2 and for all 8~{0,1>. 
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Notice that, for this problem instance, each sum has cost at least 2. The optimal 
assignment is: 

M,,, = 
i 

{(j,S,O)ljES} u {(i,s,l)~iES}~ IS/ =; 
1 

where S = (0, . . . , k - l}\S. To verify this, observe that each set in M,,, is a clique with 
tour cost equal to 2. 

By symmetry, we can assume that MH = MO. For each j = 1, . . . , k - 1, an optimal 
bipartite matching between X0 and Xj is given by 

M,j= ((O,S,@, (j,S,@}lO&S, ISI ~5 
i 1 

u 
i 

{(0,&J), (j,S u (j}\{O}, 1 - @}lOGj@, ISI = k 
i 

. 

The total length of this matching is k/2; this is certainly optimal, since for each 6 such 
that jeS, (OS, 6) must be matched with a vertex at distance at least 1. 

Accordingly, the multiple-hub heuristic returns the assignment MH consisting of the 
following sum: 

((j,S,@Ij~S} u {(j,S u {j>\{O>, 1 - S)lj#S) (6.10) 

for each S such that OES, IS( = k/2, and for 5 = 0,l. In words, each clique of MH 
contains k/2 vertices forming a group in one level, and k/2 vertices from k/2 distinct 
groups in the other level. The tour cost of a clique is thus equal to k, i.e., k/2 times the 
cost of a clique in Mop,. This implies that c(MH) = (k/2) c(M,,,); hence, (6.9) is tight for 
r = 1 and k even. 

When k is odd, a similar example can be constructed, involving as vertices all triples 
of the form (j, S, 6) for YES, (S[E{ r k/2 1, L k/2 A> and k{O, l}. The definitions of the 
length function, of Mopt and of MH carry over, if we replace everywhere the condition 

ISI = k/2 by ISlE{rk/2 1, Lk/2 J}. Th e t our cost of a clique (6.10) is then 

This entails, after some computations, that (6.9) is tight when z = 1 and k is odd. 
Details are left to the reader. 

7. Tree costs 

Let now the cost of a clique X = (x,,, . . ., xk_ 1 } be the sum of edge lengths in 
a minimum length spanning tree of X. Then, as in the case of star costs, we obtain 

c(M,) G c C d(Z~, Zi). (7.1) 
ZsMopt i=O,...,k-1 
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When r B 1, the extended T-inequality immediately implies: 

d(Z,,Zi) < rr’Og(k- l)‘. c(Z), 

and hence 

c(M,) < (k - l)z rrog(k-r)l. c(M,,,) for z 2 1. 

Also 

C(MH) d f ’ 1 C d(zi,zj) 

Z&fopt i < j 

(7.2) 

(7.3) 

follows from (7.1). The maximum number of pairs i < j for which an edge of the 
minimum length spanning tree T of a clique Z lies on a path from Zi to Zj in T equals 
(k/2)’ if k is even and else equals [(k + 1)/2]. [(k - 1)/2]. So, by (1.2) and (7.3), the 
following rough estimate can be established: 

rrr“e(k-r)l. c(M ) opt 3 if k is odd, 

c(M,) d ( 
$rlroaU- r)i. c(M,,,), 

(7.4) 
if k is even. 

\ 

As we show now, the bounds provided by (7.2) and (7.4) are actually tight for z = 1: 

Example 7.1. For (7.2) consider again the instance described in Example 4.1. The tree 
costs of the optimal and of the heuristic solutions are the same as their star costs, i.e., 
c(M,,,) = k, c(M,) = k(k - l), thus establishing the tightness of (7.2) for z = 1. 

As for (7.4), we refer to the instance given in Example 5.2 and we assume that k is 
even. The optimal and heuristic solutions remain unchanged. The tree cost of a clique 

in MO,, is 1, while the cost of a clique in MH is k/2. This shows that (7.4) is tight for 
z = 1 and k even. The analysis is similar for k odd. 

8. Recursive heuristics 

In this section we establish the worst-case results for the recursive heuristics 
described in Section 3. As announced there, we only handle here the case of sum costs, 
i.e., the cost of a clique X = {x0,x1, . . . . xk _ r } equals the sum of all edge lengths 

d(xi, xj). 
First, we verify the upper bound stated in Theorem 3.4 for the worst-case perfor- 

mance of M,. Then, we further refine our analysis for different values of 2. Finally, we 
prove similar results for MR. Note that these results are in fact generalizations of those 
results given in Crama and Spieksma [3], where the case k = 3, z = 1 is dealt with. 

Assume without loss of generality that CJ is the identity permutation. We will also 
make the convention that, whenever we write a clique X as {x0, . . . , xk- 1}, then XjGXj 
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(j = 0, . ..) k - 1). Let us recursively define a function a(k,z) as follows: 

cr(2,z) = 1, 

(k - 1 + 27) (k - 2)~ 1 
- fork>3. 

a(k’z)= ((k _ 2)r + l)(k _ $a(k - f’r)+ k _ 1 03.1) 

We will prove by induction on k that a(k,z) is an upper bound for the ratio 
c(M,)/c(M,,,). For h = 0, . . . . k - 2 let 

Mj: = {{x0 ,,.., xk-2,xk_1}~{x0 ,..., x~_~} c Yfor some YEM, 

and (x~,x~_~} G 2 for some ZEM,~~}. 

Thus the cliques in Mt coincide on X0 u ... v Xk_2 with the cliques of M,, and on 
X,, v Xk- 1 with the cliques of Mopt. Then an upper bound for the cost of M, is given 
by the cost of each M:, viz. 

c(Mo) Q 1 C d(xi,xj) + x& i_oCk_2d(xi.xk-1). 
XsM,i<j<k-2 P ., 

(8.4 

Using the z-inequality d(xi, xk_ r) < T(d(Xi, xk) + d(xk, xk- 1)) for each i # h, we obtain 

x& i=,,,~k-2d(xi’xk-1) ,h 

< c d(Xh,Xk-1) + x(k - 2).d(Xh,Xk-1) + 7’ 
XEM? 

C d(xi,xh)] 
i=O,...,k-2 

= [(k - 2)~ + 11. 1 d(z,nzliml) + 2’ 2 1 d(xi, Xh). 
Z~Mopt XcMoi=O,...,k-2 

Combining this inequality with (8.2) and summing over h = 0, . . . . k - 2 yields 

(k - I).c(Mg) d (k - 1). C C d(xi,xj) 
XeM.icj<k-2 

+ 22. C C d(xi,Xk) 

XeM,i<h<k-2 

+ [(k - 2)T + 11. 1 xd(zh,zk-1) 
Z~Mopt h 

=(k- 1 + 22). 1 C d(xi,xj) 
X~M.i<jdk-2 

+ [(k - 2)~ + 11. C Cd(Zj,Zk-1), 

Z~Mopt j 

By induction, we derive 

(k - f).c(M,) 

d (k - 1 + 2r).a(k - l,~).Z~~~.,i<j~k_zd(zi,zj) 

+ [(k - 2)~ + 11. c C d(Zj,Zk-l). 
ZeM,,tj=O,...,k-2 

(8.3) 

(8.4) 
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In view of this, and using the z-inequality 

d(zi,zj) < z(d(zi,zk- 1) + d(zj,z,-1)) for i < j < k - 2, 

we see that (8.4) entails 

(k - 1). cWJ 

<[(k-1+2T).a(k-1,$-/l]. c C d(zi,zj) 

+[(k_2)r+l+(k_2)rA]. C Cd(Zj,Zk-1) 
ZeM,,t j 

for all A 2 0. Choose A = (k - 1 + 22). a(k - l,z)/((k - 2)r + 1) - 1. From (8.1), 
one can prove by induction on k that the following inequality holds for all k > 3 and 
r 2;: 

(k - 1 + 2r).cz(k - 1,~) 3 (k - 2)t + 1. 

Hence I 2 0, and we arrive at: 

(k l).c(M,) (k 
- 1 + 

G 2z)(k 
- 

2)~ - +~(k - 
(k 2)~ + 1 

1, t) + 1 
- 

1 .c(M,,,), 

or equivalently 

c(M,) G a(k, r). c(M,,,). (8.5) 

In the sequel, we discuss the behavior of the function cx(k,z). First observe 
that ct(k,$) = 1, as one would expect. More generally, if f < r < t$, we can 
prove that a(k,T) is bounded above by a constant only depending on r. To see this, 
define: 

y(k, r) = 
(k - 2)~ + 1 

k(1 - 2r2) + 4~~ - 1’ 

It is not hard to prove that, for f < T < ifi and k k 3, 

y(k - 1, z) < y(k, T) d --?- 
1 - 2r2’ 

and 

(k - 1 + 2z)(k - 2)~ 1 
y(k7r) = [(k _ 2)r + l](k _ l)‘Y(k’r) + k_l 

From these observations and from (8.1), it then follows by induction that 

a@, z) d y(k, T) < z 
1 -2r2 

(8.6) 
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for all k 2 3 and for 4 < r < $a. For z = is, we can show that a(k,&,h) grows 

logarithmically with k. Indeed, define t(k) = [(k - l)/(k - 1 + a)]. a(k,$fi) and 
rewrite (8.1), as 

m = -L 2 

l+Jz 

5(k) = 5(k - 1) 
1 

+ 
k-l+ 

for all k 2 3. 

Solving this difference equation yields the following expression for a(k,@): 

a(k, f$) = 1 + 
( 

The inequalities 

j;;.,k+nk< > 1 

j=l;,_lj forallk>l 
. 3 

immediately imply the logarithmic behavior of a(k, &h). Hence, also a(k, z) grows at 

least logarithmically for r 2 &‘?. 
For r = 1, the reader will easily verify by substitution into (8.1) that 

a(k,l)=;k. (8.7) 

Hence, when the “usual” triangle inequality holds, the upper bound for the worst-case 
ratio of M, is linear in k. 

Let us now show that cc(k, z) is a tight upper bound on c(M,)/c(M,,,) when k = 3, 
for all z > f. 

Example 8.1. Let Xj = {Xjo, xji } for j = 0, 1,2, and let the edge lengths be defined as 
indicated on Fig. 4. Note that the r-inequality is satisfied. With D = (0, 1,2), we may 

1 &I 

Fig. 4. 
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obtain: M, = ({~oo,xll,x20}, {xo1,x1o, x21 >} with c(M,) = 2(13 + r + l/(22)). Here 

Mop, = {{xoo,xIo,x~~}, (x~~,x~~,x~~}) with c(M,,,) = 2(1 + l/z). This results in 

c(M,)/c(M,,,) = r + ; = a(3, r). 

Unfortunately, the upper bound a(k,z) is not tight when k > 3, as is asserted by 
Theorem 3.5 for k = 4. To prove Theorem 3.5, assume w.1.o.g. 0 = (0, 1,2,3). Combin- 
ing (8.2) and (8.3) for k = 4 and r = 1, we obtain for h = 0,1,2 respectively: 

cwfo) d c (4 x1,x2) + Wo,xd + Wxo,x,N + 3 c 4Zo,Z3), (8.8) 

XEM, ZEM0pt 

cWJ G 1 (4 xo>xz) + Wxo,xd + 24x1,x2)) + 3 C d(zl,zj), 
XEM, Z~Mc,pt 

(8.9) 

c(M,) G 2 (4 x0,x1) + 2d(xo,x,) + 2%,x2)) + 3 c d(z2,zA (8.10) 
XEM, Z~Mc,pt 

Multiplying (8.8) and (8.9) by 4 and (8.10) by 13 and adding up results in 

21c(M,) d c Wd(xo, x1) + 38d(xo, x2) + 38d(xl, x2)) 
XEM, 

+ 1 G'd(zo,z3) + Wz,,z3) +- Wz,,z,)). 
Z~Mopt 

(8.11) 

On the other hand, we can also use (8.2) and (8.3) with k = 3 and h = 0,l in order to 
derive 

24 (d( x0,x2) + 4X1,x2)) B 2. c d(Zo,Zz) + 2 d(xo,xJ, 

c ZEM0,t XEM, 

x0,x2) + 4x,,+)) < 2. 1 d(z,,z,) + c d(xo,xl). 
Z~Mopt XEM. 

Multiplying both inequalities by 19, further the inequality 

by 67, and then adding all these to (8.11), we obtain 

2104,) < c C67d(z,,z,) + 38d(zo, zz) + 12d(zo,z3) 
ZEMDPl 

+ 38d(zr,zz) + 12d(z,,z,) + 39d(z,,z,)]. 
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Combining this with the triangle inequalities 

4z0, z1) < 4% z*) + d(z1, z2), 

27d(z,,, ZJ < 27d(z,,, ~3) + 27d(z,, zs) 

leads to c(M,) < yc(M,&, as required for Theorem 3.5. 
The following example shows that this bound is best possible. 

Example 8.2. Let Xj = {Xjo, Xjl, xj2 > for j = 0, 1,2,3. In order to define the length 
function, consider the graph G of Fig. 5. The numbers along the edges of G indicate the 
length of these edges. For those pairs of vertices U, v for which no edge is drawn, d(u, v) 
is equal to the length of the shortest path between u and v in G. It is not difficult to see 
that the optimal solution is Mop, = { {xej, xij, Xzj, X3j) 1 j = 0, 1,2), with c(M,,,) = 21. 
For g = (0,1,2,3), weget M,,i = {{x00,x,2>, {x~~,x~,,}, {x~~,x~~}}. Next, we obtain 
the 3-dimensional assignment M = {{xoo,x12,xz1}, {xo1,x1o,x22}, {xo2,xll,x2o)}. 
All matchings between the cliques of M and X3 have the same cost, namely 39. Hence, 
c(M,)/c(M,,,) = g = ++. 

Let us finally handle the case of the multiple-pass recursive heuristic and the proof 
of Theorem 3.6. Define 

P(2,r) = 1, 

P(k,z) = (k - 1 + 24(k - 2)$(k _ l,T) + 2[(k - 2)T + l1 
k(k - 1) k(k - 1) . 

(8.12) 

We want to prove by induction on k that P(k, z) is an upper bound on c(M,)/c(M,,,). 
Consider an instance of the k-dimensional assignment problem, and let Mopt be 

its optimal solution. Assume without loss of generality that, when applying the 
multiple-pass recursive heuristic to the (k - 1)-dimensional subproblem obtained by 

Fig. 5. 



48 H.-J. Band& et al. / Discrete Appkd h4athematics 49 (1994) 25-50 

disregarding Xk_ r, the best solution is produced for the permutation (0, 1, . . . , k - 2) 
of the indices. Let now CT = (0, 1, . . . . k - l), and observe that, by the induction 

hypothesis, 

So, in the same way as we earlier derived (8.4), we now obtain: 

(k - l).c(M,) d (k - 1 + 2T).fi(k - 1,~). 1 C d(zijzj) 
ZeMopt i<jSk-2 

+ [(k - 2)~ + 11. C Cd(Zj,Zk-1). 

ZeMOpt j 
(8.13) 

Moreover, the reasoning leading to (8.13) can be repeated k - 1 times, by disregarding 
X 0, . . ..Xk-2 instead of X,_ I. This yields the following inequality, for 
h=O,l,...,k- 1: 

(k - ll.c@fd 

B (k - 1 + Zz).p(k - 1,~). C C d(zi,zj) 
ZeMOPt O<i<j<k-1 

i,j f h 

+ [(k - 2)~ + 11. C 1 d(Zj,Zh). 
ZeMOpt j 

Adding these up, we get: 

k(k - l).c(M,) 

d ((k - 1 + 22)(k - 2).j?(k - 1,~) + 2[(k - 2)r + ~]).c(M,~,), 

or, in view of (8.12) 

(8.14) 

Let us now investigate the behavior of ,!3(k,z) for various values of z. First, when 
4 < T < 1, one has 

P(k, 4 d rl(k, z) “Gf (k - 217 + 1 d _y. 
k-(k-2)r-1 1-r 

To see this, notice that q(k,z) > q(k - 1,~) and 

9(k 

2 

z) = (k - 1 + W(k - 2).1(k,Tl + 2C(k - 217 + 11 
k(k - 1) k(k - 1) 

(8.15) 

when f < t < 1, and use the definition (8.12). 
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When z = 1, b(k, 1) grows logarithmically with k. Indeed, substituting z = 1 in (8.12) 
and defining 

i(k) = ~$(k, 11, 

we arrive at 

2(k - 1) 
i(k) = i(k - 1) + m+ 

This equation is easily solved, and leads to 

(8.16) 

For k 2 2, define 

&=,iii-lnk. 

It is well known that 1 > C2 > C3 > ... > C > 3 and lim,,,C, = C, where 
C = 0.57721 . . . is the Euler-Mascheroni constant. Substituting in (8.16), we thus 

conclude that 

wpn(k+l)-i]-&<p(k,l)<wln(k+l)-&. (8.17) 

As mentioned in Section 3, we do not know whether /3(k, z) is a tight upper bound 
on c(M~)/c(M,~J, except when z = f, or k = 3 and z = 1 (see Crama and Spieksma 
[3]). In fact, all we can show is that, in the worst case, c(MR)/c(Mopt) grows at least 
like 2 - 2/k when r = 1 (notice that this is exactly the worst-case ratio of the 
multiple-hub heuristic; see Section 4). We demonstrate this claim with the following 
example. 

Example 8.3. Consider the instance described in Example 4.3. As this example is 
symmetric, it suffices to apply the single-pass recursive heuristic to it. The reader may 
check by induction that it is possible for this heuristic to find the same solution found 
by the multiple-hub heuristic. 
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