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Abstract

The Lk-dimensiona)

Given is a complete k- partlte graph G= (Xo U v Xk 1,E) w1th |X;] = p for each i, and
a nonnegative length function defined on the edges of G. A clique of G is a subset of vertices
meeting each X in exactly one vertex. The cost of a clique is a function of the lengths of the
edges induced by the clique. Four specific cost functions are considered in this paper; namely,
the cost of a cligue is either the sum of the lengths of the edges induced by the clique (sum costs),
or the minimum length of a spanning star (star costs) or of a traveling salesman tour (tour costs)
or of a spanning tree (tree costs) of the induced subgraph. The problem is to find a minimum-
cost partition of the vertex set of G into cliques. We propose several simple heuristics for this
problem, and we derive worst-case bounds on the ratio between the cost of the solutions
produced by these heuristics and the cost of an optimal solution. The worst-case bounds are
stated in terms of two parameters, viz. k and 7, where the parameter 7 indicates how close the
edge length function comes to satisfying the triangle inequality.

costs is formulated as follows.
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Key words: Multi-dimensional assignment; Triangle inequality; Heuristics; Worst-case perfor-
mance

1. Introduction

For k = 2, the k-dimensional assignment problem is formulated as follows. Let
X, X, be na;rwme disjoint sets of equal cardinality, say p Recmrdmo V=I1}X.

Ay ey DE VASC QIO SO VI Ol LAIIIaYY ¢ egalalll i<

as the vertex set of a complete k-partite graph with edge set E = U,< J{{u, v}lueX,,
ve X}, we say that a subset X of V'is a clique of the graph (¥, E) if X meets every X, in
exactly one vertex (i = 0, ...,k — 1). A (k-dimensional) assignment of (V, E) is a parti-
tion of Vinto cliques, that is, a collection of p pairwise disjoint cliques of (V, E); we will

0166-218X/94/$07.00 © 1994—Elsevier Science B.V. All rights reserved
SSDI 0166-218X(92)00129-0



26 H.-J. Bandelt et al. | Discrete Applied Mathematics 49 (1994 ) 25-50

aiso cail this an assignment between Xo,X,..., and X, ;. Let now ¢ be any
real-valued cost function defined on the set of cliques of (V, E). The k- dimensional
assignment nrnhlom on(V, F\ with respect to ¢ consists in ﬁndmo an RQQ nt M of

minimum cost, where the cost of M is defined as ¢(M) =} XeMc(X).

When k = 2, the k-dimensional assignment problem is nothing but the well-known
bipartite weighted matching problem and can be solved in O(p?) arithmetic opera-
tions by the Hungarian method (see e.g. Papadimitriou and Steiglitz [117). Through-
out this paper, we refer to 2-dimensional assigniments as to maichings.

The 3-dimensional assignment problem has also been actively investigated in the
literature; see e.g. the references contained in Balas and Saltzman [17], as well as
Crama and Spieksma [ 3], Frieze [ 5], Hansen and Kaufman [8]; it is well known to be
NP-hard [9]. The k-dimensional assignment problem has been less thoroughly
studied for values of k > 4, and this, in spite of the fact that it constitutes a most
natural generalization of the 2- and 3-dimensional cases. Early mention of the

mralalame Ao b faind 1 Ialay M1 and 1n Diargl-alls F1‘)1 whara amnlicatinng avra
PIUUIDIAI vall ve lUUJlU lll riaiv _y LIJ aliul 111 1 1vl M\aua L J YWilvi o a.pyuuauvua alv
described.

In this paper, we concentrate on the restricted version of the k-dimensional
assignment problem which arises when the cost of a clique is not completely arbitrary,
but is rather a function of elementary costs attached to the edges of the complete
k-partite graph (¥, E). Specifically, let us assume from now on that d is a nonnegative
length function defined on E, and not identically zero; for the sake of simplicity, we use
the shorthand /”n n\ instead of /](fu o). and we let /Hn n\ = ﬂ’ hv convention. We

LS S0NuIQlG masivatls 8 G §)s auss st wiivillia.

say that the cost functlon cis decomposable if there exists a functlon I R S R such
that, for every clique X = {xo,...,Xx—1},

c(X) = f(d(x0,%1),d(X0,X2), oo, d(Xg— 2, Xi— 1))

Thus, c¢(X) is completely determined by the lengths of the edges induced by X

Different variants of the 3-dimensional assignment problem with decomposable
costs arise in applications considered by Frieze and Yadegar [6] or Crama et al. [2],
and are further investigated in Crama and Spieksma [3].

The main goal of this paper is to present some simple heuristics for the k-
dimensional assignment problem with decomposable costs and, for various cost
functions, to derive worst-case bounds on the ratio between the cost of the heuristic
assignments and the cost of an optimal solution.

In the next section, we describe the specific decomposable cost functions which will

he concidered in the remainder of the naner In Sectian 2 we nronose some heurictics
UL VULISIULICU LI LU TVLIAILUCT Ul LUC PAapul. 11 DULHIVIL J, WU pPLUPUOT SULLIV JIVULISULS

for the k-dimensional assignment problem with decomposable costs, and we state our
main results about the worst-case performance of these heuristics. Proofs of these
results are to be found in Sections 4-8 (Sections 4-7 deal with a first type of heuristics
and four different cost functions, while Section & focusses on a second type of
heuristics).

The worst-case bounds are stated in terms of two parameters, viz. k and 7, where 7 is
the smallest real number for which the following condition holds: for all {u, v}, {u, w},
{v,w}eE,
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Observe that 1 is well defined, except when there exist three edges {u, v}, {u, w}, {v, w}
such that d(u,v) > 0 and d(u, w) = d(v,w) = 0. In the latter case, we let T = co.

Clearly, T > %, and © = } exactly when d is constant on E. If 7 < 1, then the edge
lengths satisfy the usual triangle inequality. More generally, we call (1.1) the t-relaxed
triangle inequality, or 1-inequality for short. The smallest possible parameter t for
a given problem instance (with n = kp vertices) can be computed in O(n?*) time. When
7 < 1 results, the a priori bounds (depending on 1) on the quality of the solutions
delivered by the heuristics are usually tighter than the ones employing only the
standard (i.c., 7 = 1) triangle inequality.

Successive application of the t-inequality to a sequence of edges {u;,u;+,}€E
(i=0,...,m— 1) leads to the following iterated t-inequality in the case t > 1:

Ao, t) < T N A, upq), (1.2)
i=0,...,m—1

where log denotes the logarithm to the base 2, and [ 4], the “ceiling” of a real number
A, is the smallest integer greater than or equal to A. In order to verify this inequality by
induction, one may assume that m = 2° (as 7 > 1); then indeed (for s > 2)

d(uo, Uzs) < t(d(to, Uzs-1) + d(Uzs-1,Uzs))

SR z d(ui, Ui+ 1)
i=0,..,25—1

2. Some decomposable cost functions

We now introduce some of the specific decomposable cost functions which will be
treated in the remainder of the paper. Our initial motivation for considering these cost
functions stems from the application described in Crama et al. [2]. In that application,
the cost of a clique should somehow reflect the total distance travelled by the
robot-arm of a machine in order to visit all vertices of the clique. The particular
robot-arm under study in Crama et al. [2] could visit at most three locations in one
so-called placement round. Hence, this industrial setting gives rise to a 3-dimensional
assignment problem with decomposable costs. In general however, a robot-arm may
have a larger capacity, allowing it to visit k locations in one round. Then, an instance
of the k-dimensional assignment problem with decomposable costs arises. Since the
order in which the vertices of the clique will eventually be visited is not known in
advance, the distance travelled can only be roughly evaluated. This can be done in
several ways.

Sum costs. The sum cost function assigns to every clique X = {xq,...,X,—1} a cost
equal to the sum of its edge lengths, ie.
c(X)= > d(x;,x;). 2.1
0Ki<jg€k—1
Observe that, since every clique contains the same number of vertices, the cost of

a clique with respect to the cost function (2.1) is proportional to the average length of
the edges induced by the clique.
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Sum cost func:'rmns are commonly used in the context of graph partitioning
problems, such as those mentioned ¢.g. in Lengauer [10]. Actually, the k-dimensional

assignment problem with sum costs can be seen as a special case of the k-dimensional
matching problem studied by Feo and Khellaf [4]: given an (arbitrary) graph G with
kp vertices, and a nonnegative weight for each edge {u,v} of G, find a partition of the
vertex set of G into p sets V4, ..., Vp such that the sum of the weights of the edges
contained in U, Viis max1mlzed. Feo and Khellaf [4] present heuristics with guaran-
teed worst-case performance for this k-dimensional problem. But their bounds have
little meaning for our problem, due to the fact that we stated it as a minimization

rather than a maximization problem.

Star costs. The cost of a clique X = {xo,...,x,—1} with respect to the star cost
finatian g annual ta tha grim af tha adgags langthe Af o minimiim langth gnanning gtar ~F
1TULILLIVLL 1D b\.iual \.U LU DuUlll U L1V \4\.15\-1 l\/llslllb Vil A 11111110 v 151,11 Dpallllllls otal ui
X, ie.:
3
c(X) = mmJL d(xp,x)0<h< k — l}. (2.2)
0<i<k~1

In the framework of location theory, the vertex x, realizing the minimum in (2.2) is
called the median vertex of the clique.

Tour costs. The tour cost of the clique X = {xo,...,x,_,} is defined as the cost of
a traveling salesman tour on the graph induced by X, in other words:

c(X) = min{ Y d(Xp» Xna+ 1))l 7 is @ permutation of

LOSigk—-1

(0,1,....k — 1}}, (2.3)

where integers are read modulo k.

Tree costs. The cost of the clique X = {x,,...,x;_} with respect to the tree cost
function is the cost of a minimum length spanning tree of the complete graph on X, ie.:

c(X) = min{ Z d(x;, x;)|(X, A) is a tree]( 2.4

\\L “cn

Observe that, for k = 3, the sum and the tour cost functions are identical, as are the

star and the tree cost functions. in Crama and Spieksma [3] it is proved that the
3-dimensional ass1gnment problem with sum or star costs is NP-hard, even when
d satisfies the triangle ineaualitv.

S1CS th vhdallsic -.-.1....,"--

3. Approximation algorithms and their performance
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assignment problem on (V, E) with respect to a decomposable cost function ¢, depend-
ing on a length function d. We denote by M, an optimal solution of this instance.
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We propose in this section various heuristics for this problem, and we state our
main results about the quality of the solutions which they produce. Namely, we state
theorems of the form: “for all instances of the k-dimensional assignment problem with
decomposable costs satisfying such and such assumptions, the heuristic under consi-
deration produces an assignment M such that c(M) < a(k,7)- ¢(M,,)”, where a(k, 7) is

{ licit] 3 4 ; : . .
an {explicitly given) function of k and 7. We sometime add to this that “the bound is

tight”, meaning that there exist instances of the problem satisfying the required
assumptions and yielding ¢(M) = a(k, 1) c(M,5,). Notice that, for the sake of clarity,
the theorems are not always stated in the full generality with which they will be proved
in subsequent sections.

Our heuristics fall into two classes, namely “hub heuristics”, and “recursive heuris-
tics”. As we will see, the main ingredient of these procedures consists in solving
a sequence of binartite matching nroblems on granhs with 2» vertices. As an estimate

LUICC O DIpalilic INAICIUIE PIOVICIAS O Siapiis Witll 47 VOIS, As 4l Lelllliall

of the complexity of the heuristics, we will therefore use the number of matching
problems which they require to solve. Observe that, in particular, we do not explicitly
take into account the time required to compute the cost of a clique in some of the
heuristics. This is reasonable for all but the tour cost function; and even the cost of
a tour can be quickly computed when k is small.

F‘
3"
5

Hub heuristics. We haoin with a d

Hub heuristics. We begin with a desc e

actually one such heuristic for each he{0,...,k — 1} h is then the “hub” of the
heuristic. The single-hub heuristic with hub h produces an assignment which is
composed of minimum length matchings between X, and all other parts X,;. It
proceeds as follows:

i f. T]'\Ar
1110

a Q
l £:15-nUst neurist 1w

Step 1. For each i # h, let M,,; be a minimum length matching between X, and X
with respect to the length function d.

Step 2. Return the k-dimensional assignment M, := {{xo,...,X_1}|x,€X, and
{xp,xi} My, i=0,...,k—1,i#h}.

The single-hub heuristic is clearly polynomial: it only requires the solution of k — 1
bipartite matching problems. Notice also that the heuristic is quite simple minded, as
it only depends on d, and not on the specific cost function ¢ built up from d. But in
spite of this simplicity, the quality of the solution delivered by the single-hub heuristic
cannot be arbitrarily bad, as is attested by the nexi statement:

Theorem 3.1. If ¢ is either the sum or the star or the tour or the tree cost function, then
c(M,) < (k — 1)-c(M,,) for every problem instance satisfying the triangle inequality.
This bound is tight. (See (4.2), (5.3), (6.6), and (7.2) below.)

More precisely, we will establish in Sections 4-7 that, for each of the four cost
functions mentioned in Theorem 3.1, there exists a function a(k,7) such that
c(M,) < afk, 7} c(Myp) and a(k, ) < k — 1 when 1 < 1. The function «a(k, 7) grows (at

) 1 1th -~ £ th d th +
mosty .mear;y with 7 for the sum and the star cost functions.

An easy way of improving the single-hub heuristic is to compute a solution M, for
each possible choice of the hub A, and to retain the best solution thus found. We then
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obtain the following multiple-hub heuristic:

Step 1. For each pair i,he{0,....,k — 1}, i # h, let M); be a minimum length
matching between X, and X; with respect to the length function d.

Step 2. For each he{0,...,k — 1), let M, be the assignment delivered by the
single-hub heuristic with hub h, that is, M,:= {{xo,...,Xz~1}|xs€X, and
{xn,Xi}EMy;, i=0,....k — 1, i #h}.

Step 3. Return the assignment My:= M;, where ¢(M;)= min{c(M,;)|0<h

< 1 11
S K~ 1y,

This heuristic requires the solution of k(k — 1)/2 bipartite matching problems. The

upper bound provided by Theorem 3.1 is triviaily valid for ¢(Mpy), but even stronger
results can be proved. For instance, we will show:

Theorem 3.2. If ¢ is either the sum or the star cost function, then c(My)<
(2/k)[(k — 2)t + 1] ¢(M,p) for every problem instance. This bound is tight when t = 1.
(See (4.4) and (5.6) below.)

AL | N | thatna

nnnnnn thot for - 1 N /Al .-M“.,\IA,“
10 Cuvi g j/C\ivi opt) is bounded U_y 2. In the ter MmMinocI0g8y

Observe that, for7 < 1, th
of Papadimitriou and Steiglitz [11], thlS means that the multiple-hub heuristic is
a l-approximation algorithm for the k-dimensional assignment problem with either
sum or star costs, when the edge lengths satisfy the triangle inequality (independently
of the value of k). On the other hand, if 7 is not bounded from above (or t = ), then
there exists no polynomial-time e-approximation algorithm for the k-dimensional
assignment problem restricted to sum or star costs, for any fixed ¢ = 0 and any k > 3

(nn]pec of course. P = NPY gsee Crama and Snieksma 31, As a matter of act, our

;;;;; Sy Vi VULISL, & = ANL ), SVL Lidliia adila ut}lvn Silic | 2. a5 @ il Vi x

theorem only implies that ¢(Mg)/c(Mp) <

Theorem 3.3. If c is either the tour or the tree cost function, then c(My) < 3 k- c(M ) if
k is even and c(Myg) < +(k — 1/k)- c(M(,p‘) if k is odd, for every problem instance

(70N LT IR

satisfying the triangle inequality. This bound is tight. (See (6.9) and (7.4) below.)

A more precise, but much more intricate bound can again be obtained by dropping
the assumption that the length function satisfies the triangle inequality, and by

explicitly taking into account the parameter t. What may be more important here is to
observe that the ratio c(Mg)/c(M,,) grows linearly with k, just as for the single-hub
heuristic. We do not know whether there exists a polynomial-time g-approximation
algorithm, with ¢ an absolute constant, for the k-dimensional assignment problem
restricted to either tour or tree costs and to edge lengths satisfying the triangle

inequality.

Recursive heuristics. We propose a single-pass recursive heuristic with respect to
a chosen permutation of (X, ..., Xx-1), say €.g. (X0, ---» X~ 1,). The idea behind
this heuristic is again to produce an assignment of (V, E) by solving a sequence of
k — 1 bipartite matching problems. The solution of the (i — 1)st subproblem produces

an i-dimensional assignment between X ;o) Xs(1)> ---» and X -1y, say N;_1. The ith
subproblem consists in extending this partial assignment by computing an optimal
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bipartite matching between its cliques (regarded as indivisible) and the vertices of
X ,, with respect to suitably defined edge lengths. The length function for the (i — 1)st
subproblem (i > 3) is defined as follows: for all XeN;_,; and ueX,;,, the length of
{X,u} is the cost c(X U {u}) of the “partial” clique X U {u}; notice that this definition
only makes sense if the cost function ¢ can be meaningfully extended to subsets of

oliognegs thic ic cortainly tha caga far tha faur cogt Pinctiong intradiicad im Qacti~e
iy uvo, tnis 1s cer taiiily (v Lvadv v v 10Ur COSU IUncuons mtroducea inn SCeClion

2 since these are well defined for al k > 3.
We are now ready for a formal description of the single-pass recursive heuristic
associated to the permutation (X, 0);...s Xo-1)):

Step 1. Let No:= X, and i:=

Step 2. For all XeN,;_; and ueX,, let 6(X,u):= c(X U {u}).

Step 3. Let N be a minimum length matching between N;_, and X, with respect
to the length function . Let N;:= {X U {u}|XeN,_,, ueX,; with {X,u}eN}.

Step 4. Ifi<k—1,leti:=i+ 1and go to Step 2. Else, continue.

Step 5. Return the assignment M,:= Ny_;.

The complexity of the single-pass recursive heuristic is comparable to that of the
singie-hub heuristic since in both cases k — 1 bipartite matching problems need to be
solved. (Notice however that, as mentioned at the beginning of Section 3, the time
needed to update the cost of the partial r‘lmnpq in Step 2 of the cmolf--naqc recursive

heuristic is not taken into account by this complex1ty measure.) On the other hand,
the recursive heuristic turns out to be much more difficult to analyze than the hub
heuristic. In fact, the results to be presented in Section 8 will only have bearing on one
of our “special” cost functions, namely the sum cost function. We will establish:

Theorem 3.4. If ¢ is the sum cost function, then ¢(M,) < k- c(M,y) for every problem
instance satisfying the triangle inequality. (See (8.5) and (8.7) below.)

Comparing this result with Theorem 3.1, we see that, in the case of sum costs, the
worst-case performance of the single-pass recursive heuristic is better than that of the
single-hub heuristic. For k = 3, the bound of Theorem 3.4 is known to be valid and
tight, both in the case of sum and of star costs [ 3]; but it is no longer tight for k > 4, by
the next theorem. In particular, we do not even know whether the ratio c¢(M,)/c(M,y)

really grows linearly in k (although we suspect that it does).

Theorem 3.5. If ¢ is the sum cost function, then ¢(M,) < *c(M ) for all instances of
the 4-dimensional assignment nrnhlpm mnvfwnn the rrmnﬂlp mpmmhrv This bound is

tight.

Just as we did for the single-hub heuristic, we can improve the performance of the
smgle -pass recursive heuristic by applying it for each possible permutation of

(X . X. ), and retaining the best solution thus found. This results in the multinle-
(KXg,..., 55— ¢)anareiaimng ¢ oest solution thus tound. 1his results 1in th nuitipie

pass recursive heuristic:
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Step 1. For cach permutation
ced by the single-pass recursive heurlstlc associated to the permutation
(Xft(O)s --er,r(k—l),)'
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Step 2. Return the assignment Mz := M,, where ¢(M,) = min{c(M,)|o is a permu-
tation of {0,...,k — 1}}.

The complexity of the multiple-pass recursive heuristic is quite high, since
k!(k — 1)/2 bipartite matching problems have to be solved in Step 1. As for its
performance, we will prove:

Theorem 3.6. If c is the sum cost function, then c(Mg) < 2[(k + D)k — 1)] In(k + 1)
“c(Mp) for every problem instance satisfying the triangle inequality. (See (8.14) and
(8.17) below.)

For k = 3,itis known that ¢(Mg)/c(M,,) < 4/3 and that the result is tight (for both
sum and star costs; see Crama and Spieksma [3]). This is the same worst-case
performance as for the multiple-hub heuristic (see Theorem 3.2). More generally, in
view of the sophistication of the multiple-pass recursive heuristic, one would expect its
worst-case ratio to be at least as good as that of the multiple-hub heuristic. Interest-
ingly enough, however, we will show that the worst-case ratio of the multiple-pass
recursive heuristic is not better than the worst-case ratio of the multiple-hub heuristic
when 7 = 1.

Still, one may hope that ¢(Mpg)/c(M,,) be bounded by a constant. The bound of
Theorem 3.6 is disappointing in this regard (but maybe is not tight!). We will
nevertheless be able to prove that c(Mg)/c(M,,) < 7/(1 — 1) (i.e,, a bound independent
of k) for all problem instances such that t < 1 (see (8.15) below).

In the following sections, we proceed with the proofs of our results.

4. Sum costs

We assume here that the cost of a clique X = {x,...,X; -1} equals the sum of all
edge lengths d(x;, x;), that is,
c(X)= Y d(x;, x;).
O0<gi<jsk—1
We first establish an upper bound on the cost of the assignment M, produced by the
single-hub heuristic (h = 0, ..., k — 1), which is composed of minimum length match-
ings M,; between X, and all other parts X;. Applying the t-inequality

d(x;, x;) < T(d(xp, x:) + d(x4, X)),
for all XeM, and i,j # h, we obtain
cMp)= 3 Y dlxix;)

XeMpi<j

< Y Y [k —2)t + 1]-d(xp, x:)

XeMyi=0,.., k—1

= [k —-2)t + 1]-._ > Y. d(xp, x;)

i=0,..., k—1XeMy

<[k -2+ 1]'. Y Y d(zy, zi) 4.1)

i=0,.,k~1ZcMgpe
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as each M,; is a minimum length matching. The sum of d(z,,z;)fori = 0,...,k — 1 1is
a trivial lower bound of ¢(Z), whence

c(My) < [(k = 2)t + 1] c(Mop). (4.2)

Example 4.1. To show that this bound is tight for all 7 > 1, consider Fig. 1. Let x;;,
j=0,...,k — 1 denote the jth vertex of X;, or in other words:

Xi={x,-j]j=0,...,k—l} fori=0,...,k—1.

Observe that in this example each X; has cardinality k, that is p = k. Let us now define
the length function d. The notation x;; = x,, in Fig. 1 (and in all subsequent figures)
indicates that d(x;;, x,;) = 0. The length between any two vertices linked by an edge in
Fig. 1 is equal to 1. All other lengths are equal to 2z, for some t = 1. Note that the
r-inequality is fulfilled by this distance function. The single-hub heuristic with hub
0 may find the following assignment (where indices are read modulo k):

Mo = {{X0j X1,j+1:X2,j42> s Xk 1,j4k-15|J = 0,...,k — 1}
= {{X00, X115 s Xk—1.k~1J> 1X01>X12>-sXk—1.0}»
ey {X0k=15X105 s Xk—1.k-2}}
resulting in
c(Mo) = k[(k — 1) + 1k — I)(k — 2)]
= k(k — )[(k -2t + 1]
It is not difficult to see that
Moo = {{X0js X1js coes Xk-1,;31 7= 0,...,k — 1}
= {{X00>X10s > Xk—~1,0}s 1X01. X11s--+sXk—1.1}»
cees {X0km 15 Xt k=15 e s Xkm1 k=1 }

with ¢(M,,) = k(k — 1) proving that the bound in (4.2) is tight for 7 = 1.

Xpo=Xpo= X, =X, =~ X, Xy = -
=X10 = =X

1,1 k1, k1

Fig. 1.
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The bound (4.2) is certainly not tight when 7 is smaller than 1 because d(z;,z;)
cannot be zero for i # j. Indeed, using the t-inequality, we have (given ZeM )

1
d(z;,2;) 2 = d(zp, 2;) — d(z, 25)
T
for i # j and i, j # h. Consequently,

k—2

Z d(z;,25) 2 —— - d(zp, ) — z d(zp,z;) fori+#h,

=0, k-1 T j=0,. k-1
j#h j#i

and further

k—2
z d(Zi,Zj) Z2— Z d(zp,z;) — (k — 1) z d(zh,Zj)
ij#h T i=0,..,k—1 j=0,. k-1

+ Z d(zhszi)

i=0,.. k-1
1
=(k— 2)<—— 1>' Y d(zsz).
i=0,.. k-1
Hence,

l:(k - 2) (% - 1) + 2:| z d(Zh,Zi) <2 Zd(z,-,zj).
i=0,.. k-1

i<j
From this inequality and (4.1) we infer

2k — 7 + 1)
k —2)(1jc — 1) +

e(My) < 5 e(Mep) ifT<1.

(4.3)

Observe that this bound is tight in the cases t = 4 (trivially) and = 1 (by Example

4.1). It is also tight for all 1 < 1 when k = 3.

Example 4.2. To see this consider Fig. 2. Here, X; = {xjo,X;1, X5}, for j = 0,1,2. The
lengths between pairs of vertices are indicated along the corresponding edges of Fig. 2.
Note that the z-inequality is satisfied if t < 1. Clearly, the optimal solution for this
problem equals: My, = {{X00,X10>X20}, {X01X11,%21}, {X02,%12,%22}}, with cost
¢(M,y) = 3(1 + 7). However, the single-hub heuristic with hub 0 may find the follow-

ing assignment:
M, = {{xoo,xn,xzz}, {Xo1,x125x20}, {xoz,xm’le}}
with

c(My) = 6(t + 12).

This results in ¢(Mo) = 27 ¢(M,,,), proving that (4.3) is tight for all t < 1 when k = 3.
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X = Xq =Xg

Fig. 2.

Next we derive from (4.1) an upper bound on the cost of the solution returned by
the multiple-hub heuristic, i.e., the cost of a best assignment among My, ..., M; _;:

c(Myg)= min (M)

h=0,...,k-1

1
< E Z C(Mh)
N 1

s%- Y k=2r+1]- Y Y demz)

h=0,.. k-1 i=0,..., k—1ZeMope

=%[(k—2)r+1]' Y Yd,z)

ZeMopt i
2
= E[(k =21+ 1] e(Myp). 4.4)
This bound is best possible again when t = 4. Observe that

—[(k 2)T+1]—21[ k<2—1>]<2r ifr>%.

T

Example 4.3. In order to prove that the bound (4.4) is also tight for T = 1, consider
Fig. 3. The upper vertex in Fig. 3 is labeled by the points x4, ..., X;~1.0, While the
other k vertices are labeled by the points Xoj, X1 j+1,.--»Xk—1,k—1+;> €Xpect
Xp-50 (J=0,...,k—1).
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Xm =X10 =."=Xlr—l,0

X=X,y = X1 iy Xowm= Xy =
= X1, ki (i=0, -, k-1, 1 # k) =X k2
Fig. 3

The sets Xo, ..., X, ; and the length function are defined as for Example 4.1, with
7 = 1. Obviously, an optimal assignment is given by

Mopt = {{xi,i+j|i = 0,...,k - 1}'] = 0,...,k - 1}
with
c(Myp) = k(k = 1).

Since the example is symmetric on Xo, ..., X -1, we may assume that the solution
returned by the multiple-hub heuristic corresponds to the choice of the hub h = 0. Now,
for eachi = 1,...,k — 1, an optimal bipartite matching between X, and X is given by:

Mo; = {{Xo0, Xio}» {Xok—i>Xii} } U {{Xoj Xs,i+;}1j # 0, j # k —i}.

The cost of My, is 2 for each i. The associated k-dimensional assignment My = M,
has cost ¢(My) = 2(k — 1)2. Thus, c(My) = 2(1 — £)* ¢(M,p), proving that the bound
(4.4) is tight for 7 = 1.

5. Star costs

Now we assume that the cost of a clique X = {Xo, ..., Xx—1 } equals the sum of the
edge lengths in a minimum length spanning star of X, that is,

o(X) = min{ S Al x)lh=0,....k — 1}.
i 1

< Y > d(zy,z:) (5.1)

i=0,....k—1ZeMope
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because each M, is a minimum length matching. Assume that for a given ZeM,,,

cZ2)y= Y dzoz)

i=0,...k—1

If h # 0, then by the t-inequality we derive
Z d(zp,z:) < [(k — 2)t + 1] d(z0,2,)
1

+To Y d(ze,z) (5.2)
=0, k-1
o

So, (5.1) and (5.2) yield the estimation
c(M,) < [(k = 2)t + 1] e(Mop). (5.3)
Example 5.1. To prove that this bound is tight for 1 = 1, consider the problem
instance described in Example 4.1, with 7 = 1.
It is easy to see that the optimal solution M, as well as the solution M, found by
the single-hub heuristic are identical to the ones described there (remember that the

single-hub heuristic does not explicitly take into account the cost function ¢). With
respect to the star costs, we thus have

c(Mo) =k(k—1) and c(M,,) =k
This proves that the bound derived in (5.3} is tight for 7 = 1.

For = < 1 we can again do better than (5.3). First observe that
1
;'d(Zoﬂh) < d(zp, z;) + d(29,2;) for i #0,h,
and therefore

<1+(k—2>§>-d(zo,zh><_ Y dewz)+ Y do.z).

i=0,.., k-1 i=1,..,k—1
i%h
Adding this inequality to (5.2) results in
k—2)0—1) -dlzo,zm) <t Y dl(zo,2). (5.4
i= 1;..;,: -1
Now, for 7 < 1, multiply the latter inequality by
k=3 +1
L=
k-3 -1+1
and add this to (5.2). Since
(k— D1

k—21+1— k-2 —1)=1+ it =

k-3 1—-7+1’
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we conclude that

M) < —K=DT My i< (5.5)
k=31 -1+1 P

As to an upper bound on the cost of the assignment produced by the multiple-hub
heuristic, apply (5.1) and finally the z-inequality:

ok—1
1
< P Z z z d(zy, z;)
h=0,...k—11i=0,.., k—1 ZeMopt
2
=E"Z Z.d(zl,zj)
T LEMopt <]
2
<S5 Y k=2t +1]¢(2)
k ZeMopt
2. N PPN
EUK —2)t+ 1] c(Mypn) (5.6)

Example 5.2. To show that (5.6) is tight for 7 = 1, consider again the instance
described in Example 4.3. We assume that My and M,, remain the same as in
Example 4.3 (because My = M, by symmetry of the instance, and M, is independent
of the cost function ¢). Here, c(My) = 2(k — 1) and ¢(M,,,) = k, thus establishing the

tiohtn ness nf (56 whan r = 1
11T L.

usun 1SS Ul \V.UJ v

6. Tour costs

The cost of a clique X = {xo, ..., x,—1} is now defined as the sum of the edge lengths
in a minimum length Hamiltonian tour (i.e., spanning cycle) of X:

k—1
¢(X) = min { Y d(Xngi), Xza+ 1) | 7 is @ permutation of {0, ...,k — 1}},

i=0
where integers i are read modulo k. Assume without loss of generality that for a given
X (or later on, given Ze M) the minimum cost is at.al..ed for the 1dentity permuta-

tion. Then from the k — 2 inequalities
dxi, Xi+1) < T(d(x0,%;) + d{X0,X;41)) fori#0,k—1
we obtain

e(X) < (1 + 1) (dlxo,xy) + d(xo, Xk-1)) + 21 Y d(x0, %)

i=2,...,k—2
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To simplify our computations, we assume from now on that z > 1. Hence
cX)<2t- Y dxo,x:). 6.1)
i=1,..,k—-1
The analogous inequality holds when 0 is replaced by h. Therefore
(M) <2t Y Y d(xh, x:)

i=0,..,k—1XeMy

< 2t Z Z d(Zh,Z,') (62)

i=0,.., k—1ZeMopt
since each M, is a minimum length matching. Applying the iterated z-inequality (1.2),
we get for 2 < j < k/2
d(ZO:Zj) < glloe /1. Z A(zi, 2i41) (6.3)
i=0,...,j~1

So, when 1 < j < k/2, we have

Z d(Zo,Zi) < ( Z Trlogﬂ)' Z d(zi,zi+1)
i i= i i=0 i-1

i=1,....j =1,.., i i=0,..., j

and similarly,

Y .d(Zo’Zk—i)S (

i=1,.., J

Z T[logi'l). Z d(Zkﬁi—l,Zk—i).
o 4

i=0,..,j-1

For k odd, adding up these two inequalities immediately yields

Z d(zg,z;) < ( Z ngﬂ)' z d(zi, Ziv1)- (6.4)
k-1 i=1,..,(k—1)2

For k even, one adds one half of the inequality (6.3) with j = k/2 to each of the above
inequalities and then obtains

Z B d(zo,2;)

1 .
< (5 gllos®/2] 4 )y 7llos ‘7>' Y d@,ziva). (6.5)
i=1,. k=22 i=0, k-1

To give a very rough estimate, observe that the sums of powers of 7 in (6.4) and (6.5)
are bounded above by
k=11 riogee—1y7,
2
Hence from (6.2) we infer
e(My) < (k — Dlost= DM, ,) fort> 1. (6.6)

This inequality is certainly not tight for 7 # 1.
Example 6.1. The instance described in Example 4.1 achieves the worst-case bound

(6.6) when 7 = 1. Indeed, M, and M., are identical to the ones described there, now at
cost ¢(Mo) = k-2(k — 1) and c(M,p) = 2- k.
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From (6.2) one can readily derive a first upper bound of c(My), viz,,

1
C(MH)gf' Z c(M,)
n 1

h=0,...,k—
<l o2 % Y d(zy,z)
= k - L - \“hy <i}
h=0,... k-1 i=0,..,k—1 ZeMop,
4
=_+. X X d(- - (6.7)
kt L‘ L M\LL,A]} \\l.l’
ZeMopr i<j

In order to estimate the sum of all d(z;, z;) in terms of c(Z) we make use of (6.3) (with
suitably shifted indices)'

jt“"g”)-c(Z), if k is odd,
y d(Z Z) =1,..., (k*l)/Z
i<j )
—r“"g("/m%— Y jrr“’g”)'c(Z), if k is even
\ i=1...., {(k—2)2
forz = 1. (6.8)
The powers of © occurring in (6.8) are all bounded above by (1/7)- /!¢~ V1 So,

W T0
applying (6.7), we arrive at the following inequality:
{4+ 7 N

%(k — i)r“"g("”lﬂ-c(Mop‘), if k is odd,

c(Myg) < (,
L%k‘c“"g("“‘”'c(Mop‘), if k is even
forz = 1. (6.9)

This bound is certainly not tight when t > 1; but for 7 = 1 it is best possible, as is
confirmed by the next example.

Example 6.2. Let us assume that T = 1 and, for ease of notation, that & is ever
case k odd will be briefly discussed later on).

The instance we consider involves k(;f,) vertices, with X;= {(j,§,0)ljeS =
{0,....k — 1}, |S| = k/2, 6€{0,1}} (j=0,...,k — 1). We think of these vertices as
being spread over two levels, corresponding respectively to é = 0 or 4 = 1. Within
each level, the vertices are clustered into (,5;) groups of cardinality k/2; each group
contains all vertices (j, S, d), for a fixed S, and for jeS. The distance between any two

+1 in digtinet 1 lc i¢ 1 hat g ticeg i a2 came araun ic ) and hatwean
VErUuces in Gistinct 1eveEeis 15 1, oCiween two Veruces in a same group 1§ v, ana oeiween

two vertices in a same level, but in different groups, is 2. More formally,
a{(ji,S,0), (i, T, 1)y = 1 for all je§, ieT,

d((j,S,9),(i,S,0)) =0 for all i,jeS,

d((j,$,0), (i, T,0)) =2 forall S # T, jeS, ieT,

forall S, T< {0,....,k — 1}, |S| = | T| = k/2 and for all 6{0,1}.
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Notice that, for this problem instance, each sum has cost at least 2. The optimal
assignment is:

- - k
Mop = {{(J)S,O)IJ'ES} v {8, 1)]ieS}[S] = 5}

where § = {0, ...,k — 1}\S. To verify this, observe that each set in M, is a clique with
tour cost equal to 2.

By symmetry, we can assume that My = M,. Foreachj=1,...,k — 1, an optimal
bipartite matching between X, and X is given by

k
MOj = {{(O’S’ 5)’ (],S,&)}IO,]ES, ISI = 5}

v {{(O,S,é), (j,S U {J}\{0}, 1 — 8)}10€S5, j¢S, 1S| = g}

The total length of this matching is k/2; this is certainly optimal, since for each J such
that je§, (0., 6) must be matched with a vertex at distance at least 1.

Accordingly, the multiple-hub heuristic returns the assignment My consisting of the
following sum:

{(j.S,0)ljeS} v {(j,;S v {i}\{0}, 1 - 9)lj¢S} (6.10)

for each S such that 0€S, |S| = k/2, and for § = 0, 1. In words, each clique of My
contains k/2 vertices forming a group in one level, and k/2 vertices from k/2 distinct
groups in the other level. The tour cost of a clique is thus equal to k, i.e., k/2 times the
cost of a clique in M. This implies that ¢(My) = (k/2) c(M,); hence, (6.9) is tight for
=1 and k even.

When k is odd, a similar example can be constructed, involving as vertices all triples
of the form (j, S, 8) for jeS, |S|e{[ k/2 ], | k/2 |} and 6€{0,1}. The definitions of the
length function, of M, and of My carry over, if we replace everywhere the condition
|S| = k/2 by |S|e{[ k/2 7, | k/2 |}. The tour cost of a clique (6.10) is then

o] 5[5
25| -[3)

This entails, after some computations, that (6.9) is tight when 7 =1 and k is odd.
Details are left to the reader.

7. Tree costs

Let now the cost of a clique X = {xy,...,x;_;} be the sum of edge lengths in
a minimum length spanning tree of X. Then, as in the case of star costs, we obtain

cMy < ) Y dz) (7.1)

ZeMop: i=0,..k—1
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When 1 > 1, the extended t-inequality immediately implies:

d(zy, z;) < 7l logtk= D1 c(2),

and hence
c(My) < (k — 1yels&= D1 c(pf ) forz > 1. (7.2)
Alen
210V
NV \/2. A N A o 77 2\
L\lVIH} RSy k L‘ L‘ M\A', LJ} \I-J}
ZeMopy i<§
£ mamm AT 1Y Tl som s criimms3iaa 2 tem b e PR e mrdaa A0 il
follows from (/1) The maximum number of paub L«J for which an ugc Ol ine

minimum length spanning tree T of a clique Z lies on a path from z; to z; in T equals
(k/2)* if k is even and else equals [ (k + 1)/2]-[(k — 1)/2]. So, by (1.2) and (7.3), the
following rough estimate can be established:

[P PN

%(k —i)r“"s(k‘lﬂ-c(Mop,), if k is odd,

c(Mp) < (7.4)

1

l%kt“"g"“ D1 (M o), if k is even.
As we show now, the bounds provided by (7.2) and (7.4) are actually tight for t = 1:

Example 7.1. For (7.2) consider again the instance described in Example 4.1. The tree
costs of the optimal and of the heuristic solutions are the same as their star costs, i.e.,
c¢(Myp) =k, c(Mo) = k(k — 1), thus establishing the tightness of (7.2) for t = 1.

As for (7.4), we refer to the instance given in Example 5.2 and we assume that k is

avan Tha antimal and heaurigtic ealuitiong ramain nnchangad The trac cast of 2 cligue
Cven. 118 Opuad: ana neurisiic sCi1ulidns rémain uniaanged. 11 iré€ Co8t i a Ciique

in M,,, is 1, while the cost of a clique in My is k/2. This shows that (7.4) is tight for
1 =1 and k even. The analysis is similar for k odd.

8. Recursive heuristics

in this section we establish the worst-case resuits for the recursive heuristics
described in Section 3. As announced there, we only handle here the case of sum costs,
ie., the cost of a clique X = {xq,%;,...,xs_1} equals the sum of all edge lengths
d(x,,x i)

First, we verify the upper bound stated in Theorem 3.4 for the worst-case perfor-
mance of M. Then, we further refine our analysis for different values of z. Finally, we
prove similar results for M. Note that these results are in fact generalizations of those

raguilte atven Crama and Qnielkema N1 whara tha cacea bk — 2 = 1 15 daalt with
TESUILS Ziven In Lrama ana Spieksma | 5, winlre tn€ €ase X = 5, 7 = 1 18 Glail Wil

Assume without loss of generality that ¢ is the identity permutation. We will also
make the convention that, whenever we write a clique X as {xo,..., X, }, then x;€X;
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(j=0,....,k — 1). Let us recursively define a function a(k, 7) as follows:
22,7 =1,

k=142 (k =21
x(k,7) = (k-2 + (k=1

1
ok — 1’T)+ET"1 for k = 3. (8.1)

We will prove by induction on k that «(k,7) is an upper bound for the ratio
c(My)c(Myp). For h=0,...,k— 2 let

M = {{x0, ...y X2, Xk—1 }1{X0, ... X4-2} S Y for some YeM,
and {x,, X~} S Z for some ZeMy}.

Thus the cliques in M% coincide on X, U --- U X, with the cliques of M,, and on
X, U X, -, with the cliques of M. Then an upper bound for the cost of M, is given
by the cost of each M%, viz.

cMy< Y Y dxox)+ Y Y d(xixe-1) 8.2)

XeM,i<js$k—2 XeMPi=0,. . ,k-2

Using the 7-inequality d(x;, xx—1) < t(d(x;, xx) + d(xy, X 1)) for each i # h, we obtain

Z Z dix;, X 1)

XeMli=0,.., k-2

< Y [d(xh:xkﬂ)‘f"f(k"2)'d(xhaxk—1)+f'_ Y d(xi’xh)}

XeM? i=0,.,k=2

=[k=2+1] Y denz-O+t Y X dx,x) (8.3)

ZeMopt XeM.i=0,.. k-

Combining this inequality with (8.2) and summing over h = 0,...,k — 2 yields
k—DeM)<k—1- Y ¥ dlxx)

XeMqi<j<k—2

+ 21 Z Z d(xi,xh)

XeM,i<h<k-2

+Lk=2t+ 1] Y Yd@Ewmzi-1)

ZeMopt h

=k—-14+20 Y Y dxsx)

XeM.i<j<k—2

+ [(k—2)r+ 1]- Z Zd(zj,zk-l).

ZeMopt |

By induction, we derive
(k—1)-c(M,)
<tk -1+20-ak—-1,7" Y Y d(ziz))

ZeMopy i< j<k—2

+ k-2t +1] Y Y d(z,2zk-1)- 8.4
2

ZeMopt j=0, ..., k—
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In view of this, and using the t-inequality
d(zi,z)) < td(zi,ze-1) + d(zj, 2 1)) fori<j<k—2,
we see that (8.4) entails
(k —1)-c¢(M,)
<[tk—1+20) ok~ L) — 4] Y Y dizi,z))

ZeMopri<jS<k-2

+ k=2t + 14+ (k—21] Y Yd(zjzi1)

ZeMope J

for all 1> 0. Choose A=(k—1+27)-alk—1,1)/((k—2)t+1)— 1. From (8.1),
one can prove by induction on k that the following inequality holds for all k > 3 and
=4

k=142 ak—-1L,1)=2k—-2)t+ 1.
Hence 4 > 0, and we arrive at:

(k—1+ 20k -2t
k—2)1+1

k—1)-c(M,) < [ ak —1,7) + Ijl'c(Mom),

or equivalently
(M) < alk,7)- c(Mog). 8.5)

In the sequel, we discuss the behavior of the function a(k,t). First observe
that «(k,%) =1, as one would expect. More generally, if $< 1< %\/5, we can
prove that «(k, 1) is bounded above by a constant only depending on 1. To see this,
define:

k=2t +1
1 -2t + 42— 1"

y(k,T) = K
It is not hard to prove that,for i <t <3./2and k > 3,

ik — 1,7) < p(k,7) < 1—_1—

2%’
and
k=14 2k -t 1
N T e T AR

From these observations and from (8.1), it then follows by induction that

ak, ) < v(k,7) <

T
2.2 (8.6)
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fmnnl,\anmqrm.ix-/L/31:,\,-_;/;“,5,\“. show that a(k L /7Y srows
Vi all v = 0 adllid vl 2 =z U~ 2\/ 1Vl ( — ZV A, YYu waill d11vyy Luiial LL\I\o ZV L} 51UWD
logarithmically with k. Indeed, define £(k) = [(k — 1)/(k — 1 + \/2)]-a(k, /2) and

rewrite (8.1), as

{@2)=

—

+./2

Solving this difference equation yields the following expression for a(k, 5\/5)

alk, $/2) = \1 )
j= 2 —1

The inequalities

\" 1 1. 1 \" 1 Iy n 1

2 T <ink< 2 — 10T aiL K > 1

i=2,...kJ =1, k—1J
SN, EE i IS AU PSS MUV A NS AU SOy oy s A B L RN & S Y ¢ i s
HILnculatety 1 lll.)l_y L1IC 1U5auuu HU vCl1aviULl UL KR, 7\/ £ ). FICLILG, AldU Uik, L) 51UWb atl
least logarithmically for 7 > 3./2
Fort=1, the reader will easily verify by substitution into (8.1) that

uhn=§k. (8.7)
2

Hence, when the “usual” triangle inequality holds, the upper bound for the worst-case
ratio of M, is linear in k.
Let us now show that a(k, 1) is a tight upper bound on ¢(M,)/c(M,,) when k = 3,

Example 8.1. Let X, = {x;0,x;; } for j = 0,1,2, and let the edge lengths be defined as
indicated on Fig. 4. N te that the r-lnequahty is satlsﬁe th o = (0,1,2), we may
X 1 Xy
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obtain: M, = {{Xg0,X11,X20}> {X01,X10,X21 } } With ¢(M,) = 2(1} + © + 1/(27)). Here
Mopt = {{X()o,xlo,xZo}, {x01,x11,x21}} with C(Mopt) = 2(1 + 1/‘[) Thls results in

(M,)/c(Mop) = T + % — 4(3.1),

Unfortunately, the upper bound a(k, 1) is not tight when k > 3, as is asserted by
Theorem 3.5 for k = 4. To prove Theorem 3.5, assume w.l.o.g. ¢ = (0,1, 2, 3). Combin-
ing (8.2) and (8.3) for k = 4 and t = 1, we obtain for h = 0, 1, 2 respectively:

(M) < Y, (d(x1,%2) + 2d(x0,%1) + 2d(x0,x2)) + 3 z d(zo,23), (8.8)
XeM, ZeMop:

c(M,) < Z (d(x0,%2) + 2d(x0,x1) + 2d(xy,x2)) + 3 z d(zy,z3), (8.9)
XeM, ZeMope

(M) < Y (d(x0,%1) + 2d(x0,%2) + 2d(x1, %)) + 3 Y. dlz3,23). (8.10)
XeM. ZeMopt

Multiplying (8.8) and (8.9) by 4 and (8.10) by 13 and adding up results in

21¢(M,) < Z (29d(x¢, x1) + 38d(xq,x,) + 38d(x(,x,))

XeM,

+ Y, (12d(zo,z3) + 12d(zy,23) + 39d(z3, 23)). (8.11)

ZeMopt

On the other hand, we can also use (8.2) and (8.3) with k = 3 and h = 0, 1 in order to
derive

Y (X, xz) + d(x1,%2)) <2+ Y d(zo,z2) + Y, d(x0,X1),

XeM, ZeMop XeM,

Y (@00, xz) + d(x1,%2)) < 2- Y, dlzg,22) + Y d(xo,%1).

XeM, ZeMop: XeM,

Multiplying both inequalities by 19, further the inequality

Y dxe,x) < Y d(zo,z1)

XeM, ZeMopt

by 67, and then adding all these to (8.11), we obtain

21C(Ma) < z [67d(20,21) + 38d(20,22) + 12d(20,23)

ZeMope

+ 38d(21,22) + lzd(21,23) + 39d(22,23)].
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Combining this with the triangle inequalities
d(z0,21) < d(z0,22) + d(21,22),
27d(ZO5ZI) < 27d(203 23) + 27d(21523)

leads to ¢(M,) < *2c(M,), as required for Theorem 3.5.
The following example shows that this bound is best possible.

Example 8.2. Let X; = {xj0,Xj;, X2} for j =0,1,2,3. In order to define the length
function, consider the graph G of Fig. 5. The numbers along the edges of G indicate the
length of these edges. For those pairs of vertices u, v for which no edge is drawn, d(u, v)
is equal to the length of the shortest path between u and v in G. It is not difficult to see
that the optimal solution is M, = {{xo}, X1j, X2;, X3;}1j = 0,1, 2}, with c(M,) = 21.
For g = (0,1,2,3), we get Mgy = {{X00,X12}, {Xo1,X10}s {X02, %11} }. Next, we obtain
the 3-dimensional assignment M = {{x00,X12-X21 }» {X01>X10sX22}> {X025X11,X20} }-
All matchings between the cliques of M and X ; have the same cost, namely 39. Hence,
C(Ma)/c(Mopt) = %_% = _1’71

Let us finally handle the case of the multiple-pass recursive heuristic and the proof
of Theorem 3.6. Define

B2,7) =1,
k—1+29%=2 , Atk — 2t + 1]
-y eI TR

We want to prove by induction on k that f(k, 7) is an upper bound on c(Mg)/c(M ).

Consider an instance of the k-dimensional assignment problem, and let M, be
its optimal solution. Assume without loss of generality that, when applying the
multiple-pass recursive heuristic to the (k — 1)-dimensional subproblem obtained by

Bk, 7) = (8.12)
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disregarding X, — (, the best solution is produced for the permutation (0, 1,...,k — 2)
of the indices. Let now ¢ =(0,1,...,k — 1), and observe that, by the induction
hypothesis,

Yooy dxux) < fk— 1L Y, Y d(zizy).

XeM, i<j<k-2 ZeMop, i<jSk—2

So, in the same way as we earlier derived (8.4), we now obtain:

k—1)cM<k—1+20Bk—1,7 Y T dzz)

ZeMope i<j<k—2

+lk=2r+1]- Y Ydzjz 1) (8.13)

ZeMope J

Moreover, the reasoning leading to (8.13) can be repeated k — 1 times, by disregarding
Xo,...» X3—, instead of X,_,. This yields the following inequality, for
h=0,1,..k—1:

(k —1)-c(Mg)

<k=—1+20Bk—1,17 Y Y d(z,z)
ZeMopy 0Si<jSk—1
i,j#h

+ k-t +1] Y Ydiz,z)

2ehtope
Adding these up, we get:
k(k — 1)-c(Mg)
<((k—1+20)(k — 2)- Bk — 1,7) + 2[(k = 27 + 11)- e(Mop),
or, in view of (8.12)
c(Mg) < Bk, 1) c(Mop)- (8.14)

Let us now investigate the behavior of B(k,t) for various values of 1. First, when
3 <1< 1, one has

k—-2)1+1 <"

Pl <) S 1 ST

(8.15)

To see this, notice that n(k,7) = n(k — 1,7) and

k—1+29(k—2) 2k — 2t + 1]
kk—1) nk)+ =

nik, 1) =

when < t < 1, and use the definition (8.12).
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When 7 = 1, B(k, 1) grows logarithmically with k. Indeed, substituting t = 1in (8.12)
and defining

R =57 ﬂ(k 1),

k

we arrive at

1
— 1

1)

[\
=

() =l — 1)+ ;

»
\_,\_,

k +

This equation is easily solved, and leads to

Bk, 1) = ‘H”-Z.l - = (8.16)

For k = 2, define

It is well known that 1 >C,>C3>-->C>% and lim,,,C, = C, where
C =0.57721... is the Euler-Mascheroni constant. Substituting in (8.16), we thus
conclude that

2(k + D, 1 2k . 2k+1, o 2k
1 Ll (k+ 1) — 2J o <Ak <k + -7 817

As mentioned in Section 3, we do not know whether f§(k, 7) is a tight upper bound
on ¢(Mg)/c(My), except when T =3, or k=3 and 7 = 1 (see Crama and Spieksma
[31). In fact, all we can show is that, in the worst case, c(Mp)/c(M,;) grows at least
hke 2 — 2/k when 7 =1 (notice that this is exactly the worst-case ratio of the
multiple-hub heuristic; see Section 4). We demonstrate this claim with the following

example.

Example 8.3. Consider the instance described in Example 4.3. As this example is
symmetric, it suffices to apply the single-pass recursive heuristic to it. The reader may

check by induction that it is possible for this heuristic to find the same solution found

by the multiple-hub heuristic.
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