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Abstract
An alternative algorithm for solving random regression test-day models was developed to allow

use of those models for extremely large data sets such as the U.S. database for dairy records. The
algorithm also facilitates integration of data from 305-day records when no test-day records are
available and simplifies development of an index for lactation performance that includes genetic
differences in lactation curve (persistency) and genetic effects of parity (maturity rate). Equations
are solved in two iterative steps: 1) estimation or update of regression coefficients based on test-day
yields for a given lactation and 2) estimation of fixed and random effects on those coefficients.
Solutions were shown to be theoretically equivalent to regular solutions for this class of random
regression model. In a test computation with 57,034 first-lactation test-day milk yields from 7173
Holstein cows, correlations between solutions from the two solution methods were all >0.98 after
only two iterations on the two steps. In addition to the relative simplicity of the proposed method, it
allows several other techniques to be applied in the second step: 1) a canonical transformation to
simplify computations (uncorrelated regressions) by making use of recent advances in solving
algorithms that allow missing values; 2) a transformation to limit the number of regressions and
create variates with biological meanings such as total yield, persistency, and maturity rate; 3) more
complicated (co)variance structures than those usually considered in random regression models
(e.g., additional random effects such as interaction of herd and sire); and 4) accommodation of
additional traits for cows without test-day records.

1. Introduction

Random regression models (e.g., Schaeffer
and Dekkers, 1994) that have been proposed
for analysis of test-day yields (Jamrozik et al.,
1997) are computationally demanding, and
until now few algorithms existed that could
be used to simplify the computations. A
(co)variance function can be defined as a
continuous function that represents the
variance and (co)variance of traits measured
at different points on a trajectory (Kirkpatrick
et al., 1990; Kirkpatrick et al., 1994; Meyer
and Hill, 1997). Recently, the equivalence

between random regression and (co)variance
function models was shown (Meyer and Hill, 1997,
van der Werf et al., 1998). Therefore, (co)variance
function coefficients can be computed directly as
(co)variance components of the equivalent random
regression model. The equivalence between random
regression and (co)variance function models also
can be used to simplify computations of random
regression models (van der Werf et al., 1998). The
objective of this study was to develop an alternative
algorithm to solve a random regression test-day
model for use with extremely large data sets, such
as the U.S. national database of dairy records.
Additional objectives were to facilitate the
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integration of data from 305-day records
when no test-day records were available and
to simplify the development of an index for
lactation performance that includes genetic
differences in lactation curve (persistency),
and genetic effects of parity (maturity rate).

2. Equivalence Between Random
Regression And Infinite-Dimensional
Models

Consider the following model to represent
a special class of random regression models:

y= Xb + Qr  + e
= Xb + Q(Wc + Za + p) + e

where y is the vector of observations (e.g.,
traits within animal), b is a vector of time-
dependent fixed effects (e.g., herd test-day),
X is an incidence matrix linking y and b, r is
a vector of time-independent random effects
(e.g., phenotypic cow effects with several

effects per animal representing regression
coefficients), Q is a covariate matrix linking y and
r and transforming time-dependent y to time
independent r , c is a vector of time-independent
fixed effects (e.g., age-season of calving), W is an
incidence matrix linking r  and c, a is a vector of
random additive genetic effects, Z is an incidence
matrix linking r  and a, p is a vector of random
nongenetic cow effects, and e is a vector of residual
effects (e.g., measurement errors).

The means and covariance structures of y, r , a,
p, and e can be summarized as

andE

























 +

=



























0

0

0

Wc

QWcXb

e

p

a

r

y























⊗⊗′⊗
⊗′⊗′′⊗

⊗⊗⊗+′⊗⊗+⊗
⊗⊗⊗+′⊗+′⊗+′′⊗

=























R000R

0KI0KIQKI

00KAZKAQZKA

0KIKAZKIZKAZQKIQZKAZ

RKIQKAQZKIQZKAQZRQKIQQZKAQZ

e

p

a

r

y

PPP

GGG

PGPGPG

PGPGPG

)(

)()(

)()(')('')(

)()()()()()(

Var

where K G and K P are coefficients of the genetic
and environmental covariance functions,
respectively, and ⊗ is the Kronecker product
function.

The random regression model also can be
written to represent an infinite-dimensional
model in which t = Qr :

y = Xb + t + e

For every animal i with records,

yi = X ib + t i + e

where t i represents a vector of cow-specific
effects that are observed for cow i.

The variance of t i then can be be
subdivided into genetic Gi and
environmental Pi parts and modeled using
covariance functions:

Var(t i) = Gi + Pi

= QiK GQi′+ QiK PQi′

The regression covariate matrix Q is
defined in general and can have different
structures. The easiest way to understand this
structure is through an example, e.g., the
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analysis of milk, fat, and protein yields on first-
lactation test days. Then,
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where the milk, fat, and protein test-day yields
are ordered as observations within trait within
animal so that Q can be split into Qi blocks with
a different block for each of i animals. Each
block is calculated as
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where φ is defined as the matrix of
regression variables associated with test-day
yields for milk (m), fat (f), or protein (p) for
animal i. The φ matrices for milk, fat, and
protein can be different, e.g., no protein
recorded or more observations for milk than
for component traits.

3. Alternative Solution Algorithm

Solution of a random regression model
normally is done through mixed model
equations:
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Because those equations are large and dense,
their solution is difficult for large populations.
However, the mixed model equations can be
subdivided into two sets of equations that can be
solved sequentially. The first set of equations
estimates b and p; the second estimates c and a.

3.1 Estimation of b and p

At iteration k+1, the new estimate for b is
obtained using current estimates for c, a and p:

)]ˆˆˆ(
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which is derived from the mixed model
equations. Solutions can be computed directly
herd by herd if fixed effects in b are defined

specific to herd (e.g., herd test date) because
block inversion is possible (the order is equal to
the herd-specific effects in b).

The new estimate for p is obtained using
current estimates for b, c, and a:
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which also is derived from the mixed model
equations. An advantage of this approach is that
solutions can be computed animal by animal
because R is block diagonal for every animal.
Therefore, direct inversion can be used in the
computations (the order of the inverted block is
equal to the number of regressions per animal).

The vector r  is then updated using current
estimates for c, a, and p:
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1)(k(k))(k1)(k ˆˆˆˆ ++ ++= paZcWr
3.2 Estimation of c and a

Solutions for c and a in iteration round k+1
are obtained from equations that are similar to
regular multivariate mixed model equations:
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Several solution techniques are possible
because the secondary-model is not completely
specified:

• canonical transformation to simplify
computation (uncorrelated regression) by

making use of solution algorithms that allow
missing values (Ducrocq and Besbes, 1993)
as well as other generalized uses of this
transformation described by Ducrocq and
Chapuis (1997),

• transformation to limit the number of
regressions (Wiggans and Goddard, 1997),
which could create variates with biological
meaning (such as total yield, persistency, and
maturity rate) that could facilitate the
development of an index for lactation
performance,

• more complicated (co)variance structure than
those usually considered in random
regression models (e.g., additional random
effects such as interaction of herd and sire),
and

• additional traits (such as 305-day yield for
cows without test-day records).

3.3 Proof

To show that the solutions for b, c, and a
from the alternative solution algorithm are

equivalent to those from the mixed model
equations, first absorb p into the mixed model
equations:
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Next iterate on the mixed model equations
with p absorbed using two blocks:
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Both formulas are equivalent to estimating b and
p in the alternative solution algorithm at k+1
rounds of iteration, and
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After introducing those blocks, moving them to the right-hand side, and using the estimates of b at
iteration k+1 and of c and a at iteration k,
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which is the same equation as that obtained by
including the alternative solution algorithm
equation to update b in the algorithm update of
r . Therefore, solutions for c and a obtained from
the algorithm are equivalent to those from the
mixed model equations.

3.4 Similarity to Method of van der Werf et
al. (1998)

With cursory inspection, the alternative
solution algorithm does not appear to resemble
the equations of van der Werf et al. (1998).
Their derivation was based on a totally different
approach using a transformation of y, whereas
the alternative solution equations were
developed by subdividing a class of random
regression models into two models. However,
the alternative solution algorithm can be shown
to be a generalization of the van der Werf et al.
(1998) equations by restructuring the same
equation that was used to demonstrate the
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 equivalence between the solutions from the algorithm and the mixed model equations:
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That generalization of the expression of van der
Werf et al. (1998) includes time-dependent fixed
effects, a general definition of R and Q, and no
limitations on the covariance structures.

Indirectly, the derivation of the alternative
solution algorithm also is a proof of the
equations of van der Werf et al. (1998).

4. Possible Practical Uses

4.1 Expectation-Maximization Algorithm

Similar to the approach proposed by van der
Werf et al. (1998), an expectation-maximization
algorithm can be used to update r . During

iteration, a part of r  would be estimated once and
another part updated based on current estimates
of b, c, and a:
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P

1 −−−− ′⊗+′= RQKIQRQQ  In
contrast to van der Werf et al. (1998), who
voluntarily avoided time-dependent fixed

 effects, the need also to update b leads to a
second method that is based on a two-step
approach.

4.2 Sequential Solution

The equations from the alternative solution
algorithm for estimating b, p, r , c, and a can be
directly used to develop a sequential solution
scheme. For most practical situations, solutions
from a former evaluation are available and can
be used as starting values. If genetic
evaluations are calculated every 3 or 6 months,
the relative number of additional records
compared with the total number of records
would be at most 5 to 10%. For most animals,
 values for a and p are available, and pedigree

values could replace estimates for a for new
animals. Therefore, the following scheme
would be possible based on the equations in
the alternative solution algorithm:

1. generate b with starting values from a
previous genetic evaluation.

2. update r . The solutions for b and for r
updated using b can also be obtained
together through the following mixed
model equations:
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3. solve for c and a in the alternative solution
algorithm equation by using starting values
from the last genetic evaluation.

4. update b using the new estimates for c and a.

5. solve for p using the new estimates for b, c,
and a, and update r  using the alternative
solution algorithm equation.

6. update c and a using the solutions from the
previous round of current genetic evaluation
as starting values.

7. Repeat from 4. until desired convergence is
reached.

This scheme obviously is approximate and
similar to the method proposed by Wiggans and
Goddard (1997). Such an approach also would
be appropriate for advanced milk recording plans
and continuous genetic evaluations. The
estimations of b and r  could be updated each
time that data from a new test day are added for
a given herd, thus allowing their use for
management purposes. The estimation of c and a
could then be updated for the whole population
on a scheduled basis (e.g., weekly, monthly,
quarterly).

5. Example Computations

5.1 Material and Methods

Data (Table 1) were from a subset of the data
used by Gengler et al. (1999). A total of 57,034
first-lactation test-day records that were recorded
between 7 and 305 days in milk were obtained
for 7173 Holstein cows that calved from 1990
through 1996 in large herds in Pennsylvania.
Pedigree information was available from the
Animal Improvement Programs Laboratory
database.

A model similar to the model of Gengler et
al. (1999) was used except that fixed regression
on third-order modified Legendre’s polynomials
(constant, linear, and quadratic) were added. The
three regressions were I0 = 1, I1 = 30.5x, and I2 =
(5/4)0.5(3x2 − 1), where x = −1 + 2[(DIM −
1)/(305 − 1)] and DIM = days in milk.

The model used was

y = Hh + Ss + Q(Wc + Za + p) + e

where y is the vector of test-day records for
milk, fat, or protein yield; h is the vector of
effects for class of herd test day and milking
frequency; s is the vector of effects for class of
age, season, and lactation stage; c is the vector of
fixed regression coefficients (three); a is the
vector of genetic random regression coefficients
(three per animal); p is the vector of permanent
environmental random regression coefficients
(three per cow with records); e is the vector of
residual effects; H, S, W, Z are incidence
matrices; and Q is the covariate matrix for the
regressions with three columns per animal.
Assumed (co)variance structures were
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enσ= IR  where K G is the covariance

matrix of the genetic random regressions, (the
coefficients of the genetic covariance function),
K P is the covariance matrix of the permanent
environmental random regressions (the
coefficients of the permanent environmental
covariance function), A is the additive genetic
relationship matrix among animals, Ic is the
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Table 1.Numbers of cows with records, test-day
records, animals included in the
relationship matrix (A−1), and equations
used in the random regression model.

Category Number

Cows 7173
Test-day records 57,034
Animals in A−1 15,378

Equations 69,355

identity matrix of dimension c (number of cows
or lactations), In is the identity matrix of

dimension n (number of test-day yields) and ,2
eσ

is the residual variance. For this example, classes
for age, season, and lactation stage were defined
so that small classes would be avoided, but such
classes should be smaller for actual calculation
of genetic evaluations. Calving ages were 20 to
24, 25 to 26, 27 to 28, and 29 to 35 months.

Starting with January, six 2-month calving
seasons were defined. Twenty-two lactation
stages based on days in milk were defined: 7 to
13, 14 to 20, 21 to 27, 28 to 34, 35 to 41, 42 to
48, 49 to 55, 56 to 62, 63 to 76, 77 to 90, 91 to
104, 105 to 118, 119 to 132, 133 to 146, 147 to
167, 168 to 188, 189 to 209, 210 to 230, 231 to
251, 252 to 272, 273 to 293, and 294 to 305.

(Co)variance components were those
obtained previously by Gengler et al. (1999)
through REMLF90 (Misztal, 1998). All
computations were done on a Digital Equipment
Corporation (Marlboro, MA) Personal
Workstation 433 with 512 megabytes of random
access memory.

5.1 Solution with Random Regression Model

The following mixed model equations were
constructed, stored in sparse matrix form, and
solved by Gauss-Seidel iteration using the
BLUPF90 program (Misztal, 1997):
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5.2 Two-Step Sequential Solution

1. Based on the alternative solution algorithm equations for b and p modified to two fixed
effects, Step 1 consists in solving
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  and updating r  by computing: )1k()k()k()1k( ˆˆˆˆ ++ ++= paZcWr . The BLUPF90 program
(Misztal, 1997) was used to set up and solve the equations. Because in the initial estimation
of r , no information was available for c and a, Step 1 was modified to:
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  which is equivalent to estimation of r  with a
regular random regression model under the
assumption that all cows are unrelated.

  
2. Based on the alternative solution algorithm

equation, Step 2 estimates c and a using the
regular multitrait program MTJAAM
(Gengler, 1998) with canonical
transformation.

6. Results and Discussion

Table 2 shows the correlations between
additive genetic solutions for the three
regressions. After the first round of iteration
under the assumption that animals were
unrelated, the correlations were already all
>0.95. After an additional round of iteration, the
correlations were all >0.98, and four rounds of
iteration yielded correlations that were all near 1.

Table 2. Correlations between solutions for additive
genetic regression coefficients obtained by
random regression and through indirect
solution.

Regressions

Iteration 1 2 3

1 0.965 0.975 0.957
2 0.983 0.991 0.983
3 0.992 0.996 0.991
4 0.996 0.998 0.995

1Initial computation was based on assumption that animals
were unrelated to estimate r .

7. Conclusions

Despite the similarity of the alternative
solution algorithm and the method of van der

Werf et al. (1998), the derivations were based on
different approaches: The alternative solution
algorithm was developed by representing a
phenotypic random regression model through a
multitrait submodel on the phenotypic
regressions, which was proved to be equivalent
to a class of random regression models.
However, R in the alternative algorithm can
describe much more complicated residual
structures than can the diagonal matrix of van
der Werf et al. (1998).

Test computations showed that even with
incomplete sequential solution, correlations with
solutions from the regular random regression
model were all > 0.98 after only two iterations
on the two steps. Therefore, the proposed
method based on sequential estimation of
regressions and effects on those regressions
allows, in addition to its relative simplicity,
several other techniques to be applied in the
second step: 1) canonical transformation to
simplify computations (uncorrelated regressions)
by making use of solution algorithms that allow
missing values; 2) transformation to limit the
number of regressions and to create variates with
biological meaning (e.g., total yield, persistency,
and maturity rate) that could facilitate the
development of an index for lactation
performance; 3) more complicated (co)variance
structures than those usually considered in
random regression models (e.g., additional
random effects such as interaction of herd and
sire); and 4) accommodation of additional traits
(e.g., 305-day yield for cows without test-day
records).

Acknowledgments

Nicolas Gengler, who is Research Team
Leader of the National Fund for Scientific



10

Research, Bruxelles, Belgium, acknowledges its
financial support. Aziz Tijani acknowledges the
support of the Administration Générale de la
Coopération au Développement, Bruxelles,
Belgium. The authors thank V. Ducrocq, Institut
National de la Recherche Agronomique, Jouy-
en-Josas, France, for help in the development of
the proof and S.M. Hubbard, Animal
Improvement Programs Laboratory, ARS,
USDA, Beltsville, MD, for manuscript review.

References

Ducrocq, V. and Besbes, B., 1993. Solution of
multiple trait models with missing data on
some traits. J. Anim. Breed. Genet., 110:81-
92.

Ducrocq, V. and Chapuis, H., 1997.
Generalizing the use of the canonical
transformation for the solution of multivariate
mixed model equations. Genet. Sel. Evol.,
29:205-224.

Gengler, N. 1998. MTJAAM manual. Mimeo,
Gembloux Agricultural University, Belgium.
FTP://nce.ads.uga.edu/pub/ignacy/contributed
/gengler/mtjaam/MTJAAM.MAN.

Gengler, N., Tijani, A., Wiggans, G.R. and
Misztal, I. 1999. Estimation of (co)variance
function coefficients for test day yields with
an expectation-maximization restricted
maximum likelihood algorithm. J. Dairy Sci.
(submitted).

Jamrozik, J., Schaeffer, L.R. and Dekkers,
J.C.M., 1997. Genetic evaluation of dairy
cattle using test day yields and random
regression model. J. Dairy Sci., 80:1217-
1226.

Kirkpatrick, M., Hill, W.G. and Thompson, R.,
1994. Estimating the (co)variance structure of
traits during growth and ageing, illustrated
with lactation in dairy cattle. Genet. Res.
Camb., 64:57-66.

Kirkpatrick, M., Lofsvold, D. and Bulmer, M.,
1990. Analysis of the inheritance, selection
and evolution of growth trajectories.
Genetics, 124:979-993.

Meyer, K. and Hill, W.G., 1997. Estimation of
genetic and phenotypic (co)variance functions
for longitudinal or "repeated" records by
restricted maximum likelihood. Livest. Prod.
Sci., 47:185-200.

Misztal, I., 1997. BLUPF90 manual. Mimeo,
University of Georgia, Athens, USA.
FTP://nce.ads.uga.edu/pub/ignacy/
blupf90/docs/BLUPF90.MAN.

Misztal, I., 1998. REMLF90 manual. Mimeo,
University of Georgia, Athens, USA.
FTP://nce.ads.uga.edu/pub/ignacy/
blupf90/docs/REMLF90.MAN.

Schaeffer, L.R. and Dekkers, J.C.M., 1994.
Random regression in animal models for test-
day production in dairy cattle. Proc. 5th
World Congr. Genet. Appl. Livest. Prod.,
Guelph, Ont., XVIII:443-446.

Van der Werf, J.H.J., Goddard, M.E. and Meyer,
K., 1998. The use of covariance functions and
random regressions for genetic evaluation of
milk production based on test day records.
1998. J Dairy Sci., 81:3300-3308.

Wiggans, G.R. and Goddard, M.E., 1997. A
computationally feasible test day model for
genetic evaluation of yield traits in the United
States. J Dairy Sci., 80:1795-1800.


