Sequential Evaluation of Longitudinal Conformation Data in Dairy Cows
(or How to Deal with Massive Multi-Trait Longitudinal Data)

N. Gengler1,2, S. Vanderick1, and C. Bastin1

1 University of Liège, Gembloux Agro-Bio Tech (GxABT), Gembloux, Belgium
2 National Fund for Scientific Research (FNRS), Brussels, Belgium
Acknowledgements

• Walloon Breeding Association (AWE)
• National Fund for Scientific Research (FNRS): 2.4.623.08.F
• Ministry of Agriculture of the Walloon Region of Belgium (different projects)
• European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk).

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu
Introduction

• Why still trying to improve “traditional genetic evaluations”?
 – We have genomic evaluation !!!

• However genomic evaluations also need accurate models to describe phenotypic records!
 – Two step approach:
 • Genetic evaluations ⇒ first step ⇒ prediction equations
 – One step approach as basic model
 • Genetic evaluations ⇒ genomic evaluations (GBLUP)
Introduction

• Which issues still need work in genetic evaluation?
 – First complexity of models
 – But also computing resources

• However still potentially some bottlenecks
 – In this study massive multiple-trait (MT) random regression models (RRM) for longitudinal traits:
 • Type data (as announced)
 • Extended to milk composition data (7FP RobustMilk)
Some Theory

• Complex models
 – Modified to simpler “equivalent” ones
• A type of generic longitudinal model

\[y = Hh + f[\Phi, t] + e \]

– where:
 • \(h \) = time-independent effects
 • \(H \) = incidence matrix of \(h \)
 • \(\Phi \) = “time-dependent” effects
 • \(t \) = time
 • \(f[\Phi, t] \) = function linking \(y \) and \(\Phi \) depending on \(t \)
Some Theory

• Please note:
 – If $f[\Phi,t]$ time-dependent, Φ is not!

• However Φ depend on other effects:

 $$\Phi = Xb + Zu + \varepsilon$$

 – Where:
 • b fixed effects, u random effects, ε residual effects
 • X and Z being incidence matrices

• Final model needs to be rewritten as:

 $$y = Hh + f[Xb + Zu + \varepsilon, t] + e$$
Some Theory

- Models for longitudinal data ⇒ complex
 - Time-dependent covariance structures
 - Often multi-trait (MT) models
- However very useful
 - Many traits, highly correlated, some missing
 - Two examples: type traits, milk composition data
- Idea: rewriting model in two stages
 - First stage estimating Φ from y
 - Then modeling Φ which has become time-independent
Some Theory

- First stage: \(y_{ij} = H_{ij} h_{ij} + f[\Phi_{ij}, t_{ij}] + e_{ij} \)

- For every animal \(i \) having records along a given longitudinal time gradient \(j \), this allows the estimation of a specific \(\Phi_{ij} \)
- \(\Phi \) often called meta-data (meta-traits)
- These models could remain single-trait (ST)
- E.g., could be typically any type of regression coefficients per cow x lactation
Some Theory

• Second stage: $\Phi = Xb + Zu + \epsilon$

 – Where estimates from first stage Φ and/or a function of these are modeled
 – These models typically multi-trait (MT) using the meta-data (meta-traits) as input
 – MT necessary to recover links across meta-traits
Example

- Sounds exotic?
Example

• Sounds exotic?
• However very simple US example
 – Stage 1: Best Prediction (BP)
 – Stage 2: Current USDA Animal Model (AM)
• Interesting example because shows different hidden issues
 – Will be used to give additional theoretical background
Hidden Issues

- **Complete equivalence**
 - Need complete BLUP and BLUE properties
 - Similarly to Modified Contemporary Comparison ⇔ Mixed Models

⇒ Iterative solving required
 - Updating estimation of meta-traits in Stage 1 using results from Stage 2
 - For a two step RRM shown by Gengler et al. (2000*)

- Can be considered as difference between BP + AM and full test-day model
 - even if persistency or lactation differences included in BP

Hidden Issues

- **Distribution of meta-traits**
 - Meta-traits: estimates
 - Two consequences
 - Loss of variance as meta-trait being an estimate
 - Uneven weights as differences in information used to estimate (reliability of estimates different)

⇒ Expansion of meta-traits required to recover variance
 - E.g., expansion of BP ⇒ AM

⇒ Weighting of meta-traits required to adjust for uneven weights
 - E.g., lactation weights ⇒ AM
Example: Type

- Type data from the routine performance recording in Walloon part of Belgium (01/2010)
 - 102,875 records from first parity
 - 30,378 records from second or later parities
 - 117,013 classified Holstein cows
 - Repeated records 16,240
 - With repetitions within and across lactations

- Request from the field
 - Better use of available longitudinal data along age at classification

- Use of this strategy to do (co)variance estimation
Type Model

- **Modification of current model**
 - Introduction of additional maturity effect
 - If lact = 1 ⇒ regression variable = 0 (LACT1)
 - If lact > 1 ⇒ regression variable = 1 (LACT2+)

- **Random regression model**
 - 33 traits ⇒ 66 random regressions (RR)
 - 2145 parameters per (co)variance matrix
 - Genetic and Non-genetic (stage 2)
 - Residual (stage 1) ⇒ simplified to single traits (ST)

- **Current results**
 - Without expansion and weightings
 - Using Multiple Diagonalization (CT) EM-REML
Type Results

- Residual variances \(\Rightarrow \) close to old estimates
- \(h^2 \) dropped
 - On average 0.02, largest drop 0.06
 - \(h^2 \) drop showed lost of overall variance
 \(\Rightarrow \) need expansion
- Relative differences in phenotypic (genetic) correlations for LACT1 and LACT2+
 - Based on Frobenius Norm ratios:
 - LACT1: 0.34 (0.42), LACT2+: 0.33 (0.42)
- Very high genetic correlations LACT1, LACT2+
 - Always > 0.99
Milk Composition Data

- Better example
- Large number of traits
 - Potentially > 30
- Highly correlated
- Only recent data
 - Interest to include Indicator traits (e.g., fat, protein), as recorded since +30 year
- Here results from an ongoing feasibility study by Catherine Bastin
Example: Milk Composition

• **Data**
 - 162,021 test-day records
 - 44,885 cows
 - 1029 herds
 - Traits (all known to reduce need to weight):
 • Milk, fat and protein yields, saturated (SAT) and monounsaturated (MONO) fatty acids content in milk

• **Model**
 - Same basic model as presented by Soyeurt et al. (2010)
 - **Stage 1**
 • Meta-trait was defined as phenotypic animal effects
 • Regression coefficients expanded by dividing them by REL
 - **Stage 2**
 • CT-EM-REML, no weighting of meta-traits
305 d Results

(average h^2 on diagonal, genetic correlations above, phenotypic below)

<table>
<thead>
<tr>
<th></th>
<th>MT-RRM estimates</th>
<th>Two stage method estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk (kg)</td>
<td>0.24</td>
<td>0.19</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>0.57</td>
<td>0.60</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>-0.42</td>
<td>-0.51</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>-0.41</td>
<td>-0.47</td>
</tr>
<tr>
<td>Milk (kg)</td>
<td>0.56</td>
<td>0.59</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>0.38</td>
<td>0.24</td>
</tr>
<tr>
<td>Protein (kg)</td>
<td>0.69</td>
<td>0.72</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>-0.11</td>
<td>-0.22</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>-0.11</td>
<td>-0.16</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>-0.24</td>
<td>-0.23</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>0.44</td>
<td>0.42</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>-0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>0.44</td>
<td>0.33</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>0.38</td>
<td>0.71</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>-0.11</td>
<td>0.32</td>
</tr>
<tr>
<td>SAT (%)</td>
<td>0.80</td>
<td>0.71</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>-0.11</td>
<td>0.15</td>
</tr>
</tbody>
</table>

(average h^2 on diagonal, genetic correlations above, phenotypic below)
Conclusions

• **Type traits**
 – Based on the current results, limited interest

• **Milk composition traits**
 – Close estimates for correlations across traits
 – Still a certain lost of relative genetic variability
 – For the given situation
 • Hugh number of traits, MT
 • Random regression models RRM
 • Best solution

• **Some methodological improvement under development**
Conclusions

- Proposed method showed large potential
 - In these studies for VC estimation
 - Also very interesting for improved solving of mixed model equations (better convergence)

- Easy to go further
 - More traits
 - Rank reduction
 - Sequential and iterative solving (updating), could be asynchronous (not same moment)
 - Herd-level for Stage 1
 - Population level for Stage 2
Questions ?